Technology Trends in Fused Deposition Modeling

A few months ago, I did a post on the Technology Trends in Laser-based Metal Additive Manufacturing where I identified 5 key directions that technology was moving in. In this post, I want to do the same, but for a different technology that we also use on a regular basis at PADT: Fused Deposition Modeling (FDM).

1. New Materials with Improved Properties

Many companies have released and are continuously developing composite materials for FDM. Most involve carbon fibers and are discussed in this review. Arevo Labs and Mark Forged are two of many companies that offer composite materials for higher performance, the table below lists their current offerings (CF = Carbon Fiber, CNT = Carbon Nano Tubes). Virtual Foundry are also working on developing a metal rich filament (with about 89% metal, 11% binder polymer), which they claim can be used to make mostly-metal parts for non-functional purposes using existing FDM printers and a heat treatment to vaporize the binder. In short, while ABS and PLA dominate the market, there is a wide range of materials commercially available and this list is growing each year.

Company Composition
Arevo Labs CF, CNT in PAEK
Fiberglass in PARA
Mark Forged Micro-CF in Nylon
Fiberglass (High Strength High Temperature)

2. Improved Properties through Process Enhancements

Even with newer materials, a fundamental problem in FDM is the anisotropy of the parts and the fact that the build direction introduces weak interfaces. However, there are several efforts underway to improve the mechanical properties of FDM parts and this is an exciting space to follow with many approaches to this being taken. Some of these involve explicitly improving the interfacial strength: one of the ways this can be achieved is by pre-heating the base layer (as being investigated by Prof. Keng Hsu at the Arizona State University using lasers and presented at the RAPID 2016 conference). Another approach is being developed by a company called Essentium who combine microwave heating and CNT coated filaments as shown in the video below.

Taking a very different approach, Arevo labs has developed a 6-axis robotic FDM process that allows for conformal deposition of carbon fiber composites and uses an FEA solver to generate optimized toolpaths for improved properties.

3. Faster & Bigger

A lot of press has centered around FDM printers that make bigger parts and at higher deposition rates: one article discusses 4 of these companies that showcased their technologies at an Amsterdam trade show. Among the companies that showcased their technologies at RAPID was 3D Platform, that showed a $27,000 3D printer for FDM with a 1m x 1m x 0.5m printing platform. Some of the key questions for large form factor printers is if and how they deal with geometries needing supports and enabling higher temperature materials. Also, while FDM is well suited among the additive technologies for high throughput, large size prints, it does have competition in this space: Massivit is one company that in the video below shows the printing of a structure 5.6 feet tall in a mere 5 hours using what they call “Gel Dispensed Printing” that reduces the need for supports.

 4. Bioprinting Applications

Micro-extrusion through syringes or specialized nozzles is one of the key ways bioprinting systems operate – but this is technically not “fused” deposition in that it may not involve thermal modification of the material during deposition. However, FDM technology is being used for making scaffolds for bio-printing with synthetic, biodegradable or bio-compatible polymers such as PCL and PLGA. The idea is these scaffolds then form the structure for seeding cells (or in some cases the cells are bioprinted as well onto the scaffold). This technology is growing fast and something we are also investigating at PADT – watch this space for more updates.

5. Material Modeling Improvements

Modeling FDM is an important part of being able to use simulation/analysis to design better processes and parts for functional use. This may not get a lot of press compared to the items above, but is a particular interest of mine and I believe is a critical piece of the puzzle going to true part production with FDM. I have written a few blog posts on the challenges, approaches and a micromechanics view of FDM printed structures and materials. The idea behind all of these is to represent FDM structures mathematically with valid and accurate models so that their behavior can be predicted and designs truly optimized. This space is also growing fast, the most recent paper I have come across in this space is from the University of Wisconsin-Madison that was published May 12, 2016.


Judging by media hype, metal 3D printing and 3D bioprinting are currently dominating the media spotlight – and for good reasons. But FDM has many things going for it: low cost of entry and manufacturing, user-friendliness and high market penetration. And the technology growth has no sign of abating: the most recent, 2016 Wohlers report assesses that there are over 300 manufacturers of FDM printers, though rumor on the street has it that there are over a thousand manufacturers coming up – in China alone. And as the 5 trends above show, FDM has a lot more to offer the world beyond being just the most rapidly scaling technology – and there are people working worldwide on these opportunities. When a process is as simple and elegant as extruding material from a hot nozzle, usable innovations will naturally follow.