Installing a Metal 3D Printer: Part 3A (Safety: Risks)

What are the safety risks in laser powder bed fusion metal 3D printing?

This is the 3rd post in a series of 5 on things we learned installing a metal 3D printer (laser powder bed fusion). Links to previous posts are below:

The most important discussions around installing and operating a metal 3D printer involve safety. The requirements can be difficult to pin down since they depend on several things: whether you are using reactive or non-reactive alloys (read a previous post on this subject here), the risk perception of your local building safety director and fire marshal, local regulations (and exceptions) and the volume of material you are dealing with. As with all things safety and more so because of how nascent metal 3D printing technology is, I list a few disclaimers at the bottom of this page.

There is so much to say about safety in this process that half-way through writing this post, it became clear it would not fit in one post. Therefore, I have split the content into two: in this post (3A) I talk about the risks: where they come from and why they matter. In the next post (3B), I will discuss how these risks can be mitigated.

1. Sources of Risk

Broadly speaking, I like to think of two sources of risk in this process since as an operator of these machines you have to think differently about how you interact with these sources.

1.1 Metal Powder

Metal 3D printing involves fusing together powder in a bed. Typical metal powders used for laser based 3D printing are spherical in shape and range from 10-70 microns in diameter, as shown in Figure 1. At this size, a metal can be prone to fire and explosion (under the right circumstances) and there is also the physiological concern of long-term inhalation of, and contact with, these powders. The powder also has a long life cycle and requires human interaction at many steps – from arriving in a container (as shown in Figure 2), through multiple recycling steps through final disposal. These risks come into play just when handling the powder (independent of its use in the process) – an additional risk comes from the melting process itself.

Fig 1. Typical powder particle size distribution is in the range of 10-70 microns for the laser powder bed fusion process.
Fig 2. Metal powders are delivered and stored in plastic containers such as the one shown above

1.2 The Laser Fusion Process

The powder in the bed described before is fused together into a solid using a laser that locally melts the powder one layer at a time. This is conducted in an inert atmosphere (Argon or Nitrogen) and is the second source of risk since these gases can displace Oxygen from a closed environment. Additionally, the process of laser melting of metals creates vaporized soot (see video below), some of which deposits on the process chamber and in the extraction module and filter. The smoke particles can be even finer than the powder itself, and need to be cleaned out with care on a regular basis.

2. Risks

There are 4 main risks arising from the laser powder bed fusion process: fire and explosion, powder inhalation and contact, inert gas asphyxiation and the environmental impact of the wastes generated.

2.1 Fire and Explosion

In May 2014, OSHA cited a 3D printing company for 10 violations deriving from the workplace safety standards surrounding the operation of a metal 3D printer (including not having the proper Class D fire extinguisher). The disregard of multiple safety measures during a routine build setup procedure resulted in a fire which caused life-threatening burns to the operator of the printer. While this incident was the result of gross negligence, it is nonetheless a cautionary tale that should drive us to understand the fundamental reasons why a metal 3D printer can cause fires and to appreciate the underlying reasons for why suppliers recommend the safety measures they do.

Fire and explosion require a combination of conditions as shown in the commonly cited image below used by OSHA and other agencies to communicate risks of powder handling.
As shown in Fig. 3, when handling powder in ambient atmospheres (with oxygen), all that is needed is a suitable ignition source to initiate a fire. Further, if this occurs in the presence of a dust cloud with many particles dispersed in a contained area (such as a small room or an air duct), this could lead to a more damaging explosion.

Fig 3. The oft cited fire triangle and explosion pentagon. Users of powder based metal 3D printing are often working with 2 of the 3 elements in the triangle and the key is to avoid the third.
  • Fire: When handling metal powder, the user needs to be aware that she/he already has 2 of the 3 requirements of a fire met and the main aim must be to ensure protection against any ignition source. There are several sources that could cause an ignition, the most likely one for a user of a metal 3D printer is static electricity. Additionally, it is possible that a fire can be initiated by hot surfaces, flames, hot gases and particles, mechanically generated sparks and strayelectrical currents.
  • Explosion: With regard to explosions, in addition to the 3 requirements above, dust clouds in contained areas can exacerbate any ignition to a much larger impact within milliseconds. Therefore, the prevention of the formation of metal dust clouds (as unlikely as that may seem), is of paramount importance.

In addition to the requirements above, there are levels associated with each requirement that need to be met together for an actual fire or explosion to occur. The risk of ignition increases with reducing particle diameter and given a certain particle size, the most significant factor governing risk is the nature of the metal. Reactive metals (Aluminum alloys, Titanium and its alloys, as well as smoke particles from both reactives and non-reactives) pose much higher risk than non-reactive metals (steels, Inconels, bronze, Cobalt Chrome alloys) – this is a subject I wrote about in more detail in a previous post.

2.2 Powder Inhalation & Contact

As discussed before, most metal 3D powder particles range in size from 10-70um. This is at the very edge of what is considered respirable and damaging to our lungs. While contact physically is to be avoided since it may initiate irritation and potential dermatitis, there is greater concern about the long-term inhalation exposure risks of these powders. Particles of the size range in this process can get deposited in the tracheo-bronchial region per Jenson [1] and Goldich [2]. Ultimately, these particles are discharged from the body or swallowed, but effects of long term exposure for the wide range of metals and alloys is not fully studied – which is why suppliers insist on respirators (more on that in the next post). It is worth pointing out though, from the work published by Jenson and Goldich, that it appears that while metal 3D printing powders are small enough to travel past the nasal cavity if inhaled, their sizes are large enough that respiratory damage in the lungs is highly unlikely – only particles under 2 microns are at risk of making it all the way to the alveoli and causing lung disease [2].

Fig 4. The human respiratory system. Particles in the 20-100 micron range, if inhaled, can make it to the trachea and bronchial regions [1, 2]  (Image Credit – public domain: National Institute of Health: National Heart, Lung and Blood Institute)

2.3 Inert Gas Asphyxiation

Inert gases are used in laser metal 3D printers to reduce the reactivity of the metal for processing purposes. Most metal 3D printers either use Nitrogen or Argon. Inert gas asphyxiation is the main risk due to oxygen being displaced by either of these gases that have leaked for some reason. Since both gases are not detectable by humans, victims do not realize that they are inhaling air depleted of oxygen and as a result this can have a serious impact. The human body is used to atmospheric percentages of oxygen (21%) and values below 19.5% can be harmful and are defined as oxygen-deficient per OSHA [3]. Thus, any user of nitrogen or argon gas (and this applies not just to any process using inert gases), especially in small spaces such as a closed room, needs to be aware of this risk and protect against it.

2.4 Environmental Impact

A key challenge with powder based processes lies in collecting and disposing the stray or “fugitive” powder from different locations such as the tool, PPE, containers and vacuum systems into temporary storage, during which the above risks of fire/explosion and inhalation remain. Additionally, the storage typically results in loose powder and solid waste as well as water with powder particles, both of which need to be disposed into the outside world and could pose an environmental hazard. I will discuss this further in a future post, when I attempt to look at some of the environmental aspects around this technology.

Fig 5. Metal powder settled at the bottom of the water column in the wet separator (vacuum cleaner). Where does it go next?

3. Disclaimers

  • This is intended to supplement the supplier training you must receive before using the equipment and not meant to replace it – in case of conflicting information, your supplier’s training and equipment requirements override any discussion here. PADT assumes no legal responsibilities for any decisions or actions taken by the readers of this document.
  • My personal experience derives specifically from the use of Laser-based metal 3D printing tools, specifically Concept Laser’s MLab Cusing R equipment. I expect majority of this information to be of use to users of other laser based powder bed fusion metal systems and to a lesser extent to Electron Beam systems, but have no personal experience to vouch for this.
  • Local, state and federal regulations vary, and are important – partner with your local fire marshal (or equivalent authority) as a starting point and take them along with you every step of the way. If in the US, familiarize yourself in particular with OSHA’s guidance on dust explosions [4] and NFPA 484 [5], the National Fire Protection Association’s standard for combustible metals (links below).

4. References

  1. J.M. Benson, “Safety considerations when handling metal powders,” Southern African Institute of Mining and Metallurgy, 2012
  2. R. G. Goldich, “Fundamentals of Particle Technology,” Chapter 15, Midland IT and Publishing, UK, 2002
  3. OSHA on Oxygen Deficiency
  4. OSHA’s Guidance on Dust Explosions
  5. National Fire Protection Association’s standard for combustible metals, NFPA 484
  6. D. Bhate, “Reactive and Non-Reactive Metal Alloys in Laser-based Powder Bed Fusion,” PADT Blog Post, 2016


Thank you to Perry Harlow-Leggett, the AM team at UL whose articles and webinars I have benefited from, and all the folks behind the scenes at OSHA and NFPA.


In part 3B, I will address mitigation strategies to address the risks described in this post. In the meantime, please read my prior posts below if you haven’t already, or send your inputs to me via message on LinkedIn. Thank you!

Installing a Metal 3D Printer: Part 2 (Facilities)

This is part 2 of a 5-part post on the lessons we learned installing our first Metal 3D printer, a Concept Laser MLab Cusing R. Please read the first post if you haven’t already, where I listed all the different equipment (in addition to the 3D printer itself) one needs to run this process, available at this link.

A reminder at the outset: these posts are meant to be informative only, to give you a sense of what questions you need to ask and get answers to. Specific requirements will vary by equipment and your site specific needs.

1. Electrical

Most metal 3D printers, including the Concept Laser machines, are manufactured in Europe and have electrical requirements that differ from what most American machine shops are setup for (which is the scope of this section). If you have installed 230 V European equipment before and know what L-N and PE stand for and how they differ between European and American systems, you can skip this section. If not, read on.

There are two key items here one needs to be aware of: first of course is the fact that these pieces of equipment typically run on single-phase 230 V (3-phase 400V for the very large machines like Concept Laser’s XLine 2000R) as opposed to the standard 110V. Secondly, and this is easier to miss, European electrical connections have one “hot” line (L) for a single-phase, one Neutral line (N) and one Protected Earth (PE) – this is different from the US standard where you have 2 “hot” lines and 1 ground. The reason for these differences and how to address them electrically is beyond the scope of this post (or my understanding), but the main point is to have an electrician familiar with European codes review this early on. A dedicated custom transformer for all your European 230V equipment is one solution, and the one we employed here at PADT, as shown in Figure 1. (I rarely give shout-outs, but our experience with Fargo Electric on procuring a custom, affordable transformer was one of the best transactions I have ever had.)

Fig 1. Dedicated transformer in use for PADT’s metal 3D printer. Also note the L-N-PE connections and the plugs used on the different equipment.

2. Inert Gas

Fig 2. Nitrogen line running to our MLab

Laser melting of powder metals needs to be conducted in an inert atmosphere. Most suppliers recommend using Argon for Aluminum and Titanium alloys, but that Nitrogen is fine for the non-reactive alloys such as steel, Inconel and Cobalt-Chrome alloys. At PADT, we leveraged our existing nitrogen generator and added an additional line running to our metal 3D printer (Figure 2). Before doing this, you need to add up all the consumption rates for the machines (at their peaks) to make sure you don’t exceed the generator’s capabilities. It is a good idea to demarcate space for Argon cylinders should you need them at a later stage.

3. ESD Mats or Floors (for Reactive Metals)

As we will see in the next blog post in this series, avoiding charge dissipation into metal powder is a key safety requirement for operating metal 3D printers – this is achieved through a range of strategies like ESD (Electro Static Discharge) armbands, grounding wires etc. If you plan on running reactive metals and especially if you expect to have many operators, an ESD coated floor with ESD shoes or boot straps, along with an ESD meter (like the one Honeywell installed at their facility) is a good strategy. From personal experience with ESD boot straps, I know these can be fickle in passing an ESD meter test. Connecting the ESD meter to the entryway door so entry is only provided after passing the test is one way to ensure only those with functioning straps enter the workspace. For those without this strategy, grounded ESD mats and ESD armbands connected to the machine are also alternative strategies which I will discuss in more detail in the next post. From a facilities standpoint, if you do want to enable ESD coated floors, boot straps and ESD meters, you need to plan this early, which is why I have included it here.

4. Water

Fig 3. Water column in a wet separator – this has to be cleaned out and replenished frequently

Access to running water is essential for cleaning the wet separator (vacuum) that is used for sucking up fugitive powder – ideally the water source is near your liquid waste storage so you can clean out the wet separator and pour the powder-contaminated water into storage. Alternatively, you can also use a garden sprayer for smaller machines, like we do at PADT. Fill up the sprayer with water and use it to rinse out the wet separator right on top of the waste storage bin.

Another reason you need access to water is to passivate the filter. While not all OEMs recommend water passivation, Concept Laser does and we find it to be very user friendly, as I demonstrate in the video below (video starts 2:58 in, which is when I discuss filter passivation with water).

 5. Access Control

It is important to restrict access to your metal AM laboratory through badge scanning or key pad entry to those who are trained on using the machine, and your building facilities team. It also helps to provide as much visibility through glass windows so that folks that are entering can study what activity is in progress before entering.

Fig 4. Door lock with combination to restrict access, window to provide visibility

6. Structure & Ventilation

Here I move into the subjective (gray area) domain – I request anyone who has more specific information on these matters to kindly share them with me for inclusion in this post (with due credit). I have heard anecdotally that in some places the city has required the supplier to install blast walls and other explosion resistant infrastructure – yet others have not required such infrastructure (including ours). I am not well informed in this space and can only emphasize the need to have these discussions out in the open in the early stage of planning your facility and ask your city’s building safety person if the walls you have planned (or already have installed) are adequate or not – this is likely to be a function of the amount and reactivity of the powder you are handling, proximity to vulnerable areas, human occupancy and other concerns. With regard to ventilation, the more open the space the better (these machines can heat up a small, closed room) – at the same time the space needs to be sealed off from the elements including wind. I know this too is a subjective matter, so discussions with city representatives are the best way to go.

Please send any of your comments, questions or suggestions for improvement to, citing this blog post, or connect with me on LinkedIn.

And now go on to PART 3 (SAFETY)


Special thanks to Gregg Rand at PADT, Martin Perez (City of Phoenix) and Dave Tallman (City of Tempe), and engineers at Concept Laser Inc.

Installing a Metal 3D Printer: Part 1 (Equipment)

Fig 1. Concept Laser MLab Cusing R in PADT’s Metal 3D Printing Lab

What equipment does one need for metal 3D printing? 

This is the first in a five-part series that brings together the different lessons we learned installing our first metal printer, a Concept Laser MLab Cusing R at PADT, shown in Figure 1. In this post I list the different equipment needed to enable metal 3D printing end-to-end, along with a brief explanation of its purpose. In subsequent posts, I deal with (2) Facilities, (3) Safety, (4) Environmental & (5) Housekeeping aspects of the technology. I hope this information adds to the conversation in a meaningful way and help those who are thinking about, or in the process of installing a metal 3D printer.

The specifics of some of this information will vary depending on the equipment and materials you handle, but my hope is the themes covered here give you a sense of what is involved in installing a metal 3D printer to aid in your preparation for doing the same and for having good discussions with your equipment supplier to ensure these are addressed at a minimum.

One way to look at classifying the equipment needed (beyond the obvious metal 3D printer!) is by its purpose, and I do so here by dividing it into two broad categories: Ancillary Equipment (necessary to the printing itself) and Post-Processing Equipment (focused on the part).

At the outset, it is crucial that the difference between reactive and non-reactive metal alloys be comprehended since a lot of the use of the equipment differs depending on what kind of metal alloy is being used. A previous blog post addressed these differences and these terms will be used in the following sections.

1. Ancillary Equipment

1.1 Wet Separator

Fig 2. Wet separator used to vacuum fugitive powder

The wet separator is essentially a vacuum cleaner that is designed to safely vacuum stray (“fugitive”) metal powders that cannot be cleaned up any other way. When dealing with powders, the typical recommendation is to first brush whatever you can into the overflow bin so you can reuse it. The next step is to try and wipe up powder with a moist lint-free cloth (to be covered in the housekeeping post). The wet separator has a water column that passivates the metal powder and renders it non-reactive to allow for easier disposal (to be covered in the environmental post). Wet separators require a significant amount of maintenance, particularly when dealing with reactive metals like Titanium and Aluminum alloys, where the supplier recommends the wet separator be cleaned out on a daily basis. At least one company has developed a kit to help with wet separator cleaning – which gives you an indication of how significant of an issue this is. Most suppliers provide a wet separator along with their equipment.

1.2 Glove Box

Fig 3. Glove box used to interact with the build chamber in a safe manner, and in an inert atmosphere for reactive metals

A glove box is a useful piece of equipment for dealing with reactive metals in particular. The glove box allows an operator to manage all the powder handling in the build chamber to be done in a closed environment. For non-reactive metals this is not a necessary piece of equipment but it is highly recommended for reactive metals. The glove box when used in concert with reactive metals will allow for inert gas flushing out of oxygen to low PPM levels prior to operator intervention, and also includes grounding connections for the box to the machine. The nice thing about having a glove box is it reduces the amount of time you need to have a respirator on by allowing you to add powder and unpack builds in a closed environment. The glove box may also be integrated into the machine itself – ours is a stand alone device on wheels that we roll over to the machine when we need it.

1.3 Powder Sieve

Unless you plan on disposing all the powder in each build after it is completed, you need a sieve to separate out the larger particles and contaminants from the powder you wish to reuse in subsequent builds. The sieves are also typically provided with the machine and can be enabled with inerting capability (as shown in Fig 4 on the left, or as shown on the right, come as a small desktop unit that can sieve about 3-5 lbs of powder at a time). While the sieve on the left may be used for reactive metal sieving, it is uncertain if one can safely use the desktop sieve for the same, even with grounding the table it sits on and the operator – this is a gray area and I am keen to hear thoughts on this from those that have the expertise/experience in this space.

Fig 4. Mechanical sieving: (left) for large quantity sieving, (right) tabletop model for smaller quantities

1.4 Ultrasonic Cleaner

Fig 5. Ultrasonic cleaner used to help isolate metal powder trapped inside parts and supports

The purpose of the ultrasonic cleaner is to remove as much trapped powder as possible before the part and the build plate are subjected to any post-processing – this is to minimize the risk of trapped powder getting airborne during downstream processes – which cannot be completely eliminated (which is why PPE should be used all the way through till the final part is in hand after cleaning).

The Ultrasonic cleaner is used twice: first before the parts are removed from the build plate, and again after they are removed. Sometimes I will even use it a third time after all supports have been removed, if the part has internal p. I typically use the 40 kHz and 60 C temperature setting but have not sought to further optimize the parameters at this time.

2. Post-Processing Equipment

2.1 Furnace

Fig 6. Radiation heating furnace with inert gas capability. The Nabertherm 7/H has a maximum temperature of 1280 C, suitable for stress relief.

The purpose of the furnace is to relieve residual stresses built in the parts prior to removing them from the build plate. So this is the first step after the parts and the plate come out of the ultrasonic cleaner. We use a furnace that allows for nitrogen or argon flushing, and place our parts wrapped in stainless steel foil in a gas box. Instructions for heat treatment (time and temperature profile) are typically provided on the technical specifications that come with the material. Metals like stainless steel can be stress relieved in a nitrogen atmosphere but Inconels and Ti6Al4V for example require higher temperatures of between 800-1000 C and argon atmospheres – so you need to be setup for both gases if you are considering running more than 1 metal in your operation.

2.2 Support Removal

All parts are connected to the build plate by between 3-5mm of supports that need to be removed. This is a two step process: the first step involves removing the parts with supports off the build plate, and this is most commonly done with a table saw or a wire EDM. At PADT, we stumbled upon a third way to do this, using an oscillating hand tool and a carbide blade – which works well for small parts (<3″ in X-Y space). It is important to always wear gloves and a supplier recommended (N95 or higher) respirator while removing supports since there could be trapped powder in the supports that was not removed with the Ultrasonic cleaner. The second step is to use hand tools to pry out the supports from the part – this is why it is important to design supports that have weak mechanical connections to the part itself – ideally you can tear them off with hand tools like a perforated sheet of paper [Video below courtesy Bob Baker at PADT, Inc].

2.3 Die Grinder

Fig 7. Die grinder used for removing burrs at the support interfaces on the part

A carbide die grinder is then used to grind away the support-model interface – for tiny parts, this can be achieved with a hand file as well for some parts but is easier to do with a die grinder. For large parts, this need can be eliminated by designing in regions that are to be machined later and aligning these regions with supported regions, so as to reduce the need for finishing on these surfaces.

2.4 Face Milling

This may come as a bit of a surprise, but you also need some way of replenishing the build plates after use so you can re-use the plates – this involves using a face milling technique to remove all the remnant supports on the build plate and take off a thin slice at the top of the build plate, while retaining flatness to within 100 microns (0.004″). Having this capability in-house will greatly speed-up your ability to start successive prints and reduce the need to keep large inventories of build plates [Video below courtesy Bob Baker at PADT, Inc].

2.5 Surface Finishing

A combination of techniques can be used for surface finishing. At a minimum, you must have the ability to do glass bead blasting – this is both for the printed parts, but also for the build plate itself – a bead blasted finish is recommended to improve the adhesion of the first layer of powder to the build plate.

Fig 8. (left) Bead blaster and (right) post-processed build plates, ready for use again

2.6 Other Capabilities

The list above is what I would consider a minimum list of capabilities one needs to get started in metal 3D printing, but is not comprehensive and does not include facility, safety, environmental and housekeeping requirements which I will cover in future posts. Additional CNC equipment for machining metal AM parts, heat treatment and HIP, and superior surface finishing and cleaning techniques are often called upon for metal AM production, but these are highly dependent on application and part design, which is why I have left them out of the above list.

Move on to part 2 of this series where I discuss the facilities requirements for metal 3D printing (electrical, inert gas etc.). Did I miss anything or do you have a better way of doing the things described above? Please send your thoughts to, citing this blog post, or connect with me on LinkedIn.

Garrett Garner at Concept Laser, Inc and Bob Baker at PADT, Inc. for their insight and expertise that helped us select and bring in the above capabilities at PADT.

CLICK HERE for part 2

On the Functions of Cellular Structures in Nature

WHY did nature evolve cellular structures?

In a previous post, I laid out a structural classification of cellular structures in nature, proposing that they fall into 6 categories. I argued that it is not always apparent to a designer what the best unit cell choice for a given application is. While most mechanical engineers have a feel for what structure to use for high stiffness or energy absorption, we cannot easily address multi-objective problems or apply these to complex geometries with spatially varying requirements (and therefore locally optimum cellular designs). However, nature is full of examples where cellular structures possess multi-objective functionality: bone is one such well-known example. To be able to assign structure to a specific function requires us to connect the two, and to do that, we must identify all the functions in play. In this post, I attempt to do just that and develop a classification of the functions of cellular structures.

Any discussion of structure in nature has to contend with a range of drivers and constraints that are typically not part of an engineer’s concern. In my discussions with biologists (including my biochemist wife), I quickly run into justified skepticism about whether generalized models associating structure and function can address the diversity and nuance in nature – and I (tend to) agree. However, my attempt here is not to be biologically accurate – it is merely to construct something that is useful and relevant enough for an engineer to use in design. But we must begin with a few caveats to ensure our assessments consider the correct biological context.

1. Uniquely Biological Considerations

Before I attempt to propose a structure-function model, there are some legitimate concerns many have made in the literature that I wish to recap in the context of cellular structures. Three of these in particular are relevant to this discussion and I list them below.

1.1 Design for Growth

Engineers are familiar with “design for manufacturing” where design considers not just the final product but also aspects of its manufacturing, which often place constraints on said design. Nature’s “manufacturing” method involves (at the global level of structure), highly complex growth – these natural growth mechanisms have no parallel in most manufacturing processes. Take for example the flower stalk in Fig 1, which is from a Yucca tree that I found in a parking lot in Arizona.

Figure 1. The flower stalk (before bloom) of a Yucca plant in Arizona with overlapping surface cellular structure (Author’s image)

At first glance, this looks like a good example of overlapping surfaces, one of the 6 categories of cellular structures I covered before. But when you pause for a moment and query the function of this packing of cells (WHY this shape, size, packing?), you realize there is a powerful growth motive for this design. A few weeks later when I returned to the parking lot, I found many of the Yucca stems simultaneously in various stages of bloom – and captured them in a collage shown in Fig 2. This is a staggering level of structural complexity, including integration with the environment (sunlight, temperature, pollinators) that is both wondrous and for an engineer, very humbling.

Figure 2. From flower stalk to seed pods, with some help from pollinators. Form in nature is often driven by demands of growth. (Author’s images)

The lesson here is to recognize growth as a strong driver in every natural structure – the tricky part is determining when the design is constrained by growth as the primary force and when can growth be treated as incidental to achieving an optimum functional objective.

1.2 Multi-functionality

Even setting aside the growth driver mentioned previously, structure in nature is often serving multiple functions at once – and this is true of cellular structures as well. Consider the tessellation of “scutes” on the alligator. If you were tasked with designing armor for a structure, you may be tempted to mimic the alligator skin as shown in Fig. 3.

Figure 3. The cellular scutes on the alligator serve more than just one function: thermal regulation, bio-protection, mobility, fluid loss mitigation are some of the multiple underlying objectives that have been proposed (CCO public domain, Attr. Republica)

As you begin to study the skin, you see it is comprised of multiple scutes that have varying shape, size and cross-sections – see Fig 4 for a close-up.

Figure 4. Close-up of alligator scutes (Attr: Hans Hillewaert, Flickr, Creative Commons)

The pattern varies spatially, but you notice some trends: there exists a pattern on the top but it is different from the sides and the bottom (not pictured here). The only way to make sense of this variation is to ask what functions do these scutes serve? Luckily for us, biologists have given this a great deal of thought and it turns out there are several: bio-protection, thermoregulation, fluid loss mitigation and unrestricted mobility are some of the functions discussed in the literature [1, 2]. So whereas you were initially concerned only with protection (armor), the alligator seeks to accomplish much more – this means the designer either needs to de-confound the various functional aspects spatially and/or expand the search to other examples of natural armor to develop a common principle that emerges independent of multi-functionality specific to each species.

1.3 Sub-Optimal Design

This is an aspect for which I have not found an example in the field of cellular structures (yet), so I will borrow a well-known (and somewhat controversial) example [3] to make this point, and that has to do with the giraffe’s Recurrent Laryngeal Nerve (RLN), which connects the Vagus Nerve to the larynx as shown in Figure 5, which it is argued, takes an unnecessarily long circuitous route to connect these two points.

Figure 5. Observe how the RLN in the giraffe emerges from the Vagus Nerve far away from the thorax: a sub-optimal design that was likely carried along through the generations in aid of prioritizing neck growth (Attr: Vladimir V. Medeyko)

We know that from a design standpoint, this is sub-optimal because we have an axiom that states the shortest distance between two points is a straight line. And therefore, the long detour the RLN makes in the giraffe’s neck must have some other evolutionary and/or developmental basis (fish do not have this detour) [3]. However, in the case of other entities such as the cellular structures we are focusing on, the complexity of the underlying design principles makes it hard to identify cases where nature has found a sub-optimal design space for the function of interest to us, in favor of other pressing needs determined by selection. What is sufficient for the present moment is to appreciate that such cases may exist and to bear them in mind when studying structure in nature.

2. Classifying Functions

Given the above challenges, the engineer may well ask: why even consider natural form in making determinations involving the design of engineering structures? The biomimic responds by reminding us that nature has had 3.8 billion years to develop a “design guide” and we would be wise to learn from it. Importantly, natural and engineering structures both exist in the same environment and are subject to identical physics and further, are both often tasked with performing similar functions. In the context of cellular structures, we may thus ask: what are the functions of interest to engineers and designers that nature has addressed through cellular design? Through my reading [1-4], I have compiled the classification of functions in Figure 6, though this is likely to grow over time.

Figure 6. A proposed classification of functions of cellular structures in nature (subject to constant change!)

This broad classification into structural and transport may seem a little contrived, but it emerges from an analyst’s view of the world. There are two reasons why I propose this separation:

  1. Structural functions involve the spatial allocation of materials in the construction of the cellular structures, while transport functions involve the structure AND some other entity and their interactions (fluid or light for example) – thus additional physics needs to be comprehended for transport functions
  2. Secondly, structural performance needs to be comprehended independent of any transport function: a cellular structure must retain its integrity over the intended lifetime in addition to performing any additional function

Each of these functions is a fascinating case study in its own right and I highly recommend the site [1] as a way to learn more on a specific application, but this is beyond the scope of the current post. More relevant to our high-level discussion is that having listed the various reasons WHY cellular structures are found in nature, the next question is can we connect the structures described in the previous post to the functions tabulated above? This will be the attempt of my next post. Until then, as always, I welcome all inputs and comments, which you can send by messaging me on LinkedIn.

Thank you for reading!


  2. Foy (1983), The grand design: Form and colour in animals, Prentice-Hall, 1st edition
  3. Dawkins (2010), The greatest show on earth: the evidence for evolution, Free Press, Reprint of 1st edition
  4. Gibson, Ashby, Harley (2010), Cellular Materials in Nature and Medicine, Cambridge University Press; 1st edition
  5. Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (2000), Metal Foams: A Design Guide, Butterworth-Heinemann, 1st edition

Cellular Design Strategies in Nature: A Classification

What types of cellular designs do we find in nature?

Cellular structures are an important area of research in Additive Manufacturing (AM), including work we are doing here at PADT. As I described in a previous blog post, the research landscape can be broadly classified into four categories: application, design, modeling and manufacturing. In the context of design, most of the work today is primarily driven by software that represent complex cellular structures efficiently as well as analysis tools that enable optimization of these structures in response to environmental conditions and some desired objective. In most of these software, the designer is given a choice of selecting a specific unit cell to construct the entity being designed. However, it is not always apparent what the best unit cell choice is, and this is where I think a biomimetic approach can add much value. As with most biomimetic approaches, the first step is to frame a question and observe nature as a student. And the first question I asked is the one described at the start of this post: what types of cellular designs do we find in the natural world around us? In this post, I summarize my findings.

Design Strategies

In a previous post, I classified cellular structures into 4 categories. However, this only addressed “volumetric” structures where the objective of the cellular structure is to fill three-dimensional space. Since then, I have decided to frame things a bit differently based on my studies of cellular structures in nature and the mechanics around these structures. First is the need to allow for the discretization of surfaces as well: nature does this often (animal armor or the wings of a dragonfly, for example). Secondly, a simple but important distinction from a modeling standpoint is whether the cellular structure in question uses beam- or shell-type elements in its construction (or a combination of the two). This has led me to expand my 4 categories into 6, which I now present in Figure 1 below.

Figure 1. Classification of cellular structures in nature: Volumetric – Beam: Honeycomb in bee construction (Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring), Lattice structure in the Venus flower basket sea sponge (Neon); Volumetric – Shell: Foam structure in douglas fir wood (U.S. National Archives and Records Administration), Periodic Surface similar to what is seen in sea urchin skeletal plates (Anders Sandberg); Surface: Tessellation on glypotodon shell (Author’s image), Scales on a pangolin (Red Rocket Photography for The Children’s Museum of Indianapolis)

Setting aside the “why” of these structures for a future post, here I wish to only present these 6 strategies from a structural design standpoint.

  1. Volumetric – Beam: These are cellular structures that fill space predominantly with beam-like elements. Two sub-categories may be further defined:
    • Honeycomb: Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Fig 1. All cross-sections through the 3rd dimension are thus identical. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs.
    • Lattice and Open Cell Foam: Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional lattice or open-cell foam. Lattice designs tend to embody higher stiffness levels while open cell foams enable energy absorption, which is why these may be further separated, as I have argued before. Nature tends to employ both strategies at different levels. One example of a predominantly lattice based strategy is the Venus flower basket sea sponge shown in Fig 1, trabecular bone is another example.
  2. Volumetric – Shell:
    • Closed Cell Foam: Closed cell foams are open-cell foams with enclosed cells. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures. Plant sections often reveal a closed cell foam, such as the douglas fir wood structure shown in Fig 1.
    • Periodic Surface: Periodic surfaces are fascinating mathematical structures that often have multiple orders of symmetry similar to crystalline groups (but on a macro-scale) that make them strong candidates for design of stiff engineering structures and for packing high surface areas in a given volume while promoting flow or exchange. In nature, these are less commonly observed, but seen for example in sea urchin skeletal plates.
  3. Surface:
    • Tessellation: Tessellation describes covering a surface with non-overlapping cells (as we do with tiles on a floor). Examples of tessellation in nature include the armored shells of several animals including the extinct glyptodon shown in Fig 1 and the pineapple and turtle shell shown in Fig 2 below.
    • Overlapping Surface: Overlapping surfaces are a variation on tessellation where the cells are allowed to overlap (as we do with tiles on a roof). The most obvious example of this in nature is scales – including those of the pangolin shown in Fig 1.
Figure 2. Tessellation design strategies on a pineapple and the map Turtle shell [Scans conducted at PADT by Ademola Falade]

What about Function then?

This separation into 6 categories is driven from a designer’s and an analyst’s perspective – designers tend to think in volumes and surfaces and the analyst investigates how these are modeled (beam- and shell-elements are at the first level of classification used here). However, this is not sufficient since it ignores the function of the cellular design, which both designer and analyst need to also consider. In the case of tessellation on the skin of an alligator for example as shown in Fig 3, was it selected for protection, easy of motion or for controlling temperature and fluid loss?

Figure 3. Varied tessellation on an alligator conceals a range of possible functions (CCO public domain)

In a future post, I will attempt to develop an approach to classifying cellular structures that derives not from its structure or mechanics as I have here, but from its function, with the ultimate goal of attempting to reconcile the two approaches. This is not a trivial undertaking since it involves de-confounding multiple functional requirements, accounting for growth (nature’s “design for manufacturing”) and unwrapping what is often termed as “evolutionary baggage,” where the optimum solution may have been sidestepped by natural selection in favor of other, more pressing needs. Despite these challenges, I believe some first-order themes can be discerned that can in turn be of use to the designer in selecting a particular design strategy for a specific application.


This is by no means the first attempt at a classification of cellular structures in nature and while the specific 6 part separation proposed in this post was developed by me, it combines ideas from a lot of previous work, and three of the best that I strongly recommend as further reading on this subject are listed below.

  1. Gibson, Ashby, Harley (2010), Cellular Materials in Nature and Medicine, Cambridge University Press; 1st edition
  2. Naleway, Porter, McKittrick, Meyers (2015), Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 27(37), 5455-5476
  3. Pearce (1980), Structure in Nature is a Strategy for Design, The MIT Press; Reprint edition

As always, I welcome all inputs and comments – if you have an example that does not fit into any of the 6 categories mentioned above, please let me know by messaging me on LinkedIn and I shall include it in the discussion with due credit. Thanks!

3D Printing Student Projects at PADT: Visit our Open House to Learn More (Thursday, March 2, 5pm)

Thursday, March 2 is PADT’s annual SciTech Festival Open House, from 5-8pm (click HERE to register). This year, three student groups working on a range of projects will be present to showcase their work, all of which involved some level of 3D printing. Please bring friends and families to meet and discuss ideas with these students from our community.

Formula SAE Team (Arizona State University)

ASU’s Formula SAE team will be onsite with their 2016 cardemonstrating specifically how they used 3D printing to manufacture the functional intake manifolds on these cars. What is specifically interesting is how they have modified their manifold design to improve performance while leveraging the advantages of 3D printing, and also they have evaluated multiple materials and processes over the recent years (FDM, SLS).

Prosthetic Arm Project (BASIS Chandler)

Rahul Jayaraman will be back to discuss how he and 30 students at BASIS Chandler manufactured, assembled and delivered about 20 prosthetic hands to an organization that distributes these to children in need across the world. Rahul and PADT were featured in the news for this event.

Cellular Structures in Nature (BASIS Chandler)

A BASIS Chandler High School senior, Amy Zhang, just started her Senior Research Project with PADT, focusing on a project at the intersection of biology and 3D printing, investigating cellular structures that occur on surfaces in nature, like the wing of a dragonfly or the shell on a turtle or the encasing of a pineapple – all of which are comprised of cellular geometries. Using 3D scanning, image analysis and mathematical methods, Amy hopes to develop models for describing these structures that can then be used in developing design principles for 3D printing. You can learn more on Amy’s blog:



Metal AM Magazine Article: Modeling the Mechanical Behaviour of Additively Manufactured Cellular Structures

Fig 1. Metal AM Magazine Cover: Winter 2016 (Vol. 2, No. 4)

Metal AM Magazine publishes an article by PADT!

Our 10-page article on “Modeling the Mechanical Behavior of Cellular Structures for Additive Manufacturing” was published in the Winter 2016 edition of the Metal AM magazine. This article represents a high-level summary of the different challenges and approaches in addressing the modeling specific aspects of cellular structures, along with some discussion of the design, manufacturing and implementation aspects associated with AM.

Click HERE for link to the entire magazine, our article starts on page 51. Digital editions are free to download. Swing by PADT in the new year to pick up a hard copy or look for it at our table when you visit us at trade shows.

To stay in touch with the latest developments at the intersection of AM and Cellular Structures, connect with me on LinkedIn, where I typically post 1-2 blog posts every month on this, or related subjects in Additive Manufacturing.

Fig 2. Dimensional tolerances and how the influence models – one of the many concepts discussed in the article

Modeling 3D Printed Cellular Structures: Approaches

How can the mechanical behavior of cellular structures (honeycombs, foams and lattices) be modeled?

This is the second in a two-part post on the modeling aspects of 3D printed cellular structures. If you haven’t already, please read the first part here, where I detail the challenges associated with modeling 3D printed cellular structures.

The literature on the 3D printing of cellular structures is vast, and growing. While the majority of the focus in this field is on the design and process aspects, there is a significant body of work on characterizing behavior for the purposes of developing analytical material models. I have found that these approaches fall into 3 different categories depending on the level of discretization at which the property is modeled: at the level of each material point, or at the level of the connecting member or finally, at the level of the cell. At the end of this article I have compiled some of the best references I could find for each of the 3 broad approaches.

1. Continuum Modeling

The most straightforward approach is to use bulk material properties to represent what is happening to the material at the cellular level [1-4]. This approach does away with the need for any cellular level characterization and in so doing, we do not have to worry about size or contact effects described in the previous post that are artifacts of having to characterize behavior at the cellular level. However, the assumption that the connecting struts/walls in a cellular structure behave the same way the bulk material does can particularly be erroneous for AM processes that can introduce significant size specific behavior and large anisotropy. It is important to keep in mind that factors that may not be significant at a bulk level (such as surface roughness, local microstructure or dimensional tolerances) can be very significant when the connecting member is under 1 mm thick, as is often the case.

The level of error introduced by a continuum assumption is likely to vary by process: processes like Fused Deposition Modeling (FDM) are already strongly anisotropic with highly geometry-specific meso-structures and an assumption like this will generate large errors as shown in Figure 1. On the other hand, it is possible that better results may be had for powder based fusion processes used for metal alloys, especially when the connecting members are large enough and the key property being solved for is mechanical stiffness (as opposed to fracture toughness or fatigue life).

Fig 1. Load-displacement curves for ULTEM-9085 Honeycomb structures made with different FDM toolpath strategies

2. Cell Level Homogenization

The most common approach in the literature is the use of homogenization – representing the effective property of the cellular structure without regard to the cellular geometry itself. This approach has significantly lower computational expense associated with its implementation. Additionally, it is relatively straightforward to develop a model by fitting a power law to experimental data [5-8] as shown in the equation below, relating the effective modulus E* to the bulk material property Es and their respective densities (ρ and ρs), by solving for the constants C and n.


While a homogenization approach is useful in generating comparative, qualitative data, it has some difficulties in being used as a reliable material model in analysis & simulation. This is first and foremost since the majority of the experiments do not consider size and contact effects. Secondly, even if these were considered, the homogenization of the cells only works for the specific cell in question (e.g. octet truss or hexagonal honeycomb) – so every new cell type needs to be re-characterized. Finally, the homogenization of these cells can lose insight into how structures behave in the transition region between different volume fractions, even if each cell type is calibrated at a range of volume fractions – this is likely to be exacerbated for failure modeling.

3. Member Modeling

The third approach involves describing behavior not at each material point or at the level of the cell, but at a level in-between: the connecting member (also referred to as strut or beam). This approach has been used by researchers [9-11] including us at PADT [12] by invoking beam theory to first describe what is happening at the level of the member and then use that information to build up to the level of the cells.

Fig 2. Member modeling approach: represent cellular structure as a collection of members, use beam theory for example, to describe the member’s behavior through analytical equations. Note: the homogenization equations essentially derive from this approach.

This approach, while promising, is beset with some challenges as well: it requires experimental characterization at the cellular level, which brings in the previously mentioned challenges. Additionally, from a computational standpoint, the validation of these models typically requires a modeling of the full cellular geometry, which can be prohibitively expensive. Finally, the theory involved in representing member level detail is more complex, makes assumptions of its own (e.g. modeling the “fixed” ends) and it is not proven adequately at this point if this is justified by a significant improvement in the model’s predictability compared to the above two approaches. This approach does have one significant promise: if we are able to accurately describe behavior at the level of a member, it is a first step towards a truly shape and size independent model that can bridge with ease between say, an octet truss and an auxetic structure, or different sizes of cells, as well as the transitions between them – thus enabling true freedom to the designer and analyst. It is for this reason that we are focusing on this approach.


Continuum models are easy to implement and for relatively isotropic processes and materials such as metal fusion, may be a good approximation of stiffness and deformation behavior. We know through our own experience that these models perform very poorly when the process is anisotropic (such as FDM), even when the bulk constitutive model incorporates the anisotropy.

Homogenization at the level of the cell is an intuitive improvement and the experimental insights gained are invaluable – comparison between cell type performances, or dependencies on member thickness & cell size etc. are worthy data points. However, caution needs to be exercised when developing models from them for use in analysis (simulation), though the relative ease of their computational implementation is a very powerful argument for pursuing this line of work.

Finally, the member level approach, while beset with challenges of its own, is a promising direction forward since it attempts to address behavior at a level that incorporates process and geometric detail. The approach we have taken at PADT is in line with this approach, but specifically seeks to bridge the continuum and cell level models by using cellular structure response to extract a point-wise material property. Our preliminary work has shown promise for cells of similar sizes and ongoing work, funded by America Makes, is looking to expand this into a larger, non-empirical model that can span cell types. If this is an area of interest to you, please connect with me on LinkedIn for updates. If you have questions or comments, please email us at or drop me a message on LinkedIn.

References (by Approach)

Bulk Property Models

[1] C. Neff, N. Hopkinson, N.B. Crane, “Selective Laser Sintering of Diamond Lattice Structures: Experimental Results and FEA Model Comparison,” 2015 Solid Freeform Fabrication Symposium

[2] M. Jamshidinia, L. Wang, W. Tong, and R. Kovacevic. “The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting®(EBM),” Journal of Materials Processing Technology214, no. 8 (2014): 1728-1739

[3] S. Park, D.W. Rosen, C.E. Duty, “Comparing Mechanical and Geometrical Properties of Lattice Structure Fabricated using Electron Beam Melting“, 2014 Solid Freeform Fabrication Symposium

[4] D.M. Correa, T. Klatt, S. Cortes, M. Haberman, D. Kovar, C. Seepersad, “Negative stiffness honeycombs for recoverable shock isolation,” Rapid Prototyping Journal, 2015, 21(2), pp.193-200.

Cell Homogenization Models

[5] C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont. “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting,” Materials & Design 55 (2014): 533-541.

[6] S. Didam, B. Eidel, A. Ohrndorf, H.‐J. Christ. “Mechanical Analysis of Metallic SLM‐Lattices on Small Scales: Finite Element Simulations versus Experiments,” PAMM 15.1 (2015): 189-190.

[7] P. Zhang, J. Toman, Y. Yu, E. Biyikli, M. Kirca, M. Chmielus, and A.C. To. “Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation,” Journal of Manufacturing Science and Engineering 137, no. 2 (2015): 021004.

[8] M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, M. Brandt. “Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM),” The International Journal of Advanced Manufacturing Technology 84.5 (2016): 1391-1411.

Beam Theory Models

[9] R. Gümrük, R.A.W. Mines, “Compressive behaviour of stainless steel micro-lattice structures,” International Journal of Mechanical Sciences 68 (2013): 125-139

[10] S. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A. Zadpoor, A. (2014), “Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells,” Journal of the Mechanical Behavior of Biomedical Materials, 34, 106-115.

[11] S. Zhang, S. Dilip, L. Yang, H. Miyanji, B. Stucker, “Property Evaluation of Metal Cellular Strut Structures via Powder Bed Fusion AM,” 2015 Solid Freeform Fabrication Symposium

[12] D. Bhate, J. Van Soest, J. Reeher, D. Patel, D. Gibson, J. Gerbasi, and M. Finfrock, “A Validated Methodology for Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures Manufactured by Fused Deposition Modeling,” Proceedings of the 26th Annual International Solid Freeform Fabrication, 2016, pp. 2095-2106

SFF Symposium 2016 Paper: Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures

Our work on  3D printed honeycomb modeling that started as a Capstone project with students from ASU in September 2015 (described in a previous blog post), was published in a peer-reviewed paper released last week in the proceedings of the SFF Symposium 2016. The full title of the paper is “A Validated Methodology for Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures Manufactured by Fused Deposition Modeling“. This was the precursor work that led to a us winning an 18-month award to pursue this work further with America Makes.

Download the whole paper at the link below:

ULTEM-9085 has established itself as the Additive Manufacturing (AM) polymer of choice for end-use applications such as ducts, housings, brackets and shrouds. The design freedom enabled by AM processes has allowed us to build structures with complex internal lattice structures to enhance part performance. While solutions exist for designing and manufacturing cellular structures, there are no reliable ways to predict their behavior that account for both the geometric and process complexity of these structures. In this work, we first show how the use of published values of elastic modulus for ULTEM-9085 honeycomb structures in FE simulation results in 40- 60% error in the predicted elastic response. We then develop a methodology that combines experimental, analytical and numerical techniques to predict elastic response within a 5% error. We believe our methodology is extendable to other processes, materials and geometries and discuss future work in this regard.

Fig 1. Honeycomb tensile test behavior varying as a function of manufacturing parameters
The ASU Capstone team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest.
Fig 2. The ASU Capstone team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest.

Thoughts on Biofabrication (and a Visit to WFIRM)

The Wake Forest Institute of Regenerative Medicine (WFIRM) hosted about 400 attendees at the annual Biofabrication conference, held this year at Winston-Salem, NC (Oct 28-Nov 1, 2016). The conference included a 2 hour tour of WFIRM’s incredible facilities, 145 posters, 200 or so presentations and a small trade show with about 30 exhibitors. As a mechanical engineer attending my first bio-related conference, I struggled to fully comprehend many concepts and terms in some of the deeper technical presentations. Nonetheless, there was a lot I DID learn, and this post serves to summarize my thoughts on the four high-level insights I gleaned amidst the pile of information on offer. I hope these are of value to the larger community that is not on the front lines of this exciting and impactful area of research.

More than Organs

To say biofabrication is all about making organs is like saying manufacturing is all about making spacecrafts carrying humans to Mars. It misses a lot of the other valid human needs that can be met and suggests organs are the end of the biofabrication R&D curve, when they only represent one manifestation (arguably the most difficult one in our current sense of the world) of the application of the science. If we take a step back, biofabrication is fundamentally about “manufacturing with living materials” – in that sense, biofabrication blurs the lines between natural and man-made entities. If you could manipulate and engineer living cells in physical constructs, what all could you do? Here is a list of some examples of the different applications that were discussed at the conference:

  • Toxicology Studies – Organovo’s examples of skin, liver and kidney tissue being used to evaluate drug efficacy
  • Body-on-a-Chip – A solution to aid in pre-clinical work to study whole systems (a key regulatory hurdle) and potentially displace animal studies in the future
  • Tissues for Therapy – This could involve patches, stents and other such fixes of a therapeutic nature (as opposed to replacing the entire organ in question)
  • Non-Medical ApplicationsModern Meadow is a company that is using biofabrication techniques to make leather and thereby help reduce our dependency on animal agriculture. Biofabricated meat is another potential application.
  • Functional Tissues and Organs – An interesting thought presented by Prof. Rashid Bashir is that replacing organs with matched constructs may not be optimal – we may be able to develop biological entities that get the job done without necessarily replicating every aspect of the organ being replaced. A similar thought is to to use biological materials to do engineering tasks. The challenge with this approach is living cells need to be kept alive – this is easier done when the fabricated entity is part of a living system, but harder to do when it is independent of one.
  • Full Organ Replacement – Replicating an organ in all its detail: structurally and functionally – WFIRM has done this for a few organs that they consider Level 1-3 in terms of complexity (see Figure 1). Level 4 organs (like the heart) are at the moment exceedingly challenging due to their needs for high vascularity and large size.
Fig 1. Levels of complexity in organs, adapted from Dr. Anthony Atala’s talk at the conference. Image Attributions: Cancer Research UK (Wikimedia Commons), NA, Mikael Häggström (Wikimedia Commons), OpenStax College (Wikimedia Commons)

It Takes a Village (and a Vivarium)

Imagine this is the early 2000s and you are tasked with establishing a center dedicated to accelerating the progress of regenerative medicine. What are the parts this center needs to house? This was probably what Dr. Anthony Atala and others were working out prior to establishing WFIRM in 2004. To give you a sense of what goes on in WFIRM today, here is a (partial) list of the different rooms/groups we visited on our tour: decellularization, imaging, tissue maturation, bioprinting, electrospinning, lab-on-a-chip, direct writing, vivarium that cares for animals (mice, ferrets, sheep, pigs, dogs – beagles to be specific, and “non-human primates”) and a cleanroom for pre-clinical studies. Add administrative, outreach and regulatory staff. Today, about 450 people work at WFIRM and many more collaborate. Going into this conference, I was well aware this field was an inter-disciplinary one. The tour opened my eyes to just how many interdependent parts there are that make an end-to-end solution possible, some more interdisciplinary in nature than others and just how advantageous it must be to have all these capabilities under one roof dedicated to a larger mission instead of spread across a large university campus, serving many masters.

“I Have a Hammer, Where is the Nail?”

I will be honest – I justified my interest in biofabrication on the very dubious basis of my experience with 3D printing, a long standing interest in the life sciences that I had hitherto suppressed, and the fact that I am married to a cancer researching biochemist – bioprinting was my justification for finally getting my feet (close to a) wet (lab). I suspect I am not alone in this (support group, anyone?). When I described this to the only surgeon who entertains my questions, he accurately summarized my approach in the afore mentioned hammer-nail analogy. So, armed with my hammer, I headed to the biofabrication conference seeking nails. The good news is I found a couple. As in exactly two. The bad news? See the section above – this stuff is hard and multi-faceted – and there are folks with a multi-decade head start. So for those of us not on the front lines of this work or not in college planning our next move, the question becomes how best can we serve the scientists and engineers that are already in this field. Better tools are one option, and the trade show had examples of these: companies that make bioprinters (see Figure 2 below), improved nozzles for bioprinting, clean-room alternatives, biomaterials like hydrogels, and characterization and testing equipment. But solving problems that will help the biofabrication community is another approach and there were about 5-10 posters and
presentations (mine included) which attempted to do just that. What are some of the areas that could benefit from such peripheral R&D engagement? My somewhat biased feeling is that there is opportunity for bringing some of the same challenges Additive Manufacturing is going through to this area as well:

  • Design for Bioprinting: fully exploiting the possibilities of bioprinting – “in Silico” has made some progress with medical devices – a similar window of value exists for biofabrication due to the design freedom of 3D printing
  • Modeling: Biofabrication almost always involves multi-materials, often with varying constitutive behaviors and further are in complex, time-varying environments – getting some handle on this is a precursor to item 1 above
  • Challenges of Scale: This has many elements: quality control, cost, automation, data security, bio-safety. This is one of the key drivers behind the recent DOD call for an Advanced Tissue Biofabrication Manufacturing Innovation Institute and is likely to drive several projects in this space over the next 5-7 years.

Moral of the story for me: carry your hammer with pride but take the time to learn, ask and probe to find the pain points that are either already there or are likely to arise in the future, and keep refining your hammer with input from the biofabrication community – conferences are the best place to do this – IF you go in with that intent and prepare ahead of time identifying the people you want to talk to and the questions you wish to ask them – something I hope to be better at next time around.

Fig 2. A few of the Bioprinters on display at the Biofabrication 2016 conference: Rokit, CellInk and RegenHU represented here (the others were: Advanced Solutions, Biobots and EnvisionTEC)

The Rate-of-Progress Paradox

Finally, a more abstract point. From the sidelines, we may ask how far has the field of biofabrication come and how fast is it progressing? It is one thing to sift through media hype and reconcile it with ground realities. It is quite another to discover this conflict seemingly exists even in the trenches – there are several examples of transplanted biofabricated entities, yet there is a common refrain that we have a long way to go to doing just so. And that struck me initially as a paradox as I heard the plenary talks that were alternatingly cautious and wild – but on the very last day I started to appreciate why this was not a paradox at all, it is just the nature of the science itself. Unlike a lot of engineering paradigms, there are limits to efficiencies that can be gained in the life sciences – and once these are gained (shared resources, improved methods etc.), success in one particular tissue or organ may not make the next one progress much faster. Take Wake Forest’s own commonly used approach for regenerative medicine, for example: harvest cells, culture them, build scaffold constructs, mature cells on these constructs, implant and monitor. Sounds simple, but takes 5-10 years to get to clinical implantation and another 5-10 of observation before the results are published. And just because you have shown this in one area, bladder for example, doesn’t make the next one much faster at all. All the same steps have to be followed: pathways to be re-evaluated, developmental studies to be done – prior to extensive animal and clinical trials. The solution? Pursue multiple tissues/organs in parallel, follow each step diligently and be patient. Wake Forest seems to have envisioned this over a decade ago and I expect the coming decade will show a cascade of biofabrication successes hit us with increasingly boring steadiness.

Concluding Thoughts

Finally, we should all be thankful to the many PhD students and post-docs from all over the world putting in the bulk of the disciplined, hard work this field demands, most of them, in my opinion, at salaries not reflective of their extensive education and societal value. We should also spare a thought for all the animals being sacrificed for this and other research, even in the context of best veterinary practices – my personal hope is that biofabrication enables us to stop all animal trials at some point in the near future – indeed, this seems to be the only technology that can. Then we can truly say with confidence, that we have first and foremost, done no harm.

Thank you WFIRM, for a wonderful conference and all the work you do everyday!

Modeling 3D Printed Cellular Structures: Challenges

In this post, I discuss six challenges that make the modeling of 3D printed cellular structures (such as honeycombs and lattices) a non-trivial matter. In a following post, I will present how some of these problems have been addressed with different approaches.

At the outset, I need to clarify that by modeling I mean the analytical representation of material behavior, primarily for use in predictive analysis (simulation). Here are some reasons why this is a challenging endeavor for 3D printed cellular solids – some of these reasons are unique to 3D printing, others are a result of aspects that are specific to cellular solids, independent of how they are manufactured. I show examples with honeycombs since that is the majority of the work we have data for, but I expect that these ideas apply to foams and lattices as well, just with varying degrees of sensitivity.

1. Complex Geometry with Non-Uniform Local Conditions

I state the most well-appreciated challenge with cellular structures first: they are NOT fully-dense solid materials that have relatively predictable responses governed by straightforward analytical expressions. Consider a dogbone-shaped specimen of solid material under tension: it’s stress-strain response can be described fairly well using continuum expressions that do not account for geometrical features beyond the size of the dogbone (area and length for stress and strain computations respectively). However, as shown in Figure 1, such is not the case for cellular structures, where local stress and strain distributions are non-uniform. Further, they may have variable distributions of bending, stretching and shear in the connecting members that constitute the structure. So the first question becomes: how does one represent such complex geometry – both analytically and numerically?

Fig 1. Honeycomb structure under compression showing non-uniform local elastic strains [Le & Bhate, under preparation]

2. Size Effects

A size effect is said to be significant when an observed behavior varies as a function of the size of the sample whose response is being characterized even after normalization (dividing force by area to get stress, for example). Here I limit myself to size effects that are purely a mathematical artifact of the cellular geometry itself, independent of the manufacturing process used to make them – in other words this effect would persist even if the material in the cellular structure was a mathematically precise, homogeneous and isotropic material.

It is common in the field of cellular structure modeling to extract an “effective” property – a property that represents a homogenized behavior without explicitly modeling the cellular detail. This is an elegant concept but introduces some practical challenges in implementation – inherent in the assumption is that this property, modulus for example, is equivalent to a continuum property valid at every material point. The reality is the extraction of this property is strongly dependent on the number of cells involved in the experimental characterization process. Consider experimental work done by us at PADT, and shown in Figure 2 below, where we varied both the number of axial and longitudinal cells (see inset for definition) when testing hexagonal honeycomb samples made of ULTEM-9085 with FDM. The predicted effective modulus increases with increasing number of cells in the axial direction, but reduces (at a lower rate) for increasing number of cells in the longitudinal direction.

This is a significant challenge and deserves a full form post to do justice (and is forthcoming), but the key to remember is that testing a particular cellular structure does not suffice in the extraction of effective properties. So the second question here becomes: what is the correct specimen design for characterizing cellular properties?

Fig 2. Effective modulus under compression showing a strong dependence on the number of cells in the structure [Le & Bhate, under preparation]

3. Contact Effects

In the compression test shown in the inset in Figure 2, there is physical contact between the platen and the specimen that creates a local effect at the top and bottom that is different from the experience of the cells closer the center. This is tied to the size effect discussed above – if you have large enough cells in the axial direction, the contribution of this effect should reduce – but I have called it out as a separate effect here for two reasons: Firstly, it raises the question of how best to design the interface for the specimen: should the top and bottom cells terminate in a flat plate, or should the cells extend to the surface of contact (the latter is the case in the above image). Secondly, it raises the question of how best to model the interface, especially if one is seeking to match simulation results to experimentally observed behavior. Both these ideas are shown in Figure 3 below. This also has implications for product design – how do we characterize and model the lattice-skin interface? As such, independent of addressing size effects, there is a need to account for contact behavior in characterization, modeling and analysis.

Fig 3. Two (of many possible) contact conditions for cellular structure compression – both in terms of specimen design as well as in terms of the nature of contact specified in the simulation (frictionless vs frictional, for example)

4. Macrostructure Effects

Another consideration related to specimen design is demonstrated in an exaggerated manner in the slowed down video below, showing a specimen flying off the platens under compression – the point being that for certain dimensions of the specimen being characterized (typically very tall aspect ratios), deformation in the macrostructure can influence what is perceived as cellular behavior. In the video below, there is some induced bending on a macro-level.

5. Dimensional Errors

While all manufacturing processes introduce some error in dimensional tolerances, the error can have a very significant effect for cellular structures – a typical industrial 3D printing process has tolerances within 75 microns (0.003″) – cellular structures (micro-lattices in particular) very often are 250-750 microns in thickness, meaning the tolerances on dimensional error can be in the 10% and higher error range for thickness of these members. This was our finding when working with Fused Deposition Modeling (FDM), where on a 0.006″ thick wall we saw about a 10% larger true measurement when we scanned the samples optically, as shown in Figure 4. Such large errors in thickness can yield a significant error in measured behavior such as elastic modulus, which often goes by some power to the thickness, amplifying the error. This drives the need for some independent measurement of the manufactured cellular structure – made challenging itself by the need to penetrate the structure for internal measurements. X-ray scanning is a popular, if expensive approach. But the modeler than has the challenge of devising an average thickness for analytical calculations and furthermore, the challenge of representation of geometry in simulation software for efficient analysis.

Fig 4. (Clockwise from top left): FDM ULTEM 9085 honeycomb sample, optical scan image, 12-sample data showing a mean of 0.064″ against a designed value of 0.060″ – a 7% error in thickness

6. Mesostructural Effects

The layerwise nature of Additive Manufacturing introduces a set of challenges that are somewhat unique to 3D Printed parts. Chief among these is the resulting sensitivity to orientation, as shown for the laser-based powder bed fusion process in Figure 5 with standard materials and parameter sets. Overhang surfaces (unsupported) tend to have down-facing surfaces with different morphology compared to up-facing ones. In the context of cellular structures, this is likely to result in different thickness effects depending on direction measured.

Fig 5. 3D Printed Stainless Steel Honeycomb structures showing orientation dependent morphology [PADT, 2016]
For the FDM process, in addition to orientation, the toolpaths that effectively determine the internal meso-structure of the part (discussed in a previous blog post in greater detail) have a very strong influence on observed stiffness behavior, as shown in Figure 6. Thus orientation and process parameters are variables that need to be comprehended in the modeling of cellular structures – or set as constants for the range of applicability of the model parameters that are derived from a certain set of process conditions.

Fig 6. Effects of different toolpath selections in Fused Deposition Modeling (FDM) for honeycomb structure tensile testing  [Bhate et al., RAPID 2016]


Modeling cellular structures has the above mentioned challenges – most have practical implications in determining what is the correct specimen design – it is our mission over the next 18 months to address some of these challenges to a satisfactory level through an America Makes grant we have been awarded. While these ideas have been explored in other manufacturing contexts,  much remains to be done for the AM community, where cellular structures have a singular potential in application.

In future posts, I will discuss some of these challenges in detail and also discuss different approaches to modeling 3D printed cellular structures – they do not always address all the challenges here satisfactorily but each has its pros and cons. Until then, feel free to send us an email at citing this blog post, or connect with me on LinkedIn so you get notified whenever I write a post on this, or similar subjects in Additive Manufacturing (1-2 times/month).

Classification of Cellular Solids (and why it matters)

Updated (8/30/2016): Two corrections made following suggestions by Gilbert Peters: the first corrects the use of honeycomb structures in radiator grille applications as being for flow conditioning, the second corrects the use of the Maxwell stability criterion, replacing the space frame example with an octet truss.


This is my first detailed post in a series on cellular structures for additive manufacturing, following an introductory post I wrote where I classified the research landscape in this area into four elements: design, analysis, manufacturing and implementation.

Within the design element, the first step in implementing cellular structures in Additive Manufacturing (AM) is selecting the appropriate unit cell(s). The unit cell is selected based on the performance desired of it as well as the manufacturability of the cells. In this post, I wish to delve deeper into the different types of cellular structures and why the classification is important. This will set the stage for defining criteria for why certain unit cell designs are preferable over others, which I will attempt in future posts. This post will also explain in greater detail what a “lattice” structure, a term that is often erroneously used to describe all cellular solids, truly is.

1. Honeycomb

1.1 Definition
Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Figure 1. All cross-sections through the 3rd dimension are thus identical, making honeycombs somewhat easy to model. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs. Honeycombs have a strong anisotropy in the 3rd dimension – in fact, the modulus of regular hexagonal and triangular honeycombs is transversely isotropic – equal in all directions in the plane but very different out-of-plane.

Figure 1. Honeycomb structure showing two-dimensional, prismatic nature (Attr: modified from work done by George William Herbert, Wikipedia)
Figure 2. Honeycomb design in use as part of a BMW i3 crash structure (Attr: adapted from youkeys, Wikipedia)

1.2 Design Implications
The 2D nature of honeycomb structures means that their use is beneficial when the environmental conditions are predictable and the honeycomb design can be oriented in such a way to extract maximum benefit. One such example is the crash structure in Figure 2 as well as a range of sandwich panels. Several automotive radiator grilles are also of a honeycomb design to condition the flow of air. In both cases, the direction of the environmental stimulus is known – in the former, the impact load, in the latter, airflow.

2. Open-Cell Foam

Figure 3. Open cell foam unit cell, following Gibson & Ashby (1997)

2.1 Definition
Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional open-cell foam design as shown in one representation of a unit cell in Figure 3. Typically, open-cell foams are bending-dominated, distinguishing them from stretch-dominated lattices, which are discussed in more detail in a following section on lattices.

2.2 Design Implications
Unlike the honeycomb, open cell foam designs are more useful when the environmental stimulus (stress, flow, heat) is not as predictable and unidirectional. The bending dominated mechanism of deformation make open-cell foams ideal for energy absorption – stretch dominated structures tend to be stiffer. As a result of this, applications that require energy absorption such as mattresses and crumple zones in complex structures. The interconnectivity of open-cell foams also makes them a candidate for applications requiring fluid flow through the structure.

Figure 4. SEM image of a metallic open-cell foam (Attr: SecretDisc, Wikipedia)
Figure 5. FEA simulation of open cell foam unit cell under compression, showing predominant mode of deformation is on account of bending

3. Closed-Cell Foam

Figure 6. Open cell foam unit cell representation [following Gibson and Ashby, 1997]
3.1 Definition
As the name suggests, closed cell foams are open-cell foams with enclosed cells, such as the representation shown in Figure 6. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures, though this is not necessary. Closed-cell foams arise from a lot of natural processes and are commonly found in nature. In man-made entities, they are commonly found in the food industry (bread, chocolate) and in engineering applications where the enclosed cell is filled with some fluid (like air in bubble wrap, foam for bicycle helmets and fragile packaging).

3.2 Design Implications
The primary benefit of closed cell foams is the ability to encapsulate a fluid of different properties for compressive resilience. From a structural standpoint, while the membrane is a load-bearing part of the structure under certain loads, the additional material and manufacturing burden can be hard to justify. Within the AM context, this is a key area of interest for those exploring 3D printing food products in particular but may also have value for biomimetic applications.

Figure 8. Closed cell Aluminum foam with very large cells [Shinko Wire Company, Attr: Curran2, Wikimedia Commons]

 4. Lattice

4.1 Definition
Lattices are in appearance very similar to open cell foams but differ in that lattice member deformation is stretch-dominated, as opposed to bending*. This is important since for the same material allocation, structures tend to be stiffer in tension and/or compression compared to bending – by contrast, bending dominated structures typically absorb more energy and are more compliant.

So the question is – when does an open cell foam become stretch dominated and therefore, a lattice? Fortunately, there is an app equation for that.

Maxwell’s Stability Criterion
Maxwell’s stability criterion involves the computation of a metric M for a lattice-like structure with b struts and j joints as follows:

In 2D structures: M = b – 2j + 3
In 3D structures:
M = b – 3j + 6

Per Maxwell’s criterion, for our purposes here where the joints are locked (and not pinned), if M < 0, we get a structure that is bending dominated. If M >= 0, the structure is stretch dominated. The former constitutes an open-cell foam, the latter a lattice.

There are several approaches to establishing the appropriateness of a lattice design for a structural applications (connectivity, static and kinematic determinism etc.) and how they are applied to periodic structures and space frames. It is easy for one (including for this author) to confuse these ideas and their applicability. For the purposes of AM, Maxwell’s Stability Criterion for 3D structures is a sufficient condition for static determinancy. Further, for a periodic structure to be truly space-filling (as we need for AM applications), there is no simple rigid polyhedron that fits the bill – we need a combination of polyhedra (such as an octahedron and tetrahedron in the octet truss shown in the video below) to generate true space filling, and rigid structures. The 2001 papers by Deshpande, Ashby and Fleck illustrate these ideas in greater detail and are referenced at the end of this post.

Video: The octet truss is a classic stretch-dominated structure, with b = 36 struts, j = 14 joints and M = 0 [Attr. Lawrence Livermore National Labs]

4.2 Design Implications
Lattices are the most common cellular solid studied in AM – this is primarily on account of their strong structural performance in applications where high stiffness-to-weight ratio is desired (such as aerospace), or where stiffness modulation is important (such as in medical implants). However, it is important to realize that there are other cellular representations that have a range of other benefits that lattice designs cannot provide.

Conclusion: Why this matters

It is a fair question to ask why this matters – is this all just semantics? I would like to argue that the above classification is vital since it represents the first stage of selecting a unit cell for a particular function. Generally speaking, the following guidelines apply:

  • Honeycomb structures for predictable, unidirectional loading or flow
  • Open cell foams where energy absorption and compliance is important
  • Closed cell foams for fluid-filled and hydrostatic applications
  • Lattice structures where stiffness and resistance to bending is critical

Finally, another reason it is important to retain the bigger picture on all cellular solids is it ensures that the discussion of what we can do with AM and cellular solids includes all the possibilities and is not limited to only stiffness driven lattice designs.

Note: This blog post is part of a series on “Additive Manufacturing of Cellular Solids” that I am writing over the coming year, diving deep into the fundamentals of this exciting and fast evolving topic. To ensure you get each post (~2 a month) or to give me feedback for improvement, please connect with me on LinkedIn.


[1] Ashby, “Materials Selection in Mechanical Design,” Fourth Edition, 2011
[2] Gibson & Ashby, “Cellular Solids: Structure & Properties,” Second Edition, 1997
[3] Gibson, Ashby & Harley, “Cellular Materials in Nature & Medicine,” First Edition, 2010
[4] Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley, “Metal Foams: A Design Guide,” First Edition, 2000
[5] Deshpande, Ashby, Fleck, “Foam Topology Bending versus Stretching Dominated Architectures,” Acta Materialia 49, 2001
[6] Deshpande, Fleck, Ashby, “Effective properties of the octet-truss lattice material,”  Journal of the Mechanics and Physics of Solids, 49, 2001


* We defer to reference [1] in distinguishing lattice structures as separate from foams – this is NOT the approach used in [2] and [3] where lattices are treated implicitly as a subset of open-cell foams. The distinction is useful from a structural perspective and as such is retained here.

The Additive Manufacturing Cellular Solids Research Landscape

I am writing this post after visiting the 27th SFF Symposium, a 3-day Additive Manufacturing (AM) conference held annually at the University of Texas at Austin. The SFF Symposium stands apart from other 3D printing conferences held in the US (such as AMUG, RAPID and Inside3D) in the fact that about 90% of the attendees and presenters are from academia. This year had 339 talks in 8 concurrent tracks and 54 posters, with an estimated 470 attendees from 20 countries – an overall 50% increase over the past year.

As one would expect from a predominantly academic conference, the talks were deeper in their content and tracks were more specialized. The track I presented in (Lattice Structures) had a total of 15 talks – 300 minutes of lattice talk, which pretty much made the conference for me!

In this post, I wish to summarize the research landscape in AM cellular solids at a high level: this classification dawned on me as I was listening to the talks over two days and taking in all the different work going on across several universities. My attempt in this post is to wrap my arms around the big picture and show how all these elements are needed to make cellular solids a routine design feature in production AM parts.

Classification of Cellular Solids

First, I feel the need to clarify a technicality that bothered me a wee bit at the conference: I prefer the term “cellular solids” to “lattices” since it is more inclusive of honeycomb and all foam-like structures, following Gibson and Ashby’s 1997 seminal text of the same name. Lattices are generally associated with “open-cell foam” type structures only – but there is a lot of room for honeycomb structures and close-cell foams, each having different advantages and behaviors, which get excluded when we use the term “lattice”.

Figure 1. Classification of Cellular Solids [Gibson & Ashby, 1997]

The AM Cellular Solids Research Landscape

The 15 papers at the symposium, and indeed all my prior literature reviews and conference visits, suggested to me that all of the work in this space falls into one or more of four categories shown in Figure 2. For each of the four categories (design, analysis, manufacturing & implementation), I have listed below the current list of capabilities (not comprehensive), many of which were discussed in the talks at SFF. Further down I list the current challenges from my point of view, based on what I have learned studying this area over the past year.

Figure 2. AM Cellular Solid Research Landscape

Over the coming weeks I plan to publish a post with more detail on each of the four areas above, summarizing the commercial and academic research that is ongoing (to the best of my knowledge) in each area. For now, I provide below a brief elaboration of each area and highlight some important research questions.

1. Representation (Design)

This deals with how we incorporate cellular structures into our designs for all downstream activities. This involves two aspects: the selection of the specific cellular design (honeycomb or octet truss, for example) and its implementation in the CAD framework. For the former, a key question is: what is the optimum unit cell to select relative to performance requirements, manufacturability and other constraints? The second set of challenges arises from the CAD implementation: how does one allow for rapid iteration with minimal computational expense, how do cellular structures cover the space and merge with the external skin geometry seamlessly?

2. Optimization (Analysis)

Having tools to incorporate cellular designs is not enough – the next question is how to arrange these structures for optimum performance relative to specified requirements? The two most significant challenges in this area are performing the analysis at reasonable computational expense and the development of material models that accurately represent behavior at the cellular structure level, which may be significantly different from the bulk.

3. Realization (Manufacturing)

Manufacturing cellular structures is non-trivial, primarily due to the small size of the connecting members (struts, walls). The dimensions required are often in the order of a few hundred microns and lower, which tends to push the capabilities of the AM equipment under consideration. Additionally, in most cases, the cellular structure needs to be self-supporting and specifically for powder bed fusion, must allow for removal of trapped powder after completion of the build. One way to address this is to develop a map that identifies acceptable sizes of both the connecting members and the pores they enclose. For this, we need robust ways of monitoring quality of AM cellular solids by using in-situ and Non-Destructive techniques to guard against voids and other defects.

4. Application (Implementation)

Cellular solids have a range of potential applications. The well established ones include increasing stiffness-to-weight ratios, energy absorption and thermal performance. More recent applications include improving bone integration for implants and modulating stiffness to match biological distributions of material (biomimicry), as well as a host of ideas involving meta-materials. The key questions here include how do we ensure long term reliability of cellular structures in their use condition? How do we accurately identify and validate these conditions? How do we monitor quality in the field? And how do we ensure the entire life cycle of the product is cost-effective?

So What?

I wrote this post for two reasons: I love to classify information and couldn’t help myself after 5 hours of hearing and thinking about this area. But secondly, I hope it helps give all of us working in this space context to engage and communicate more seamlessly and see how our own work fits in the bigger picture.

A lot of us have a singular passion for the overlapping zone of AM and cellular solids and I can imagine in a few years we may well have a conference, an online journal or a forum of some sort just dedicated to this field – in fact, I’d love to assess interest in such an effort or an equivalent collaborative exercise. If this idea resonates with you, please connect with me on LinkedIn and drop me a note, or send us an email ( and cite this blog post so it finds its way to me.

On the Biocompatibility of PolyJet MED610

Is PolyJet MED610 truly biocompatible? And what does that mean anyway?

Figure 1. Our PolyJet Eden 260V dedicated to running MED610

A couple of months ago, our product development team contacted me to see if I could 3D print them a small bio-compatible masking device that was needed for temporary attachment to an invasive device prior to insertion for surgery. That led me to investigate all the different bio-compatible materials we did have access to at PADT on our FDM (Fused Deposition Modeling) and PolyJet machines. Given the tiny size and high detail required in the part, I decided to opt for PolyJet, which does offer the MED610 material that is claimed to be biocompatible. As it so happens, we have an Objet Eden 260V PolyJet machine that has been dedicated to running MED610 exclusively since it’s installation a year ago.

We printed the mask, followed all the post-processing instructions per supplier recommendations (more on that later) and delivered the parts for further testing. And that is when I asked myself the questions at the top of this post.

I set off on a quest to see what I could find. My first stop was the RAPID conference in (May 2016), where the supplier (Stratasys Inc.) had a well-staffed booth – but no one there knew much about MED610 apart from the fact that some orthodontists were using it. I did pick up one interesting insight: one of the engineers there hypothesized that MED610 was not very popular because it was cost-prohibitive since its proper use required machine dedication. I then went to the Stratasys Direct Manufacturing (a service bureau owned by Stratasys) booth, but it turned out they don’t even offer MED610 as a material option for service jobs – presumably because of the low demand for this material, consistent with our own observations.

So I took a step back and began searching for all I could find in the public domain on MED610 – and while it wasn’t much, here is the summary of my findings that I hope help anyone interested in this. I categorize it in three sources of information: claims made by the supplier, published work on in vitro studies and finally, some in vivo animal trials. But first, we must ask…

What does it mean for a Material to be Biocompatible?

A definition by Williams (The Williams Dictionary of Biomaterials, 1999) is in order: “Biocompatibility is the ability of a material to perform with an appropriate host response in a specific application.” So if PolyJet MED610 is to be called biocompatible, we must ask – what application do we have in mind? Fortunately, the supplier has a recommendation.

Figure 2. PolyJet MED610 printed “Hydrogel Hand Bone Scaffolds” [Design Attribution: dotmatrix, Published on December 11, 2015,]

Supplier Claims

MED610 was launched by Objet in 2011 (Objet was acquired by Stratasys in 2012) as a biocompatible material, ideal for “applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours“. Stratasys claims that parts printed according to Objet MED610 Use and Maintenance Terms were evaluated for biocompatibility in accordance with standard “DIN EN ISO 10993-1: 2009, Biological Evaluation of Medical Devices-Part 1: Evaluation and testing within a risk management process. This addresses cytotoxicity, genotoxicity, delayed hypersensitivity, and USP plastic Class VI, which includes the test for irritation, acute systemic toxicity and implantation”. Unfortunately, the actual data from the biocompatibility study conducted by Objet have not been made publicly available.

It is important to remember that Stratasys publishes a “Use and Maintenance Terms” document that details the steps needed not just to clean the part after printing, but also on the proper setup of the machine for ensuring best chances of meeting biocompatibility requirements. These are published online at this link and include a 3 hour soak in a 1-percent NaOH solution, a 30 min soak in IPA and multiple water jet rinses, among other steps. In other words, the claimed biocompatibility of MED610 is only valid if these instructions are followed.  These steps are primarily driven by the need to completely remove supports and any support-residue, but it is not clear if this is needed if a part can be printed without supports. Given such strong process dependencies, it is only to be expected that Stratasys provide a disclaimer at the end of the document clarifying that the users of their machines are responsible for independently validating biocompatibility of any device they make with MED610.

The next question is: have there been any relevant published, independent studies that have used MED610? In my search, I could only find two instances, which I discuss below.

Primary Human Cells Response (In Vitro)

In a recent (January 2016) study published in the Journal of Medical and Biological Engineering, Schmelzer et al. studied the response of primary human cells to four 3D printed materials in vitro: ABS, PC, PLA and MED610 – the only such study I could find. All samples instead went through a 100% ethanol brief rinse and were washed 5 times with de-mineralized water – this seems like a less stringent process than what the supplier recommends (3 hour 1-percent NaOH solution soak, 30 minutes IPA soak and 10 times waterjet blasting) but was designed to be identical across all the materials tested.

There were some very interesting findings:

  • Different cells had different responses:
    • MED610 had the most negative impact on cell viability for keratinocytes (epidermal cells that produce keratin) – and the only material that showed statistically significant difference from the control.
    • For bone marrow mesenchymal (stem) cells, a different effect was observed: direct culture on ABS and PC showed significant growth (7X compared to control) but MED610 and PLA showed no significant effect
  • Surface Roughness influences cell attachment and proliferation:
    • In agreement with other work, the authors showed that while rougher surfaces promote initial cell attachment, subsequent cell proliferation and overall cell numbers are higher on smoother surfaces. The MED610 samples had rougher surfaces than the FDM samples (possibly due to the use of the “matte” finish option) and could be one of the contributors to the observed negative effects on cell viability, along with the leached contents from the specimen.

Glaucoma Drainage Device (In Vivo, Rabbit studies)

A group of Australian researchers published a 2015 paper where they designed and used PolyJet MED610 to manufacture a Glaucoma Drainage Device (GDD). They selected PolyJet because of its ability to resolve very fine details that they needed for the device. Importantly, the purpose of this study was to assess the effect of different design parameters on the effectiveness of the device (relieving intraocular pressure). The device was implanted into rabbit eyeballs where it remained for up to 4 weeks.

The devices were printed on a Connex 350 PolyJet machine, after which the supports were removed from the devices with a water jet and “were repeatedly washed and inspected for consistency and integrity.” Tubes were attached with Silicone adhesive and the entire assembly was then “washed and sterilized with a hospital-grade hydrogen peroxide system before use”. The researchers did not examine the cellular and extracellular reactions in great detail, but did conclude that the reactions were similar between the MED610 device and the more standard polypropylene injection-molded device.

A short video recorded by some of the researchers as part of a Bioprinting course also provides some details into the 3D printing aspects of the work done.

Concluding Thoughts

In conclusion, the question I posed at the start of this post (Is PolyJet MED610 truly biocompatible?) is too simplistic. A process and a material together are not sufficient – there are procedures that need to be defined and controlled and further and more importantly, biocompatibility itself has to be viewed in the context of the application and the specific toxicity and interaction demands of that application. And that brings us to our key takeaways:

  • MED610 is only recommended at best for applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours and there is no data to dispute the suppliers claim that it is biocompatible in this context once all recommended procedures are implemented
  • The work done by Australian researchers in using PolyJet MED610 for devoloping their Glaucoma Drainage Device in animal trials is perhaps the best example of how  this material and the technology can be pushed further for evaluating designs and hypothesis in vivo when really fine features are needed. Stratasys’s FDM PC-ISO or ABS M30i materials, or other FDM extrusion capable materials like PLA, PCL and PLGA may be better options when the resolution allows – but this is a topic for a follow-on blog post.
  • More in vitro work needs to be done to extend the work done by Schmelzer et al., which suggests that MED610 potentially has leachables that do impact cell viability negatively. Specifically, effects of surface finish (“matte” vs “gloss”) and sterilization on cell viability is a worthwhile follow-on step. In the interim, MED610 is expected to perform well for mucosal membrane contact under 24 hours (and why this is a great technology for dental guides and other temporary in-mouth placement).

If you have any thoughts on this matter or would like to collaborate with us and take advantage of our access to a PolyJet printer that is dedicated to MED610 or other bio-compatible FDM materials, as well as our extensive post-processing and design & analysis facilities, please connect with me on LinkedIn or send us a note at and cite this blog post.

Thanks for reading!


  1. Stratasys Bio-compatible Materials Page:
  2. PolyJet MED610 Data Sheets:
  3. Schmelzer, E., Over, P., Gridelli, B., & Gerlach, J. (2016). Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. Journal of Medical and Biological Engineering, 36, 153-167.
  4. Ross C, Pandav S, Li Y, et al. Determination of Bleb Capsule Porosity With an Experimental Glaucoma Drainage Device and Measurement System. JAMA Ophthalmol.2015;133(5):549-554. doi:10.1001/jamaophthalmol.2015.30.
  5. Glaucoma case study in online course on Bioprinting, University of Woolongong, Future Learn,

Technology Trends in Fused Deposition Modeling

A few months ago, I did a post on the Technology Trends in Laser-based Metal Additive Manufacturing where I identified 5 key directions that technology was moving in. In this post, I want to do the same, but for a different technology that we also use on a regular basis at PADT: Fused Deposition Modeling (FDM).

1. New Materials with Improved Properties

Many companies have released and are continuously developing composite materials for FDM. Most involve carbon fibers and are discussed in this review. Arevo Labs and Mark Forged are two of many companies that offer composite materials for higher performance, the table below lists their current offerings (CF = Carbon Fiber, CNT = Carbon Nano Tubes). Virtual Foundry are also working on developing a metal rich filament (with about 89% metal, 11% binder polymer), which they claim can be used to make mostly-metal parts for non-functional purposes using existing FDM printers and a heat treatment to vaporize the binder. In short, while ABS and PLA dominate the market, there is a wide range of materials commercially available and this list is growing each year.

Company Composition
Arevo Labs CF, CNT in PAEK
Fiberglass in PARA
Mark Forged Micro-CF in Nylon
Fiberglass (High Strength High Temperature)

2. Improved Properties through Process Enhancements

Even with newer materials, a fundamental problem in FDM is the anisotropy of the parts and the fact that the build direction introduces weak interfaces. However, there are several efforts underway to improve the mechanical properties of FDM parts and this is an exciting space to follow with many approaches to this being taken. Some of these involve explicitly improving the interfacial strength: one of the ways this can be achieved is by pre-heating the base layer (as being investigated by Prof. Keng Hsu at the Arizona State University using lasers and presented at the RAPID 2016 conference). Another approach is being developed by a company called Essentium who combine microwave heating and CNT coated filaments as shown in the video below.

Taking a very different approach, Arevo labs has developed a 6-axis robotic FDM process that allows for conformal deposition of carbon fiber composites and uses an FEA solver to generate optimized toolpaths for improved properties.

3. Faster & Bigger

A lot of press has centered around FDM printers that make bigger parts and at higher deposition rates: one article discusses 4 of these companies that showcased their technologies at an Amsterdam trade show. Among the companies that showcased their technologies at RAPID was 3D Platform, that showed a $27,000 3D printer for FDM with a 1m x 1m x 0.5m printing platform. Some of the key questions for large form factor printers is if and how they deal with geometries needing supports and enabling higher temperature materials. Also, while FDM is well suited among the additive technologies for high throughput, large size prints, it does have competition in this space: Massivit is one company that in the video below shows the printing of a structure 5.6 feet tall in a mere 5 hours using what they call “Gel Dispensed Printing” that reduces the need for supports.

 4. Bioprinting Applications

Micro-extrusion through syringes or specialized nozzles is one of the key ways bioprinting systems operate – but this is technically not “fused” deposition in that it may not involve thermal modification of the material during deposition. However, FDM technology is being used for making scaffolds for bio-printing with synthetic, biodegradable or bio-compatible polymers such as PCL and PLGA. The idea is these scaffolds then form the structure for seeding cells (or in some cases the cells are bioprinted as well onto the scaffold). This technology is growing fast and something we are also investigating at PADT – watch this space for more updates.

5. Material Modeling Improvements

Modeling FDM is an important part of being able to use simulation/analysis to design better processes and parts for functional use. This may not get a lot of press compared to the items above, but is a particular interest of mine and I believe is a critical piece of the puzzle going to true part production with FDM. I have written a few blog posts on the challenges, approaches and a micromechanics view of FDM printed structures and materials. The idea behind all of these is to represent FDM structures mathematically with valid and accurate models so that their behavior can be predicted and designs truly optimized. This space is also growing fast, the most recent paper I have come across in this space is from the University of Wisconsin-Madison that was published May 12, 2016.


Judging by media hype, metal 3D printing and 3D bioprinting are currently dominating the media spotlight – and for good reasons. But FDM has many things going for it: low cost of entry and manufacturing, user-friendliness and high market penetration. And the technology growth has no sign of abating: the most recent, 2016 Wohlers report assesses that there are over 300 manufacturers of FDM printers, though rumor on the street has it that there are over a thousand manufacturers coming up – in China alone. And as the 5 trends above show, FDM has a lot more to offer the world beyond being just the most rapidly scaling technology – and there are people working worldwide on these opportunities. When a process is as simple and elegant as extruding material from a hot nozzle, usable innovations will naturally follow.