PADT’s Tempe Open House and AZ Tech Council Progress Forum – 2 Weeks Away

Two Events for the Price of Free!

Just a quick reminder, because the Facebook posts, emails, and calls from our sales people may not be getting through.

Sept 10 starting at 5, going till 8 or whenever people get tired of networking and taking tours.

Register with PADT, Inc.:

Or with the Arizona Technology Council

If you live anywhere near the Phoenix area, we expect to see you there.

Submodeling in ANSYS Mechanical: Easy, Efficient, and Accurate

Back “in the day” when we rode horses into work as Finite Element Analysis Engineers, we had somewhat limited compute capacity.  70,000 elements was a hard and fast limit.  But we still needed accurate results with local refinement in areas of concern.  The way we accomplished that was with a  process called submodeling where you make a refined local model just of the area you care about, and a coarse mesh that modeled the whole part but still fit on the computer.  The displacement field from the coarse model was then applied as a boundary condition on the refined model.

We called the refined model a zoom model or a submodel.  It worked very well for many years. Then computers got bigger and we just started meshing the heck out of those areas of interest in the full part model.  And in many cases that is still the best solution for an accurate localized stress: localized refinement.

Submodeling is one of those “tricks” in stress analysis that used to be used all the time. But until recently it was a bit of a pain to do in ANSYS Mechanical so it fell out of use.  Now, the process of doing submodeling is easy, efficient, and accurate.  The purpose of this posting is to introduce the concept to newer users who have not used it before, and show experienced (old) users how much easier it is to do in ANSYS Mechanical vs. Mechanical APDL.

What is Submodeling?

The best description of submodeling is the illustration that has been in the ANSYS help system, in one form or another, for over 25 years:

image

The basic idea is that you have a coarse model of your whole part or assembly.  You ignore small features in the mesh that don’t have an impact on the overall response of the system – the local stiffness does not have influence on the strain beyond that local region. You then make a very refined model, the submodel, of the region of interest. You use the displacement field (and temperature if you have a temperature gradient) from the coarse model and apply it to the submodel as a boundary condition to get the accurate highly-refined response in the area of interest.

The process is based on St. Venant’s principle: “… the difference between the effects of two different but statically equivalent loads becomes very small at sufficiently large distances from load.”

An aside:
What a cool name this guy had:
Adhémar Jean Claude Barré de Saint-Venant.  To top it off he was not just a mathematician, but he was given the title of Count as well… a count mathematician. And, I have to say, I have serious beard envy.  He had some very nice facial hair, I can’t even grow thick stubble.

Anyhow, what he showed was that if you are looking at the stresses in a part far away from where loads are applied, how those loads are applied does not matter. So we can replace the forces/pressures/etc… from our course model as an equivalent static deflection load and the stress field will be the same.

The way this is done in a Finite Element model is you determine what faces in your submodel are “inside” your course model. These are called the cut boundary faces and the nodes on those faces are the cut boundary nodes. and you apply the displacement field from the coarse model onto the nodes

The most common use is to add mesh refinement in an area without having to solve the whole model. Another common usage is to actually mesh small features like fillets, holes, and groves that were left out of or under-meshed in the full model.  It can also be used to capture material non-linearities if that behavior is highly localized.

But probably the most beneficial use today is to study the parametric variation of small features like the size of a fillet or a hole.  If changing the size of such features does not change the overall response of the system, then you only need to do a parametric study on the submodel – as the guy with the great beard proved, if the static load does not change with your geometric variations, you don’t have to look at the whole structure.

And don’t forget the new crack growth capabilities. You will probably want to do that on a submodel around your crack and not on your whole geometry.

Here is a more modern version of the original example geometry:

image

The red highlight shows the cut boundaries. this is where you need to apply the displacement field.

image

This is the nasty coarse mesh. Now if you were modeling a single part, you would just mesh the fillets and be done with it.  But assume this is in a large assembly.

image

The Submodel. Nice elements in the key area.

You can even set up the radius as a parameter and do a study, where only the Submodel is modified and updated.

image

 

The Process

The process is fairly simple:

  1. Make and solve your full model
  2. Make a geometry model of the area you want a submodel in
  3. Attach the submodel to the engineering data and solution of the full model
  4. Set up and solve the submodel

Before we get started, here is a ANSYS 14.5 archived project for both models we will discuss in this posting:  PADT-Focus-Submodeling-2013_08_14.wbpz

For the sample geometry we showed above, the system looks like this:

image

When you go into ANSYS Mechanical for the sample model, you have a new model branch:

image

When you first get in there, the branch is empty, you have to insert Body Temperature and/or Displacement:

image

The Details for the Displacement object are as follows:

image

There are a lot of options here. It is basically using the external load mapper to map the displacements. Consult the help and just play around with the options to understand them better. In most cases, all you need to do is specify the faces that you want the displacement field applied to for the Scope section.

A cool feature is that once you have specified the faces, you can “Import Load” and then view them by clicking on the object. Graphics Control –>Data = All shows vectors. Total/X/Y/Z shows the applied displacement field as a contour:

image

image

Now you just need to make sure your Submodel is set up correctly, you have the mesh you want, and any other loads that are applied directly to the Submodel are the same as the loads in the full model (see next section).  Run and you get your refined results.

Here is that same process with a more realistic model of a beam with a tube welded on it.  The welds are not modeled in the full model and the fillets in the beam are very coarse.

So here is the geometry. Imagine that these two parts are actually part of a very large assembly so we really can’t refine them the way we want.

image

This is what the systems look like. Note that the geometry comes from one source. I made the submodel in the same solid model in DesignModeler and just suppress the parts I don’t want in each Mechanical model.

image

The loading is simple. I fix one end and put a force on the top of the tube.

image

And here is my coarse mesh. I could probably mesh the tube with a lot more elements, especially along the axis.

image

The results. Not too useful from a stress standpoint. Deflections are good, but the fillet is missing and beam is too coarse.

image

So here is the submodel.  All the fillets are in there and it is just the area around the connection.

image

I used advanced meshing to get a really nice refined mesh. It only solves in about 20 seconds so I can really refine it.

image

Here are the cut boundaries. The bottom of the beam ribs are also selected.

image

And here is the result. A really accurate look at the stresses in the fillet.  I could even put a probe in there and do some nice fatigue or crack growth.

image

The other thing that showed up were some stress problems on the bottom of the beam.  Those could be an issue under a high load. The fillet stress on top my yield out but these stresses under the beam could be a fatigue problem.

image

Tips and Hints

In most cases, doing a sub model is pretty simple. But there is a lot more to it than what we covered here.  Because I need to get back to some very pressing HR tasks, I’ll just list them here so you know that you are aware of them:

  1. Label your systems in the project page with some sort of “full” and “sub” terminology Things get really confusing fast if you don’t.
  2. You can do submodeling with a transient or multiple substep model. In your Imported Displacement/Body Temperature, specify what load step to grab the loads from.
  3. Don’t forget temperature. One of the most common problems is when a user applies temperature and therefore gets thermal stress.  They then forget to apply that to their submodel and everything is wrong.
  4. Make sure you don’t change material properties. Remember, these models are statically identical, you are just looking at a chunk with greater refinement.
  5. Remember that loads need to be away from the area you are zooming in on.  Don’t cut where a load is applied, or even near where one is applied. The exception is temperature. (Sometimes you can get away with pressure loads too, but you have to be very careful to get the same load over the area)
  6. Your can’t have geometry in the submodel sticking too far out of the coarse mesh. The displacement is interpolated onto the fine mesh and if a node on the fine mesh is outside the coarse mesh, the program extrapolates and that can sometimes induce errors. If you see spotty or high stresses on your cut boundaries, that is why.  There are tools in the Submodeling details to help diagnose and fix that.
  7. If you are going to do a parametric study on geometry changes in the submodel, use a separate geometry file to create that model (I just duplicate the original and suppress the full geometry in DM).  Why? Because if you change a parameter in your geometry model, both models will need to resolve since they both use the same geometry file, even if the geometry change occurs on a part that is suppressed in the full model.
  8. You can do submodels of submodels as many levels down as you want.
  9. You can have multiple submodels in one system
  10. Read the help, it is fairly detailed

That is about all for now. As always: crawl, walk, run.  Start with a very simple sub model with obvious cut boundaries and get experienced.

PADT’s Albuquerque Open House a Big Success

a1aPADT was pleased to hold our first Open House in our New Mexico office this Tuesday (8/13/2013).  We had a great crowd show up to see what we are up to in Albuquerque and around the state, learn about the latest in 3D Printing, and even sneak some ANSYS technical support in.

Missed it?  Don’t worry, we have an Open House in Tempe in September and in Colorado in October.

The thing we learned quickly is that our customers here are smart, friendly, and knowledgeable.  Even though many had never met before, it didn’t take long for small clusters to form where people shared their background, the issues they faced, and solutions that worked for them.  Seeing that type of highly technical interaction between people who had just met was great.  Here are just a few pictures from the event:

a5a

The new Polyjet 30Pro was the big hit.  So small, but so capable. Many of the attendees are existing FDM users so they enjoyed learning about the different advantages of Polyjet 3D Printing.

a3a

Lots of great conversations took place in the entry way.

a2a

With an expert like Jeff Strain in town for the day, a couple of customers got in some one-on-one technical support for ANSYS products.  This showed that we definitely need to set up some standard office hours in Albuquerque for the user community.

a4a

We just could not resist playing with the new cleaning station for the Polyjet parts.  Just like Homer Simpson.  Note our special clock for the New Mexico Office, made on our Stratasys FDM machines.

 

Polyjet 3D Printers Up and Running in Denver and Albuquerque Offices

PADT-Polyjet-Albuquerque PADT-Polyjet-Denver

With all the opening and moving of offices we failed to notice that our crack sales team sold all of our demonstration 3D Printing and rapid manufacturing machines out from underneath us.  This made it easier to move, but hard on customers who wanted to see these systems in action.  So we took the opportunity to not only replace the FDM systems in our offices, but to also add Objet30 Pro desktop printers in our New Mexico and Colorado offices.  In the past we only had Polyjet systems in our Tempe facility.

If you are not familiar with the advantages of Polyjet 3D Printing when compared to FDM or other technologies, contact us to arrange a visit to our Littleton, Albuquerque, or Tempe offices to not only see these machines in action, but to also see sample parts we have made on them.

 

 

 

PADT Sponsoring 2013 Desert Vista Thunder Speech, Theater & Debate Team

TSTDC-Sponsorship-DBacks

PADT is pleased to be one of the sponsors for Desert Vista’s 2013 Thunder Speech, Theater & Debate Team.  They just kicked off their new season and were invited to a Diamond Backs game as  special guests.  They showed off the new sponsorship poster and PADT was pleased to be on the board.

The TSTDC team are 10 time state champions focused on offering “intense training in acting, debate, research and rhetoric, public speaking,  as well as interpersonal communication and teamwork skills.  Our students also gain valuable skills needed for high school, college and the professional world.”

We hope to help them make to their 11th championship this year!

 

ANSYS Updates in New Mexico

Los-Alamos-Balcony-1Clinton, Bob, Patrick, and Eric on on a trip to New Mexico to do ANSYS updates in Albuquerque and Los Alamos. The groups have been great, lots of deep questions and further insight into how everyone can get greater value out of their ANSYS Mechanical, FLUENT, CFX, and Maxwell usage.

The Los Alamos session is being held at the Holiday Inn Express as you drive in to town.  The view out the meeting from window is fantastic.  Kind of hard to pay attention to the PowerPoint slide on “New compound observables for the Adjoint Solver.”  The pictures do not do the sky justice.

Los-Alamos-Balcony-panorama

Columbia: PADT’s Killer Kilo-Core CUBE Cluster is Online

iIn the back of PADT’s product development lab is a closet.  Yesterday afternoon PADT’s tireless IT team crammed themselves into the back of that closet and powered up our new cluster, bringing 1104 connected cores online.  It sounded like a jet taking off when we submitted a test FLUENT solve across all the cores.  Music to our ears.

We have recently become slammed with benchmarks for ANSYS and CUBE customers as well as our normal load of services work, so we decided it was time to pull the trigger and double the size of our cluster while adding a storage node.  And of course, we needed it yesterday.  So the IT team rolled up their sleeves, configured a design, ordered hardware, built it up, tested it all, and got it on line, in less than two weeks.  This was while they did their normal IT work and dealt with a steady stream of CUBE sales inquiries.  But it was a labor of love. We have all dreamed about breaking that thousand core barrier on one system, and this was our chance to make it happen.

If you need more horsepower and are looking for a solution that hits that sweet spot between cost and performance, visit our CUBE page at www.cube-hvpc.com and learn more about our workstations, servers, and clusters.  Our team (after they get a little rest) will be more than happy to work with you to configure the right system for your real world needs.

Now that the sales plug is done, lets take a look at the stats on this bad boy:

Name: Columbia
After the class of battlestars in Battlestar Galactica
Brand: CUBE High Value Performance Compute Cluster, by PADT
Nodes: 18
17 compute, 1 storage/control node, 4 CPU per Node
Cores: 1104
AMD Opteron: 4 x 6308 3.5 GHz, 32 x 6278 2.4 GHz, 36 x 6380 2.5 GHz
Interconnect: 18 port MELLANOX IB 4X QDR Infiniband switch
Memory: 4.864 Terabytes
Solve Disk: 43.5 TB RAID 0
Storage Disk: 64 TB RAID 50

Here are some pictures of the build and the final product:

a
A huge delivery from our supplier, Supermicro, started the process. This was the first pallet.

b
The build included installing the largest power strip any of us had ever seen.

c
Building a cluster consists of doing the same thing, over and over and over again.

f
We took over PADT’s clean room because it turns out you need a lot of space to build something this big.

g
It is fun to get the chance to build the machine you always wanted to build

h
2AM Selfie: Still going strong!

d
Almost there. After blowing a breaker, we needed to wait for some more
power to be routed to the closet.

e
Up and running!
Ratchet and Clank providing cooling air containment.

David, Sam, and Manny deserve a big shout-out for doing such a great job getting this thing up and running so fast!

When I logged on to my first computer, a TRS-80, in my high-school computer lab, I never, ever thought I would be running on a machine this powerful.  And I would have told people they were crazy if they said a machine with this much throughput would cost less than $300,000.  It is a good time to be a simulation user!

Now I just need to find a bigger closet for when we double the size again…

CUBE-HVPC-Logo-wide

Settling in at our New Colorado Office

One of the cooler features (or is it kewler?) of our new digs in Littleton is the fact that the balcony on the front of the office has flag poles.  So we went out and got a US and Colorado flag, and had a PADT flag made.  The sun came out and the wind picked up and I have to say, it looked pretty good. Then a rainbow came out.  #goodstuff.

2013-07-29 13.58.57  2013-07-29 18.07.36

2013-07-29 18.20.36

 

It’s Open House Season at PADT!

PADT-Offices
With the opening of our new office in Albuquerque, our move to a larger office in Colorado, and a whole boat load of new stuff going on at the main office in the Phoenix area, there are a lot of reasons to come visit PADT during one of our upcoming Open Houses.
Albuquerque, New Mexico
August 13, 2013, 4:00 PM – 7:00 PM
Tempe, Arizona
Sept. 10, 2013, 5:00 PM – 10:00 PM
Littleton, Colorado
October 16, 2013, 4:00 PM – 8:00 PM
All of our Open House events are a great opportunity for you to meet PADT’s staff, get to know what we do a bit better, and network with other PADT customers and vendors.  We provide food and drink as well as enough technical information to make it an enjoyable, but justifiable use of your time.
We will be giving tours of each facility including some in-depth information about 3D Printing, with demos on our Stratasys prototyping systems.
Don’t miss out on “the” technology social events of the year!
These events are crowded, so we would really appreciate it if you would help us get a head count by registering for the open house you plan on attending:

PADT Moves into Larger Colorado Office

If you visited our office in Littleton Colorado you will have noticed that we were kind of working on top of one another.  To alleviate the problem, we have moved down the street. Our new PADT Colorado office is still in historic downtown Littleton, we are actually on the main street now:

PADT-Littlteton-temp-pic

PADT Colorado
2009 W Littleton Blvd
Suite 200
Littleton CO 80120 

It is right next to the old Arapahoe County Court House. As you can see it is a “unique” building with a lot of character.  So we are looking forward to using some creativity in decorating the place to match the feeling of the building.  All staff members will be issued skinny ties and horn rimmed glasses. Engineers will be required to wear white short sleeved shirts and pocket protectors.

We are setting it up in stages, so we are still working on getting full Internet access, the company wide PADT phone system up and running, new furniture, and our demo machines.  Once all of that is done we will be announcing a “Grand Opening” open house.

But Norm, Patrick, Mike, and ManojPADT-Littleton-Satelite would be happy to have a visit anytime.  One of the nicer features is a balcony overlooking downtown and the Front Range. Stop by and enjoy the warm weather while it lasts. You can chat about Simulation, 3D Printing, or product development and we will call it work.

PADT Talks about 3D Printing on Channel 8’s Arizona Horizon

PADT-Horizon-PBS-PicOur latest journey into mass media was a real pleasure.  We were invited to come on to the local Phoenix PBS station to talk about 3D Printing.  The team of students from the Walter Cronkite School of Mass Communications at ASU that do most of the behind the scenes work were great. The host and producer were true professionals who asked some of the best questions we have ever been asked on this topic.

You can the full program here:

http://www.azpbs.org/arizonahorizon/play.php?vidId=6037

Eric’s interview is the second half.

Those of you who know 3D Printing know that they showed a CNC mill instead of one of our 3D printers.  We gave them a bunch of background video to use (from another interview) and they kind of picked the wrong one. But hey, Bob and Luis got on TV!  And all that really matters is that they spelled our name right.

A great opportunity and we look forward to evangelizing the promise of additive manufacturing in the future. You can learn more about the whole world of 3D Printing on our website by starting on our prototyping support page.

Watch PADT on Chanel 8’s Horizon Arizona this Wednesday at 5:30

arizona_horizon

 

PADT will be on the local Phoenix PBS station this Wednesday, July 10th at 5:30 PM talking about 3D Printing and PADT.  Here is the teaser from their website:

3D printing has been around for a while, but it is just starting to make a big impact on mainstream society. Tempe-based Phoenix Analysis and Design Technologies is a 3D printing company that was started in 1994 and offers a variety of services, including product simulation, design prototyping and medical devices. The company is also the largest distributor of 3D printing and manufacturing systems in the Southwest. Eric Miller of PADT will talk about his company and 3D printing.

Set your DVR or check watch our news feed to a link for the interview when it hits the web.

Arizona Horizon is the local news show where they talk about local events and activities, and also focus on community news. One recurring segment is their discussion of AZ Technology & Innovation, and PADT has been asked to contribute.  It is in HD… better comb my hair and iron my shirt.

PADT Welcomed to Sandia Science & Technology Park

Sandia-Science-and-Technology-park-newsletter-PADT

The folks at the Sandia Science and Technology Park welcomed PADT to the Neighborhood with a nice writeup in their monthly newsletter.  We are very excited about growing our New Mexico business from this location.

Duh! Three ANSYS Mechanical Features I Should Know But Didn’t

Selection Information, Manage Views, and Changing Settings on Multiple Load Steps

There is no way to hide the embarrassing reality. I am supposed to be an expert. I am introduced to people as such. People all over the world read stuff I write about how to use ANSYS products more effectively.  But last week and this week, humility has struck a devastating blow on my ego.  I found three very useful things in ANSYS Mechanical that I either didn’t know, or forgot about. I even mentioned one of them (Manage Views) in an update presentation as “cool and very important feature” then promptly forgot it was there.

As payment for my sins, I will share a brief description of each with all of you, in the hopes that I will: 1) make you feel better about yourself because you already knew this stuff, or 2) give you the knowledge you need to avoid the embarrassment, and lost productivity, that my ignorance has brought me. 

Selection Information

I mention this one first because it was pointed out to me by no less than the ANSYS Mechanical product manager at ANSYS, Inc. Yikes.  I believe he actually did a face palm when I asked him “What is Selection Information? There is an Icon with an i on the toolbar? Really?”

image

There it is, right next to the Worksheet icon, an icon I use all the time.  What it does is give you information about geometry, CAD and nodes, in your model.  There are three ways to get it, not just the icon on the toolbar:

  1. Click the Icon
  2. In the menu go to View>Windows>Selection Information
  3. Double-click on the Selection details at the bottom of the ANSYS Mechanical Window

image

However you use it, you will get a new window, embedded with the existing windows, that shows you information about the geometry entity of entities that you select. Normal selection options apply. You can pick vertices, edges, surfaces, or bodies. I like to drag it out as it’s own window so I can see it all.  (Notice how I talk like I do this all the time… yea, whatever.  I just figured out that it is a lot better if I drag it out and look at it by itself.) 

My sample model is just a cylinder, so If I pick the end and the cylinder I get:

image

See how it lists the two faces, and a summary. There is some internal info in there as well like ID’s that ANSYS mechanical uses to do stuff. The toolbar across the top lets you select a coordinate system to do the calculations in, set options (the green checkbox) or  control if you want individual info, summary info, or both. 

The options are useful because by default, everything is on. Turning some stuff off can reduce the clutter.

image

For nodes, I can get location, node number, and body information:

image

When you are in the window there are some useful things you can do with the list. The first is sort by clicking on the column headers.  What node is at your max X position in your cylindrical coordinate system?  Just set the Coordinate System and click on X(in) twice to sort from max o min:

image

If you select any of the cells, you can right mouse click and get a context menu that lets you reselect the entities being listed, export to a text or Excel file, Refresh, or copy to the clipboard:

image

Give it a shot next time your in a model and want to know some stuff.

Manage Views

One of the more useful capabilities in ANSYS Mechanical APDL is the ability to define views in a macro and call them back up again, getting the same standard views every time. Well you have been able to do that in Workbench when the introduced the “Scary Eye” icon at I think 14.5 (maybe 14):

image

Although it looks like a secret Masonic symbol, the icon actually represents a handy tool for saving views not only in your model but to files.  It is also available in View->Windows->Manage Views.

Not only that, it lets you save the view commands to an external file that you can use with other models or even go in and edit to create a very specific view.

When you start it up, it brings up its own little window as well, that has eye themed icons to control your view saving/recall experience.

image

  • “Spooky Eye Box with a Plus Sign” creates a view from the current view you are seeing
  • “X” deletes the currently selected view or views
  • “Guy with 80’s hair looking at a box” applies the currently selected view. Double-clicking on the view does the same thing.
  • “A-bar-B” is used to rename the selected view
  • “Spooky Eye Box with Green Blob” redefines the currently selected view with whatever the current view settings are in the graphics window. Think of it as an overwrite.
  • “Disk with arrow out” reads in a saved view file from disk.
  • “Disk with arrow in” saves the currently selected view to disk.

So, get your model positioned the way you want it using the mouse to control the view, then click the first icon to save it.  The program puts the window into “rename” mode so you can give it a descriptive name here. Just keep doing that till you have all your views defined.

If at some point you want to change view, no need to delete and recreate it. Simply Click on the view you want to redefine and then click on “Spooky Eye Box with Green Blob.”

Note: You can only select more than one view and delete it.  None of the other commands work for more than one view. But the save views command saves all the views, regardless of how many you have selected.

Here are some views I created:

image

image

image

image

Now it gets cool.  Click on a view and then click on the “Save” (last) icon.  It will save the views as an XML file.  Pop that into your handy-dandy XML editor and you can check out the view definitions:

image

This is where I get excited. Now you can go into this file and create your own view, or modify a view to be very specific.  I didn’t have enough time to figure out what all the options did, but if you get a view that is close to what you want, you should be able to modify it from there.

The last thing to talk about is what happens if you right mouse click on a view?  You get:

image

Yes, copy as MAPDL!  Not only is this useful for us old guys that just like to look at MAPDL, it lets you use the same view for any plots you may make with a code snippet as you used for the plots in ANSYS Mechanical.  So your views are consistent for all your plots!

image

Modifying Multiple Load Steps

This was one of those “there has to be a way to do this” moments. We were talking about different ways to speed up the solution of a transient thermal model and I suggested that instead of using automatic time step controls they put in some values. But for the life of me I couldn’t figure out how to change a bunch of load step settings at the same time, so I was changing them one at a time. For every step, change the step number, then change the value:

image

Yawn!  This started off a “well in ANSYS classic, I could write a script that would… blah… blah… blah…”

There has got to be a better way.  There is.  In the Graph window the load steps are shown on the X-axis. Simply multi-select the steps you want to change there:

image

In the example above I CTRL-Clicked steps 3, 5, and 7. Now my Analysis Settings details view looks like:

image

See how Current Step Number and Step End Time are “Multi Step”.  Any change I make to settings will now be applied to the selected steps.  A huge time savings.  And a big “Duh, I should have known that!”

PADT Expands Local 3D Printing, Support, and Simulation Services with New Albuquerque Office

Web-PADT-Front-Door-New-Mexico

We are very pleased to announce that PADT is opening new local office in Albuquerque, New Mexico in the Sandia Science and Technology Park. The office will focus on providing sales, technical support, 3D Printer maintenance, and a meeting space to better serve customers in New Mexico.

Some of PADT’s earliest customers came from the state of New Mexico, and the company provides products, support, and services to many organizations in the area, including all of the major universities, the National Labs, and dozens of commercial companies. The new office will allow the local team, and employees visiting from PADT’s Colorado or Arizona locations, the opportunity to work in a familiar location, have direct access to PADT’s infrastructure, and provide customers a location to view the 3D Printing, simulation, and product development technologies that PADT offers. The location at the Eubank entrance to Kirtland AFB and Sandia National Labs give direct access to the highest concentration of PADT customers in the state.

The sales team in the  PADT New Mexico office will focus on distributing three  products lines:  The first is the complete suite of simulation software from ANSYS, Inc. (ANSS) (www.ANSYS.com). These tools are used by companies around the world to simulate products before testing, resulting in better performance for less cost and in less time.  The second line of products are the 3D Printer and Direct Digital Manufacturing systems from Stratasys (SSYS) (www.STRATASYS.com).  Both ANSYS, Inc. and Stratasys are the world leaders in their respective markets, and PADT is proud to be one of their reselling partners for Colorado, Utah, Nevada, Arizona and New Mexico.  The third product line is PADT’s CUBE Systems, (www.padtinc.com/cube-hvpc) their own brand of High Value Performance Computers specifically designed and configured for the advanced simulation user.

Additionally, the office will serve as a place for PADT’s technical staff to work together at a single location, providing simulation consulting, training and technical support.  As the company grows, the area has sufficient expansion opportunities to allow for more employees and equipment.

You can read the official announcement on the press release:

Press_release

http://www.prlog.org/12158073.pdf

Here are some images of the new office:

PADT-New-Mexico-Building

The office is literally on the corner of Research and Innovation at:

PADT New Mexico
1451 Innovation Parkway
Suite 402
Albuquerque, NM  87123

2013-06-14 17.43.36

Still working on signage, but we used a large monitor to add a little touch to the entrance

Prarie_Dog_SSTP_Welcome(Note the little welcome creature in the lower right of the image)

The office is located at the Sandia Science and Technology Park on the east side of Albuquerque, just south of I-40 near the Eubank gate to Kirtland AFB and Sandia National Labs:

PADT-New-Mexico-Map