3D Printing Example: CEI Awards – Using color, multiple methods, and clever CAD

One of the fun things I get to do is design and print cool things to share what you can do with 3D Printing.  This has extended to making awards for organizations that PADT supports like the Arizona Technology Council, The Arizona SciTech Festival, and AZBio.  Recently our favorite incubator asked us to design a custom award for their first Impact and Innovation Celebration. The request was to incorporate the CEI logo:

Taking a 2D image and making it 3D can be a lot of fun, and in this case it showcased some cool things you can do with 3D CAD and then 3D Printing.  There were some special steps needed to get this one done so I thought I’d share them.

The basic concept was to take the initials, CEI, and create a block that can serve as base. Then extrude the orange line-circle geometry as the key visual object.  But the thing that sets the logo apart from most, is the use of the succulent plant, an agave I think, in the logo.  So we definitely need a 3D agave on there.  The last element needed was the actual award part, where the name and award being given could be listed.

To get started I needed to get the logo into the CAD system I use, SolidEdge. Usually I convert a PDF into DXF in Adobe Illustrator. I then imported this into sketch planes. But in this case I only had a bitmap (PNG)  Fortunately you can paste that into a sketch plan as well, then just draw on top of it.  So I made three planes: Front facing and one rotated 45 deg and another -45 about the Z axis.  I then pasted the logo on to each of these centering the bottom center of the E on the global axis. This allows me to extrude and cut on each plan while keeping everything aligned

The base was made by extruding the initials from the +45/-56 planes and doing a Boolean intersect, This gives the letters from two views while creating a “3D-ness” That stands out.  The circle-line was then extruded on the front plane to cover the block created by the intersection.  It needed a “foundation” as well as a way to hold the letters together, so I just made a simple base.

That left the agave.  I thought about modeling it but nah… too much work.  So I went online and found a bunch of plants that people have made for video games and rendering.  Cool except the format was not STL, what we need for 3D Printing. So I downloaded some crazy rendering format.  Then I used a free online tool (thank you google, sorry I didn’t write down the one I used) that converts between 3D graphics files.  That took it to STL where I could read it into Meshlab, the open source tool for playing with this type of data. As usually with models made for graphics ,there was a lot of extra data and coordinate systems didn’t really translate right.  No problem, Meshlab makes it easy to select and delete objects.  I also scaled it from gigantic to the size I needed for the award.  Next step was to save that as STL and import that into SolidEdge so I could view it and position it properly on the award.

Last was the award part itself.  I played with a couple of ideas and just came up with a simple plaque that we could 3D print words on. i made it white and the “holder” blue to stand out. Then printed the award name and winner in bright colors using the text extrusion feature in SolidEdge.  When I need to get fancy, I’ll do the words and often a logo in Illustrator, export as DXF, then import as a sketch for extrusion. But in this case a nice simple Bold Arial font worked great.

So it was done, and I have to say looked pretty good.  So I asked our experts on 3D Printing if they had any suggestions.  Their one comment was “this is really cool, but its going to be expensive to print as one part.” Duh, I should have paid more attention in my own seminar on design for 3D Printing.  I had tall thin objects and bulky objects and they were all combined.  Lots of unneeded supports and flat surfaces at non-vertical or horizontal angles in the printer.  Bad stuff.

The solution was to design the parts so they could be printed separately and easily assembled.  The resulted in an STL for the base, for the circle-line, the frame, the agave, and the award plaque with simple features that would allow us to quickly glue it all together.  We also decided to print the base on FDM because it needed to be white and used the bulk of the material, and therefore cost. The rest was printed on a Stratasys Polyjet printer in color.

One more change worth noting was how to connect the crazy shapes of the agave needed some simple interface to the circle-line part.  So I created a simple cylinder that intersected the base of the agave.  In the printer we were able to combine the STL of the cylinder and the agave with two different colors.  A cylindrical cut in the orange part made assembly easy.

The results came out pretty nice, and the winners seemed to really like them.

The great thing about 3D Printing is the restraints it removes on making things.  You still have to plan it out to align with what the printers do well, but that doesn’t take a lot of effort and the results are great

.

 

Phoenix Business Journal: ​3000 connections on LinkedIn: Celebrate or so what?

Reaching a high number of contacts on social media is one of those modern accomplishments that is not as simple as it appears. In “​3000 connections on LinkedIn: Celebrate or so what?” I talk about my reaching such a threshold, and then what that really means for business.  The connection you make, although superficial and weak, have impact.  In my opinion, it’s a good thing. Read it and see what you think.

The ANSYS Academic Program – The World’s Best Simulation Tools for Free or Discounted

Researchers and students at universities around the world are tackling difficult engineering and science problems, and they are turning to simulation more and more to get to understanding and solutions faster. Just like industry. And just like industry they are finding that ANSYS provides the most comprehensive and powerful solution for simulation. The ANSYS suite of tools deliver breadth and depth along with ease of use for every level of expertise, from Freshman to world-leading research professors. The problem in the past was that academia operates differently from industry, so getting to the right tools was a bit difficult from a lot of perspectives.

Now, with the ANSYS Academic program, barriers of price, licensing, and access are gone and ANSYS tools can provide the same benefits to college campuses that they do to businesses around the world.  And these are not stripped down tools, all of the functionality is there.

Students – Free

Yes, free.  Students can download ANSYS AIM Student or ANSYS Student under a twelve month license.  The only limitation is on problem size.  To make it easy, you can go here and download the package you need.  ANSYS AIM is a new user interface for structural, thermal, electromagnetic, and fluid flow simulation oriented towards the new or occasional user.  ANSYS Student is a size limited bundle of the full ANSYS Mechanical, ANSYS CFD, ANSYS Autodyn, ANSYS SpaceClaim, and ANSYS DesignXplorer packages.

You can learn more by downloading this PDF.

That is pretty much it. If you need ANSYS for a class or just to learn how to use the most common simulation package in industry, download it for free.

Academic Institutions – Discounted Packages

If you need access to full problem sizes or you want to use ANSYS products for your research, there are several Academic Packages that offer multiple seats of full products at discounted prices. These products are grouped by application:

  • Structural-Fluid Dynamics Academic Products — Bundles that offer structural mechanics, explicit dynamics, fluid dynamics and thermal simulation capabilities. These bundles also include ANSYS Workbench, relevant CAD import tools, solid modeling and meshing, and High Performance Computing (HPC) capability.
  • Electronics Academic Products — Bundles that offer high-frequency, signal integrity, RF, microwave, millimeter-wave device and other electronic engineering simulation capabilities. These bundles include product such as ANSYS HFSS, ANSYS Q3D Extractor,ANSYS SIwave, ANSYS Maxwell, ANSYS Simplorer Advanced. The bundles also include HPC and import/connectivity to many common MCAD and ECAD tools.
  • Embedded Software Academic Products — Bundles of our SCADE products that offer a model-based development environment for embedded software.
  • Multiphysics Campus Solutions— Large task count bundles of Research & Teaching products from all three of the above categories intended for larger-scale deployment across a campus, or multiple campuses.

You can see what capabilities are included in each package by downloading the product feature table.  These are fully functional products with no limits on size.  What is different is how you are authorized to use the tool. The Academic licence restricts use to teaching and research. Because of this, ANSYS is able to provide academic product licenses at significantly reduced cost compared to the commercial licenses — which helps organizations around the globe to meet their academic budget requirements. Support is also included through the online academic resources like training as well as access to the ANSYS Customer Portal.

There are many options on price and bundling based upon need and other variables, so you will need to contact PADT or ANSYS to help sort it all out and find the right fit for your organization.

What does all this mean?  It means that every engineer graduating from their school of choice should enter the workforce knowing how to use ANSYS Products, something that employers value. It also means that researchers can now produce more valuable information in less time for less money because they leverage the power of ANSYS simulation.The barriers are down, as students and institutions, you just need to take advantage of it.

Silicon Desert Insider: 5 ways to implement sustainable tech to save your business money

Technology has a huge impact on many things, including making your business more profitable by reducing the energy you use.  In “5 ways to implement sustainable tech to save your business money” I give some suggestions on new, but proven technology that can do just that.

Figure it Out: Guest spot on podcast – 3D Printing, automation, AI, and the comming robot wars

I was honored to be asked to join Santari Minor and George Grombacher for episode 31 of their podcast: Figure it Out.  It was wide ranging and fun conversation that flowed across so many different and interesting topics, it was hard to stop.  We covered 3D printing, automation, artificial intelligence and the future of work. Made me think. Take a listen and maybe it will make you think.

You can listen at most podcast services, here are two locations:

Podbean  –  http://figureitout.podbean.com/e/figure-it-out-31-eric-miller/

Itunes: https://itunes.apple.com/us/podcast/figure-it-out-31-eric-miller/id1190137632?i=1000386591054&mt=2

Google Play: https://play.google.com/music/m/Dhl7gsnwxma46ug7bzg6dd3a6tm?t=Figure_it_Out_31_Eric_Miller-Figure_it_Out 

Enjoy and hopefully it will start your own conversation.

 

 

 

Phoenix Business Journal: What autocorrect can teach us about the application of AI

With all the talk about AI we sometimes forget that one of the most visible, and maligned, applications of Artificial Intelligence is something we use, or fight with, every day.  In “What autocorrect can teach us about the application of AI” I look at my own personal struggle with correct communication, and some lessons that businesses can take from how autocorrect is used.

Hey Startups! Be Concise!

“What does your startup do?”  Twenty minutes later I’ve lost interest and still don’t know why they do.  A serious problem with most startups is that those involved with them are so afraid they might leave something out that they have forgotten how to be concise.  So my advice: “Hey Startups! Be Concise!

Everyone wants to find the next great idea, what is wrong with just a good idea?

Truth is it feels great to hit a home run, but if you are trying to always knock it out of the ballpark you are going to have a lot of strikes.  In working with a lot of people trying to come up with ideas for new products, it seems like we focus too much up front on trying to hatch a unicorn, and not enough on just having something that works.  “Everyone wants to find the next great idea, what is wrong with just a good idea?” explores this and gives some examples of how trying to just solve a problem ended up being disruptive.

Getting to Know PADT: Part Scanning and Reverse Engineering

This is the first installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

Product innovation doesn’t always start with a blank sheet. Many times our customers need to begin with an accurate representation of their existing products, or a piece that theirs interfaces with, or even a competitive solutions.  That is why we offer scanning and reverse engineering services that take real world parts and convert them into an accurate and useful CAD model.

What is Part Scanning

Part scanning is a process where we use machines to measure geometry.  Before scanning someone would use rulers, calipers, and other measuring devices dating from the industrial revolution to get critical dimensions off of a part and painstakingly document what they find. That got better with Coordinate Measuring Machines (CMM) where you could accurately measure key locations on the geometry. The problem with this approach was that it only gave you data where you measured.  Fine for simple parts like a flange with bolt holes.  But not good when you have crazy free-form surfaces or many features. Another approach was to section the parts and project a shadow onto a piece of paper and trace it.  If you needed more measurements, cost went way up.

To solve this problem, people found a way to measure lots of points easily: scan the part with some sort of optical sensor and measure points on the part as you go.  Early scanning systems used lasers, measuring the beam that bounced back.  This worked well, especially for very large objects.  But was tricky on some surfaces and produced a lot of noise in the data. So researches figured out that they could project patterns of light and dark onto an object and measure how the edges of that pattern bent and warped.   This is called Structured Light Scanning, and Wikipedia has a good article giving more details on how it works. We use the “blue light” version of this process here at PADT for our optical scanning services.

The other process we use is Cross Sectional Scanning. As the name implies it scans the cross section of parts, and it does it by actually shaving off material one layer at a time and then taking a picture of the 2D cross section that is revealed.  Although you consume the part in the process, it is a very accurate and fairly affordable way to measure complex internal geometry.

What you get from both scanning approaches is what we call a point cloud.  What is a point cloud? A file with millions of points defined as an X, Y, and Z position in space that represent locations that sit on the surfaces of the object.  You can measure critical dimensions, compare different geometries, and use it as a basis to create a computer model.  The key thing to note is that PADT uses precise scanners and leading software, combined with the experience of our operators to produce an accurate and usable point cloud.

Creating Accurate Models from Scan Data – Reverse Engineering

For most projects, getting the point cloud is just the first step. In order for our customers to redesign, update, simulate, or interface with the part we scanned, they need an accurate computer model.  Instead of millions of points, the computer model contains a more concise mathematical representation of the surface defined by the points. The simplest thing we can do is simply fit triangles through those points.  This is refered to as a faceted model because it is made up of triangular facets.  This data is used for 3D Printing, rendering, and for design in some cases.  Most often we deliver an STL file for this type of model. If a more accurate representation is needed, our engineers can convert those facets into an actual Computer Aided Design (CAD) model.  It can be just a dumb solid, or we can even make key features parametric.  The geometry can be handed over in many different formats, including IGES, Paraolids, STEP, SolidWorks, SolidEdge, NX, or CREO.

How Part Scanning with PADT Different

To be blunt, the reason why we added scanning to our capabilities was that we had always outsourced this service for our customers.  We found plenty of people with scanners, but they just scanned a part, ran the software, and provided OK data for our customers.  The problem was they were not experts in the technology behind scanning, they lacked a theoretical understanding of math behind 3D computer geometry modeling, and they were not experts in product development.  It turned out that scanning the geometry was the easy part, what our customers needed was someone who knew how to scan it right and produce useful information.  Information they didn’t have to spend time cleaning and massaging. Our engineers combine all of these skills along with a firm understanding of quality requirements, GD&T, and most of the major CAD systems.  In addition, PADT is ITAR compliant and can deal with your confidential geometry and data requirements.  The fact that PADT is a recognized expert in Additive Manufacturing is often useful as well.  We could not find a service provider that had all of the things our customers required, so we decided to do it ourselves.

Leveraging PADT’s Part Scanning and Reverse Engineering Services

Getting parts scanned by PADT is actually fairly easy.  Step one is to contact PADT and talk to our engineers so they can produce a quote.  Ideally it is best for you to bring the part or parts in to our Tempe office. If that is not feasible we will need some basic pictures of your part and key dimensions like maximum length, width, and height. They will then talk with you to understand what you actually want to accomplish by scanning.  Armed with this information they will provide a quote for scanning and any geometry creation or other activities you need completed including cost, schedule, and a list of deliverables.

In  most cases, you will ship us or drop off the part or parts, and our team will go to work.  If needed, we can also come to where the parts are located and scan them there.  The deliverables vary from job to job, and are negotiated as part of the quoting process.  In general we will provide you with an STL or CAD file with the level of accuracy and detail that you ask for. If needed, we can also provide you with the point cloud  itself.  We can also complete inspection reports and provide comparisons between datasets.

Reach out to Give it a Try or Learn More

Our team is ready and waiting to answer your questions or provide you with a quote.  You can email us at info@padtinc.com or give us a call at 480.813.4884 or 1-800-293-PADT.

Still want to learn more? Here are some links to more information:

  • Download or scanning brochure
  • A more detailed blog post on scanning from early 2017, including a “Scanning 101” section with some great background on the technology
  • The 3D Scanning Wikipedia article.  This has lots of basic information as well as more links to greater details.
  • Information on the Geomagic Capture Scanner, an easy to use, compact, and very portable blue light scanner that we use for a lot of projects.
  • Details about the ZIESS Comet optical scanner, a professional and highly accurate blue light scanner that we use for our more demanding projects.
  • An overview of Cross Sectional scanning.
  • A brief summary of the Geomagic Software we use to create useful models from point clouds. It also has links to more in-depth information.
  • An article in Additive Manufacturing magazine about how PADT used our scanners to create a replacement part for a P-51 Mustang airplane.  It includes a great video as well.

 

Additive Manufacturing: 3D Printing a Metal Shift Knob for Faster Cooling

When Nathan Huber moved to Arizona from Colorado to join PADT he learned a lot, and one of the things he learned fast was that the inside of cars get very hot in the summer here.  In fact, the shift knob on his car was untouchable in July.  This coincided with his learning more about metal 3D Printing and an idea occurred, what about 3D Printing a metal shift knob designed to cool off faster, and that looked cool.  Oh, and use ANSYS to drive the design.

He blogged about it before (here and here), and Additive Manufacturing online picked up the story and added to it on their blog post “3D Printing a Metal Shift Knob for Faster Cooling”  Check it out, they did a nice job of explaining what we did and how Nathan used several of our tools like ANSYS Mechanical and our Concept Laser metal system to realize the design.

 

3D Printing Peer Group of New Mexico Tech Council Launching on June 22

We are very pleased to announce the launch meeting of the newest New Mexico Technology Council peer group: 3D Printing.  After the success of other peer groups, and a similar committee in the Arizona Technology Council, PADT is partnering with the NMTC to start a group focused on all things Additive Manufacturing, which is the more technical name for 3D Printing. Schools, businesses, and individuals who have any involvement or interest in this exciting and transformative technology will be able to network and organize to get greater value from 3D Printing. This includes understanding the technology, working together on research projects, and getting to know what services are available locally.  It will also serve as a platform to coordinate the use of 3D printing in STEM education.

    

For this launch event, PADT’s Rey Chu will share his thoughts on the latest and most interesting advancements in 3D Printing.

What: NMTC 3D Printing Peer Group Launch
Networking
Beer
Where: Rio Bravo Brewing Company, 1912 2nd St NW, Albuquerque, NM 87102
When: June 22, 2017
5:00 pm – 7:00 pm
Who: Anyone (21 years of age or older) involved in Academia, Industry, or Research that is involved or interested in Additive Manufacturing
Why: To build cooperation between the growing 3D Printing community in the state
How: Being social, creating connections, and joining the group to take action in the future

We will kick off the meeting with introductions around the room, then listen to Rey share his views on what is new and interesting in this industry, then talk about the peer group, answer questions, and start planning our next activities.  At around 6:45 or so we will commence with the networking.

Please contact PADT at info@padtinc.com if you have any questions before the event.   We hope to see you there.

Don’t forget to register, and please let anyone else you think might be interested know about the event.

 

Phoenix Business Journal: ​Remembering Kelley Johnson, aircraft design icon and project management superstar

One of my engineering idols is Clarence “Kelley” Johnson. He led the design of many of the coolest aircraft ever made, and he was a pioneer in managing large engineering projects.  In “​Remembering Kelley Johnson, aircraft design icon and project management superstar” I talk about why he was such an important figure in technology, and some rules he developed for effective project management. Even if you are not an airplane person, it is worth getting to know his work and his methods.

 

Phoenix Business Journal: Why medical startups should not focus on patients

It sounds counterintuitive, but it is one of those positions where you sometimes have take a different path to end up where you should. I  “Why medical startups should not focus on patients” in order to in the end, deliver better products and better outcome to their patients. I’ve observed too many good ideas fail because the creators are not paying attention to the people who will pay for and deploy the solution.

Silicon Desert Insider: Are you ready for artificial intelligence to change your business?

Artificial intelligence has been a Science Fiction staple for decades, and has been the focus of much marketing hype more recently.  While all this was going on however, AI sort of happened. It is here, it is part of our every day, and “Are you ready for artificial intelligence to change your business?”  This is one of those fundamental technology shifts that impacts everything, and smart business will understand and adapt.

Phoenix Business Journal: ​Automation is here and we need to pay attention

People talk about automation, mostly with respecte to manufacturing, like it is something that is comming.  But “Automation is here and we need to pay attention.” If you don’t understand how computer software, robotics, and sensors are changing every aspect of our lives, odds are you will miss how it will change your business.