3D Printed Parts Create a Tricked-Out Truck

PADT’s Austin Suder is a Solidworks CAD wizard, a NASA design-competition (Two for the Crew) winner and a teaching assistant for a course in additive manufacturing (AM)/3D printing. Not bad for someone who’s just started his sophomore year in mechanical engineering at Arizona State University.

PADT's Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)
PADT’s Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)

In last month’s PADT blog post about adding heat-set inserts to 3D printed parts we gave a shout-out to Austin for providing our test piece, the off-road LED light unit he had designed and printed for his 2005 Ford F-150. Now we’ve caught up with him between classes to see what other additions he’s made to his vehicle, all created with his personal 3D printers and providing great experience for his part-time work with Stratasys industrial printers in PADT’s manufacturing department.

Q: What has inspired or led you to print multiple parts for your truck?

I like cars, but I’m on a college budget so instead of complaining I found a way to fix the problem. I have five 3D printers at my house – why not put them to work! I understand the capabilities of AM so this has given me a chance to practice my CAD and manufacturing skills and push boundaries – to the point that people start to question my sanity.

Q: How did you end up making those rear-mount LED lights?

I wanted some reverse lights to match the ones on the front of my truck, so I designed housings in SolidWorks and printed them in carbon fiber PLA. Then I soldered in some high-power LED lights and wired them to my reverse lights. These parts made great use of threaded inserts! The carbon fiber PLA that I used was made by a company called Vartega that recycles carbon fiber material. (Note: PADT is an investor of this company.)

Q: In the PADT parking lot, people can’t help but notice your unusual tow-hitch. What’s the story with that?

I saw a similar looking hitch on another car that I liked and my first thought was, “I bet I could make that better.” It’s made from ABS painted chrome (not metal); I knew that I would never use it to tow anything, so this opened up my design freedom. This has been on my truck for about a year and the paint has since faded, but the printed parts are still holding strong.

An adjustable-height "topology optimized" trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it's just for fun, not function. (Image courtesy PADT)
An adjustable-height “topology optimized” trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it’s just for fun, not function. (Image courtesy PADT)

This part also gets questioned a lot! It’s both a blessing and a curse. In most cases it starts when I’m getting gas and the person behind me starts staring and then questions the thing that’s attached to the back of my truck. The conversation then progresses to me explaining what additive is, to a complete stranger in the middle of a gas station. This is the blessing part because I’m always down for a conversation about AM; the downside is I hate being late for work.

Q: What about those tow shackles on your front bumper?

Unique ABS printed tow shackles - another conversation-starter. (Image courtesy PADT)
Unique ABS printed tow shackles – another conversation-starter. (Image courtesy PADT)

Those parts were printed in ABS – they’re not meant for use, just for looks. I’ve seen towing shackles on Jeeps and other trucks but never liked the look of them, so again I designed my own in this pentagon-shape. I originally printed them in red but didn’t like the look when I installed them; the unusual shading comes because I spray-painted them black then rubbed off some of the paint while wet so the red highlights show through.

Q: Have you printed truck parts in any other materials?

Yes, I‘ve used a carbon-fiber (CF) nylon and flexible TPU (thermoplastic polyurethane) on filament printers and a nylon-like resin on a stereolithography system.

The CF nylon worked well when I realized my engine bay lacked the real estate needed for a catch can I’d bought. This was a problem for about five minutes – then I realized I have the power of additive and engineered a mount which raised the can and holds it at an angle. The mount makes great use of complex geometry because AM made it easy to manufacture a strong but custom-shaped part.     

Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)
Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)

After adding the catch can to my engine, I needed a way to keep the hoses from moving around when driving so I designed a double S-clip in TPU. The first design didn’t even come close to working – the hoses kept coming loose when driving – so I evaluated it and realized that the outer walls needed to be thicker. I made the change and printed it again, and this time it worked great. In fact, it worked so well that when I took my truck to the Ford dealership for some warranty work, they went missing. (It’s OK Ford, you can have them – I’ll just print another set.)    

Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)
Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)

Other parts I printed in TPU included clips for the brake-lines. I had seen that my original clip had snapped off, so when I had the truck up on jacks, I grabbed my calipers and started designing a new, improved version. Thirty minutes later I had them in place.

I also made replacement hood dampeners from TPU since they looked as though they’d been there for the life of the truck. I measured the old ones, used SolidWorks to recreate them (optimized for AM), printed a pair and installed them. They’ve been doing great in the Arizona heat without any deformation.      

New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)
New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)

My last little print was done on my SLA system in a material that behaves like nylon. (This was really just me showing off.) The plastic clips that hold the radiator cover had broken off, which led me to use threaded sheet-metal inserts to add machine threading to the fixture. I then purchased chrome bolts and made some 3D printed cup-washers with embossed text for added personalization and flair.  

Even the cup-washers got a 3D printed make-over on Austin's F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)
Even the cup-washers got a 3D printed make-over on Austin’s F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)

Q: What future automotive projects do you have in mind?

I’m working on a multi-section bumper and am using the project to standardize my production process – the design, material choice, sectioning and assembling. I got the idea because I saw someone with a tube frame car and thought it looked great, which led to me start thinking about how I could incorporate that onto my truck.

When I bought my F-150, it had had a dent in the rear bumper. I was never happy with this but didn’t have the money to get it fixed, so at this point the tube-frame look came full circle! I decided that I was going to 3D print a tube-frame bumper to replace the one with a dent. I started by removing the original bumper, taking measurements and locating possible mounting points for my design. Then I made some sketches and transferred them into SolidWorks.

The best part about this project is that I have additive on my side. Typical tube frame construction is limited by many things like bend allowance, assembly, and fabrication tooling. AM has allowed me to design components that could not be manufactured with traditional methods. The bumper will be constructed of PVC sections connected by 50 ABS printed parts, all glued together, smoothed with Bondo and filler primer then painted black. This is a large project!  It will take a lot of hand-finishing, but it will be perfect.

Q: If you were given the opportunity to work on any printer technology and/or material, what would you want to try working with?

Great question! If I had the opportunity to use AM for automotive components, I would redesign internal engine components and print them with direct metal laser sintering (DMLS), one of PADT’s other AM technologies. I would try printing part like piston rods, pistons, rocker arms, and cylinder valves. Additive is great for complex geometries with exotic materials.

Go Austin! Can’t wait to see what your truck looks like when you visit over semester break.

To learn more about fused deposition modeling (FDM/filament), stereolithography (SLA), selective laser sintering (SLS) and DMLS printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Adding Inserts to 3D Printed Parts: Hardware Tips plus One-Click Design in GrabCAD Print Advanced FDM

Heat-set, ultrasonic, helicoil: metal inserts are exceedingly useful when you want to add threads to a plastic part, preparing it for a strong screwed-in connection. Whether you heat up the insert and push it down into the pre-made hole (purposely melting the plastic as you do so) or tap a hole to allow a helicoil to dig into its side, you create a better grip for whatever hardware you eventually install. Inserts are especially useful for parts that will be assembled and disassembled multiple times.

Here at PADT, Inc., we thought we’d research the different installation approaches and demonstrate several ways to use inserts in FDM 3D-printed parts (be sure to check out the short video further on). Our awesome intern-turned-employee Austin Suder had already designed and printed some LED light boxes for off-roading with his truck, so we used his parts for our tests and demos. (Stay tuned – we’ll soon be featuring a whole variety of Austin’s automotive upgrades in an upcoming PADT post.)

For a classically milled plastic part, you plan ahead by drilling a slightly undersized hole that is enlarged as the heated insert is pushed into place. For a 3D printed part (let’s say ABS), you plan ahead in a similar way, using the hole dimensions given on any insert data-sheet. However, to get the best anchor against torque-out and pull-out, holes in 3D printed FDM parts need multiple material contours around them. You don’t want to melt through a thin wall into the infill region, and you don’t want weird bulges on the exterior if the hole is close to an edge.

An LED light box for off-road automotive lighting.
An LED light box for off-road automotive lighting, showing sections ready for M3 heat-set inserts. Sample side part printed in white for clarity. (Images courtesy PADT)
An LED light box for off-road automotive lighting, showing sections ready for M3 heat-set inserts. Sample side part printed in white for clarity. (Images courtesy PADT)

Heat-Set versus Ultrasonic Inserts

We’ll talk about defining those beefed-up contours in a moment. First, let’s describe the difference in installing heat-set (also called heat-staked) versus ultrasonic inserts, and talk about the pros and cons of their use. Inserts can also be dropped into slightly oversized holes if you pause the printer, add the part, and continue to print over them with enough material to just trap them in place. (Note: Helical inserts require tapping and then an installation tool, and do not give quite the strength of the former two types.)

Both types of inserts may come as small as #0-80 and M2.5×0.45 up to 3/8-16 and M8x1.25 (inches and metric, respectively), depending on whether you choose tapered or straight-sided versions. Material choice typically is aluminum, brass or stainless steel, in order to provide high thermal conductivity with strength.

Close-up of M3 size metric heat-set inserts to show relative size, ready for installation. (Image courtesy PADT)
Close-up of M3 size metric heat-set inserts to show relative size, ready for installation. (Image courtesy PADT)

A heat-stake machine looks like a small drill-press with a soldering-iron tip, and does ensure a perfectly vertical motion. However, the easiest insertion tool is a handheld soldering iron fitted with a flat-end heat-set tip that matches the inner diameter of the insert. Heat-set tips cost less than $20, and their benefit (compared to using just the default soldering iron tip) is that the flat head is easier to retract after the insert is completely in position.

(Left) Using a standard chisel-tip on a soldering iron to install a heat-set insert can make it difficult to get the insert in straight. (Right) Using a specialized heat-set tip gives a good vertical installation. Tips are sold to match each insert type and size (Image courtesy PADT)
(Upper) Using a standard chisel-tip on a soldering iron to install a heat-set insert can make it difficult to get the insert in straight. (Lower) Using a specialized heat-set tip gives a good vertical installation. Tips are sold to match each insert type and size. (Image courtesy PADT)                                                

A useful guide from Stratasys, “Inserting Hardware Post-Build,” suggests pre-heating the soldering iron or heat-staking press to a temperature that is approximately 170% of the glass transition temperature (Tg) of the FDM material, or work with a variable-power iron set for about 40 watts. Stratasys material data sheets list Tg values for each material.

Step-by-step Installation

To install a heat-set insert, set the metal insert on the 3D-printed part surface, centered on the hole. Tapered inserts are self-seating and make it easier to ensure the insert goes in straight, but even the straight-wall designs have a slightly smaller lead-in section to assist with alignment.

Fit the soldering-iron tip into the center of the insert, then push the insert down gently into place – you’ll feel the plastic around it starting to melt. Stop pushing when you see the insert has almost completely gone in, then pull back on the tip. Immediately place a flat aluminum plate on the insert/part area and push down until the insert is completely flush with the part surface. Alternatively, you can turn the part upside down and push the face against a table or flat plate – whatever is easiest given the part geometry.

Once you remove the soldering iron (heat source), the cooling, melted plastic reflows into the grooves, knurls and slots cut into the insert’s outer walls and solidifies. This connection is what forms the excellent grip between metal and plastic.

Finished part with insert flush to the part’s surface. (Image courtesy PADT)
Finished part with insert flush to the part’s surface. (Image courtesy PADT)

Ultrasonic installation also melts the plastic and ends up with the same result, but the process and equipment are quite different. The user (or an automated system) sets the insert in place then lowers an ultrasonic horn directly onto the metal’s surface. Ultrasonic vibrations create frictional heat, again melting the plastic, and the equipment pushes the insert down to a preset depth.

Both methods work, but unless you need the speed of automated assembly, heat-insertion is a simpler and less expensive approach. The equipment for ultrasonic insertion can be expensive, is very loud when operating, and can be harder to control. There’s also the chance that metal chips get generated and stuck in the part.

For more information comparing the two methods, see the in-depth Machine Design article, “Putting inserts in plastic parts: ultrasonic or heat?

Designing CAD Models for Inserts

The key to sizing holes to be insert-ready is to slightly undersize them. Insert datasheets provide diameter and depth information for all the standard sizes, with virtually identical values regardless of brand (one company might list a diameter as 5.2mm and another as 5.23mm but these are negligible differences for this purpose).

Two online resources are SI Inserts for Plastic and the McMaster-Carr insert webpages.

These online charts or diagrams give the minimum hole depth and diameter that must be designed into the CAD model. For tapered inserts, the mounting hole officially has its own taper, but the difference is so minimal that for most cases, a straight hole will grip the insert just fine, as shown in the figure below.

CAD part with straight-walled holes set up for adding M3 inserts (Image courtesy PADT)
Sample CAD part with straight-walled holes set up for adding M3 inserts (Image courtesy PADT)

In print set-up software such as Stratasys Insight, the recommendation is to create four to six contours around each hole that is designated for an insert. This is done by creating a Custom Group under the Toolpath heading, defining the number of contours, and selecting all the relevant holes. When you review the toolpath layer by layer you’ll see those contours show up.

One-Step Insert Set-Up in GrabCAD Advanced FDM Software

For parts printed on many Stratasys FDM printers – from the F170/270/370 Series up through the larger Fortus 380, 450 and 900 models – users can even more quickly prepare their parts for inserts using GrabCAD Print’s Advanced FDM features. Since GrabCAD Print’s set-up software works directly with CAD files, all the feature intelligence is retained, meaning the software recognizes bodies and faces, including the cylindrical sides of a hole.

As long as your part has a hole whose center is in the desired location, GrabCAD does something very cool. It lets you choose an insert from a drop-down menu then automatically resizes that hole to the correct dimensions and reinforces its perimeter with an optimized number of contours. No need to create custom groups, isolate model slices, rebuild tool paths or wonder if you added enough material.

Automated contour-creation around holes for heat-set inserts, created using Stratasys GrabCAD Print software. (Image courtesy PADT)
Automated contour-creation around holes for heat-set inserts, created using Stratasys GrabCAD Print software. (Image courtesy PADT)

Try GrabCAD Print for yourself – it greatly simplifies optimizing the contours and hole-sizing, and makes it easy to evaluate different insert sizes on-the-fly without having to edit the original CAD file.

To learn more about working with inserts in general, GrabCAD Print software and FDM printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

3D Printing Polymer Parts with Electrostatic Dissipative (ESD) Properties

Getting zapped by static electricity at the personal level is merely annoying; having your sensitive electronic equipment buzzed is another, highly destructive story.

Much as you’d like to send these components out into the world wearing their own little anti-static wristbands, that’s just not practical (and actually, not good enough*). During build and use, advanced electronics applications need true charge-dissipative protection that is inherent to their design and easy to achieve. However, the typical steps of painting or coating, covering with conductive tape, or wrapping with carbon-filled/aluminum-coated films incur both time and cost.

Electrostatic dissipative (ESD) polymer materials instead provide this kind of protection on a built-in basis, offering a moderately conductive “exit path” that naturally dissipates the charge build-up that can occur during normal operations. It also prevents powders, dust or fine particles from sticking to the surface. Whether the task is protecting circuit boards during transport and testing, or ensuring that the final product works as designed throughout its lifetime, ESD materials present low electrical resistance while offering the required mechanical, and often thermal and/or chemically-resistant properties.

ESD-safe fixture for testing a printed-circuit board, produced by 3D printing with Stratasys ABS-ESD7 material. (Image courtesy of Stratasys)

Combining ESD Behavior with 3D Printing

All the features that are appealing with 3D printing carry over when printing with ESD-enabled thermoplastics. You can print trays custom-configured to hold circuit-boards for in-process testing, print conformal fixtures that speed up sorting, and produce end-use structures for projects where static build-up is simply not allowed (think mission-critical aerospace applications).

Acrylonitrile butadiene styrene (ABS), that work-horse of the plastics industry, has been available as 3D printing filament for decades. Along the way, Stratasys and other vendors started offering this filament in a version filled with carbon particles that decrease the plastic’s inherent electrical resistance. Stratasys ABS-ESD7 runs on the Fortus 380, 400, 450 and 900 industrial systems, and soon will be available on the office-friendly F370 printer.

What kind of performance does ABS-ESD7 offer? When evaluating materials for ESD performance, the most important property is usually the surface resistance, measured in ohms. (This is not the same as surface resistivity, plus there’s also volume resistivity – see Note at end). Conductive materials – typically metals – have a surface resistance generally less than 103 ohms, insulators such as most plastics are rated at greater than 1012 ohms, and ESD materials fall in the mid-range, at 106 to 109 ohms.

Compared to standard ABS filament, ABS-ESD7 offers more than five orders of magnitude lower resistance, converting it from an insulator to a material that provides an effective static-discharge path to the outside world. Due to the inherent layered structure of FDM parts, the differences in properties between flat (XY) and vertical (ZX) build orientations produces a range of resistance values, with a target of 107 ohms, reflected in the product name of ABS-ESD7. Stratasys offers an excellent, easy-to-read FAQ paper about ABS-ESD7.

Printed-circuit board production tool, custom 3D-printed in Stratasys ABS-ESD7 material for built-in protection from electrostatic discharge during test and handling. (Image courtesy of Stratasys)

When ABS isn’t strong enough or won’t hold up to temperature extremes, engineers can turn to Stratasys’ ESD-enhanced polyetherketoneketone (PEKK), termed Antero 840CN03. Developed in 2016 and slated for full release in October 2019, this new filament expands the company’s Antero line of  high-temperature, chemically resistant formulations. The PEKK base material offers a high glass transition temperature (Tg 149C, compared to 108C for ABS-ESD7) while meeting stringent outgassing and cleanroom requirements. As with ABS-ESD7, the carbon-nanotube loading lowers electrical resistance values of Antero 840CN03 parts to the desirable “ESD safe” range of 106 to 109 ohm.

Setting up Parts for Printing with ESD-Enhanced Filament                                                            

Support structures in contact with part walls/surfaces can disturb the surface resistance behavior. To counter-act this condition for filament printing with any type of ESD material, users should perform a special calibration that makes the printer lay down slightly thinner-than-usual layers of support material. In Stratasys Insight software, this is currently accomplished by setting the Support Offset Thickness to -0.003; this decreases the support layers from 0.010 inches to 0.007 inches. In addition, supports should be removed (in Insight software) from holes that are smaller in diameter than 0.25 inches (6.35mm).

As more of these materials are developed, the software will be updated to automatically create supports with this process in mind.

ESD Applications for 3D Printing

Avionics boxes, fixtures for holding and transporting circuit boards, storage containers for fuel, and production-line conveyor systems are just a few examples of end-use applications of ESD-enabled materials. Coupled with the geometric freedom offered by 3D printing, three categories of manufacturing and operations are improved:

  • Protecting electronics from ESD damage (static shock)
  • Preventing fire/explosion (static spark)
  • Preserving equipment/product performance (static cling)

If you’re exploring how 3D printing with ESD-enhanced materials can help with your industrial challenge, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed, and discover what filament is right for you.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

*Anti-static is a qualitative term and refers to something that prevents build-up of static, rather than dissipating what does occur


Surface Resistance, Surface Resistivity and Volume Resistivity

Surface resistance in ohms is a measurement to evaluate static-dissipative packaging materials.

Surface resistivity in ohms/square is used to evaluate insulative materials where high resistance characteristics are desirable. (Ref. https://www.evaluationengineering.com/home/article/13000514/the-difference-between-surface-resistance-and-surface-resistivity)

The standard for measuring surface resistance of ESD materials is EOS/ESD S11.11, released in 1993 by the ESD Association as an improvement over ASTM D-257 (the classic standard for evaluating insulators). Driving this need was the non-homogeneous structure of ESD materials (conductive material added to plastic), which had a different effect on testing parameters such as voltage or humidity,  than found with evaluating conductors.

Volume resistivity is yet a third possible measured electrical property, though again better suited for true conductors rather than ESD material. It depends on the area of the ohmeter’s electrodes and the thickness of the material sample. Units are ohm-cm or ohm-m.

             

3D Printing Infill Styles – the What, When and Why of Using Infill

Have you ever wondered about choosing a plain versus funky infill-style for filament 3D-printing? Amongst the ten standard types (no, the cat infill design is not one of them), some give you high strength, some greatly decrease material use or printing time, and others are purposely tailored with an end-use in mind.

Highly detailed Insight slicing software from Stratasys gives you the widest range of possibilities; the basic versions are also accessible from GrabCAD Print, the direct-CAD-import, cloud-connected slicing software that offers an easy approach for all levels of 3D print users.

A part that is mimicking or replacing a metal design would do best when built with Solid infill to give it weight and heft, while a visual-concept model printed as five different test-versions may work fine with a Sparse infill, saving time and material. Here at PADT we printed a number of sample cubes with open ends to demonstrate a variety of the choices in action. Check out these hints for evaluating each one, and see the chart at the end comparing build-time, weight and consumed material.

Infill choices for 3D printed parts, offered with Stratasys’ GrabCAD Print software. (Image courtesy PADT Inc.)

Basic Infill Patterns

Solid (also called Alternating Raster) This is the default pattern, where each layer has straight fill-lines touching each other, and the layer direction alternates by 90 degrees. This infill uses the most material but offers the highest density; use it when structural integrity and super-low porosity are most important.

Solid (Alternating Raster)

Sparse Raster lines for Sparse infill also run in one direction per layer, alternating by layer, but are widely spaced (the default spacing is 0.080 inches/2 mm). In Insight, or using the Advanced FDM settings in GrabCAD, you can change the width of both the lines and the spaces.

Sparse Double Dense As you can imagine, Sparse Double Dense achieves twice the density of regular Sparse: it deposits in two directions per layer, creating an open grid-pattern that stacks up throughout the part.

Sparse High Density Just to give you one more quick-click option, this pattern effectively sits between Sparse Double Dense and Solid. It lays rasters in a single direction per layer, but not as closely spaced as for Solid.

Hexagram The effect of this pattern looks similar to a honeycomb but it’s formed differently. Each layer gets three sets of raster lines crossing at different angles, forming perfectly aligned columns of hexagons and triangles. Hexagram is time-efficient to build, lightweight and strong in all directions.

Hexagram
Additional infill styles and the options for customizing them within a part, offered within Stratasys Insight 3D printing slicing and set-up software. (Image courtesy PADT Inc.)

Advanced Infill Patterns (via Custom Groups in Insight)

Hexagon By laying down rows of zig-zag lines that alternately bond to each other and bend away, Hexagon produces a classic honeycomb structure (every two rows creates one row of honeycomb). The pattern repeats layer by layer so all vertical channels line up perfectly. The amount of build material used is just about one-third that of Solid but strength is quite good.

Hexagon

Permeable Triangle A layer-by-layer shifting pattern of triangles and straight lines creates a strong infill that builds as quickly as Sparse, but is extremely permeable. It is used for printing sacrificial tooling material (i.e., Stratsys ST130) that will be wrapped with composite material and later dissolved away.

Permeable Triangle

Permeable Tubular This infill is formed by a 16-layer repeating pattern deposited first as eight varying wavy layers aligned to the X axis and then the same eight layers aligned to the Y axis. The resulting structure is a series of vertical cylinders enhanced with strong cross-bars, creating air-flow channels highly suited to tooling used on vacuum work-holding tables.

Permeable Tubular 0.2 Spacing
Permeable Tubular 0.5 Spacing

Gyroid (so cool we printed it twice) The Gyroid pattern belongs to a class of mathematically minimal surfaces, providing infill strength similar to that of a hexagon, but using less material. Since different raster spacings have quite an effect, we printed it first with the default spacing of 0.2 inches and then widened that to 0.5 inches. Print time and material use dropped dramatically.

Gyroid 0.2 Spacing
Gyroid 0.5 Spacing

Schwarz D (Diamond) This alternate style of minimal surface builds in sets of seven different layers along the X-axis, ranging from straight lines to near-sawtooth waves, then flipping to repeat the same seven layers along the Y-axis. The Schwarz D infill balances strength, density and porosity. As with the Gyroid, differences in raster spacing have a big influence on the material use and build-time.

Schwarz Diamond 0.2 Spacing
Schwarz Diamond 0.5 Spacing

Digging Deeper Into Infill Options

Infill Cell Type/0.2 spacing Build Time Weight Material Used
Alternating Raster (Solid) 1 h 57 min 123.77 g 6.29 cu in.
Sparse Double Dense 1 hr 37 min 44.09 g 4.52 cu in.
Hexagon (Honeycomb) 1 h 49 min 37.79 g 2.56 cu in.
Hexagram (3 crossed rasters) 1 h 11 min. 47.61 g 3.03 cu in.
Permeable Triangle 1 h 11 min. 47.67 g 3.04 cu in.
Permeable Tubular – small 2 h 5 min. 43.95 g 2.68 cu in.
Gyroid – small 1 h 48 min. 38.68 g 2.39 cu in.
Schwarz Diamond (D) – small 1 h 35 min. 47.8 g 3.04 cu in.
Infill Cell Type/0.5 spacing Build Time Weight Material Used
Permeable Tubular – Large 1 h 11 min. 21.84 g 1.33 cu in.
Gyroid – Large 57 min. 20.59 g 1.29 cu in.
Schwarz Diamond (D) – Large 58 min. 23.74 g 1.51 cu in.

Hopefully this information helps you perfect your design for optimal strength or minimal material-use or fastest printing. If you’re still not sure which way to go, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed and discover what infill works best for the job at hand.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Seven Tips for 3D Printing with Nylon 12CF

If you’ve been thinking of trying out Nylon 12 Carbon Fiber (12CF)  to replace aluminum tooling or create strong end-use parts, do it! All the parts we’ve built here at PADT have shown themselves to be extremely strong and durable and we think you should consider evaluating this material.

Nylon 12CF filament consists of black Nylon 12 filled with chopped carbon fibers; it currently runs on the Stratasys Fortus 380cf, Fortus 450 and Fortus 900 FDM systems when set up with the corresponding head/tip configuration. (The chopped fiber behavior requires a hardened extruder and the chamber runs at a higher temperature.) We’ve run it on our Fortus 450 and found with a little preparation you get excellent first-part-right results.

Forming tool printed in Nylon 12CF on a Stratasys Fortus 450 FDM printer. Build orientation was chosen to have the tool on its side while printing, producing a smooth curved surface (the critical area). (Image courtesy PADT)

With Nylon 12CF, fiber alignment is in the direction of extrusion, producing ultimate tensile strength of 10,960 psi (XZ orientation) and 4,990 psi (ZX orientation), with tensile modulus of 1,100 ksi (XZ) and 330 ksi (ZX). By optimizing your pre-processing and build approach, you can create parts that take advantage of these anisotropic properties and display behavior similar to that of composite laminates.

Best Practices for Successful Part Production

Follow these steps to produce best-practice Nylon 12CF parts:

  1. Part set-up in Insight or GrabCAD Print software:
    • If the part has curves that need a smooth surface, such as for use as a bending tool, orient it so the surface in question builds vertically. Also, set up the orientation to avoid excess stresses in the z-direction.
    • The Normal default build-mode selection works for most parts unless there are walls thinner than 0.2 inches/0.508 mm; for these, choose Thin Wall Mode, which reduces the build-chamber temperature, avoiding any localized overheating/melting issues. Keep the default raster and contour widths at 0.2 inches/0.508 mm.
    • For thin, flat parts (fewer than 10 layers), zoom in and count the number of layers in the toolpath. If there is an even number of layers, create a Custom Group that lets you define the raster orientation of the middle two layers to be the same – then let the rest of the layers alternate by 90 degrees as usual. This helps prevent curl in thin parts.
    • Set Seam Control to Align or Align to nearest, and avoid setting seams on edges of thin parts; this yields better surface quality.

2. In the Support Parameters box, the default is “Use Model Material where Possible” – keep it. Building both the part and most of the surrounding supports from the same material reduces the impact of mismatched thermal coefficient of expansion between the model and support materials. It also shortens the time that the model extruder is inactive, avoiding the chance for depositing unwanted, excess model material. Be sure that “Insert Perforation Layers” is checked and set that number to 2, unless you are using Box-style supports – then select 3. This improves support removal in nearly enclosed cavities.

3. Set up part placement in Control Center or GrabCAD Print software: you want to ensure good airflow in the build chamber. Place single parts near the center of the build-plate; for a mixed-size part group, place the tallest part in the center with the shorter ones concentrically around it.

4. Be sure to include a Sacrificial Tower. This is always the first part built, layer by layer, and should be located in the right-front corner. Keep the setting of Full Height so that it continues building to the height of the tallest part. You’ll see the Tower looks very stringy! That means it is doing its job – it takes the brunt of stray strings and material that may not be at perfect temperature at the beginning of each layer’s placement.

Part set-up of a thin, flat Nylon 12CF part in GrabCAD print, with Sacrificial Tower in its correct position at lower right, to provide a clean start to each build-layer. (Image courtesy PADT)

5. Run a tip-offset calibration, or two, or three, on your printer. This is really important, particularly for the support material, to ensure the deposited “bead” is flat, not rounded or asymmetric. Proper bead-profile ensures good adhesion between model and support layers.

6. After printing, allow the part to cool down in the build chamber. When the part(s) and sheet are left in the printer for at least 30 minutes, everything cools down slowly together, minimizing the possibility of curling. We have found that for large, flat parts, putting a 0.75-inch thick aluminum plate on top of the part while it is still in the chamber, and then keeping the part and plate “sandwiched” together after taking it out of the chamber to completely cool really keeps things flat.

7. If you have trouble getting the part off the build sheet: Removing the part while it is still slightly warm makes it easier to get off; if your part built overnight and then cooled before you got to it, you can put it in a low temp oven (about 170F) for ten (10) to 20 minutes – it will be easier to separate. Also, if the part appears to have warped that will go away after the soluble supports have been removed.

Be sure to keep Nylon 12CF canisters in a sealed bag when not in use as the material, like any nylon, will absorb atmospheric moisture over time.

Many of these tips are further detailed in a “Best Practices for FDM Nylon 12CF” document from Stratasys; ask PADT for a copy of it, as well as for a sample or benchmark part. Nylon 12 CF offers a fast approach to producing durable, custom components. Discover what Nylon 12CF can mean for your product development and production groups. Don’t forget to check the Custom Printing San Diego services for more information on the best printing techniques.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Nylon 12CF and Stratasys products, contact us at info@padtinc.com.