Meshing Updates in ANSYS 2019 R2 – Webinar

An intelligent, high-quality mesh is at the core of any effective simulation based model; creating the basis for what will help to drive valuable results for even the most complex engineering problems.

Among a variety of tools in ANSYS 2019 R2 are enhanced meshing capabilities that can help reduce pre-processing time and provide a more streamlined solution.

Join PADT’s Specialist Mechanical Engineer, Joe Woodward for a look at what new meshing capabilities are available in the latest release of ANSYS. This presentation will focus predominately on updates regarding:

ANSYS Mechanical Meshing
Batch Connections
Axisymmetric Sweep
Layered Tetrahedron Enhancements
Local Sizing Enhancements
SpaceClaim Meshing
Parameter Management
Direct Modeling/Meshing
Hex Meshing
Block Decomposition

And much more!

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).


You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

“Equation Based Surface” for Conformal and Non-Planar Antenna Design

ANYSY HFSS provides many options for creating non-planar and conformal shapes. In MCAD you may use shapes such as cylinders or spheres, and with some steps, you can design you antennas on various surfaces. In some applications, it is necessary to study the effect of curvatures and shapes on the antenna performance. For example for wearable antennas it is important to study the effect of bending, crumpling and air-gap between antenna and human body.

Equation Based Surface

One of the tools that HFSS offers and can be used to do parametric sweep or optimization, is “Draw equation based surface”. This can be accessed under “Draw” “Equation Based Surface” or by using “Draw” tab and choosing it from the banner (Fig. 1)

Fig. 1. (a) Select Draw -> Equation Based Surface
Fig. 1. (b) click on the icon that is highlighted

Once this is selected the Equation Based Surface window that opens gives you options to enter the equation with the two variables (_u, _v_) to define a surface. Each point of the surface can be a function of (_u,_v). The range of (_u, _v) will also be determined in this window. The types of functions that are available can be seen in “Edit Equation” window, by clicking on “…” next to X, Y or Z (Fig. 2). Alternatively, the equation can be typed inside this window. Project or Design Variables can also be used or introduced here.

Fig. 2. (a) Equation Based Surface window
Fig. 2. (b) Clikc on the “…” next to X and see the “Edit Equation: window to build the equation for X

For example an elliptical cylinder along y axis can be represented by:

This equation can be entered as shown in Fig. 3.

Fig. 3. Elliptical surface equation

Variation of this equation can be obtained by changing variables R1, R2, L and beta. Two examples are shown in Fig. 4.

Fig. 4. Elliptical surface equation

Application of Equation Based Surface in Conformal and Non-Planar Antennas

To make use of this function to transfer a planar design to a non-planar design of interest, the following steps can be taken:

  • Start with a planar design. Keep in mind that changing the surface shape can change the characteristics of the antenna. It is a good idea to use a parameterized model, to be able to change and optimize the dimensions after transferring the design on a non-planar surface. As an example we started with a planar meandered line antenna that works around 700MHz, as shown in Fig. 5. The model is excited by a wave port. Since the cylindrical surface will be built around y-axis, the model is transferred to a height to allow the substrate surface to be made (Fig 5. b)
Fig. 5. Planar meandered antenna (a) on xy plane, (b) moved to a height of 5cm
  • Next, using equation based surface, create the desired shape and with the same length as the planar substrate. Make sure that the original deisgn is at a higher location. Select the non-planar surface. Use Modeler->Surface->Thicken Sheet … and thicken the surface with the substrate thickenss. Alternatively, by choosing “Draw” tab, one can expand the Sheet dropdown menu and choose Thicken Sheet. Now select the sheet, change the material to the substrate material.
Fig. 6. Thicken the equation based surface to generate the substrate
  • At this point you are ready to transfer the antenna design to the curved surface. Select both traces of the antenna and the curved substrate (as shown in Fig. 7). Then use Modeler->Surface->Project Sheet…, this will transfer the traces to the curved surface. Please note that the original substrate is still remaining. You need not delete it.
Fig. 7. Steps for transferring the design to the curved surface (a)

Fig. 7. Steps for transferring the design to the curved surface (b)

Fig. 7. Steps for transferring the design to the curved surface (c)
  • Next step is to generate the ground plane and move the wave port. In our example design we have a partial ground plane. For ground plane surface we use the same method to generate an equation based surface. Please keep in mind that the Z coordinate of this surface should be the same as substrate minus the thickness of the substrate. (If you thickened the substrate surface to both sides, this should be the height of substrate minus half of the substrate thickness). Once this sheet is generate assign a Perfect E or Finite Conductivity Boundary (by selecting the surface, right click and Assign Boundary). Delete the old planar ground plane.
Fig. 8. Non-planar meandered antenna with non-planar ground

Wave Port Placement using Equation Based Curve

A new wave port can be defined by the following steps:

  • Delete the old port.
  • Use Draw->Equation Based Curve. Mimicking the equation used for ground plane (Fig. 9).
Fig. 9. Use Equation Based Curve to start a new wave port (a) Equation Based Curve definition window (b) wave pot terminal created using equation based curve and sweep along vector
  • Select the line from the Model tree, select Draw->Sweep->Along Vector. Draw a vector in the direction of port height. Then by selecting the SweepAlongVector from Model tree and double clicking, the window allows you to set the correct size of port height and vector start point (Fig. 10).
  • Assign wave port to this new surface.
Fig. 10. Sweep along vector to create the new wave port location

Similar method can be used to generate (sin)^n or (cos)^n surfaces. Some examples are shown in Fig. 11. Fig. 11 (a) shows how the surface was defined.

Fig. 11. (a) Equation based surface definition using “cos” function, (b), (c), & (d) three different surfaces generated by this equation based surface.

Effect of Curvature on Antenna Matching

Bending a substrate can change the transmission line and antenna impedance. By using equation based port the change in transmission line impedance effect is removed. However, the overall radiation surface is also changed that will have effects on S11. The results of S11 for the planar design, cylindrical design (Fig. 8), cos (Fig. 11 b), and cos^3 (Fig. 11 c) designs are shown in Fig. 12. If it is of interest to include the change in the transmission line impedance, the port should be kept in a rectangular shape.

Fig. 12. Effect of curvature on the resonance frequency.

Equation based curves and surfaces can take a bit of time to get used to but with a little practice these methods can really open the door to some sophisticated geometry. It is also interesting to see how much the geometry can impact a simple antenna design, especially with today’s growing popularity in flex circuitry. Be sure to check out this related webinar  that touches on the impact of packaging antennas as well. If you would like more information on how these tools may be able to help you and your design, please let us know at info@padtinc.com.

You can also click here to download a copy of this example.

All Things ANSYS 037 – Optimizing the Industrial Internet of Things with ANSYS Digital Twins

 

Published on: May 20th, 2019
With: Eric Miller & Matt Sutton
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Analyst and Lead Software Developer, Matt Sutton for a discussion on the industrial internet of things, and how ANSYS Digital twins helps companies make confident predictions about future product performance, reduce the cost and risk of unplanned downtime, and improve future product development processes.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Twin Builder here: http://alturl.com/ccjjq

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Optimize Product Performance with ANSYS Digital Twins – Webinar

Engineering simulation has traditionally been used for new product design and virtual testing, eliminating the need to build multiple prototypes prior to product launch.

Now, with the emergence of the Industrial Internet of Things (IIoT), simulation is expanding into operations. The IIoT enables engineers to communicate with sensors and actuators on an operating product to capture data and monitor operating parameters. The result is a digital twin of the physical product or process that can be used to monitor real-time prescriptive analytics and test predictive maintenance to optimize asset performance.

Join PADT’s Senior Analyst & Lead Software Developer Matt Sutton for an in depth look at how digital twins created using ANSYS simulation tools optimize the operation of devices or systems, save money by reducing unplanned downtime and enable engineers to test solutions virtually before doing physical repairs.

This webinar will include an overview of technical capabilities, packaging for licensing, and updates made with the release of ANSYS 2019 R1.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing the Stratasys V650 Flex – Stereolithography Upgraded

The result of over four years of testing, the Stratasys V650 Flex delivers high quality outputs unfailingly, time after time. More than 75,000 hours of collective run time have gone into the V650 Flex; producing more than 150,000 parts in its refinement.

Upgrade to the Stratasys V650 Flex 3D Stereolithography printer and you can add game-changing advances in speed, accuracy and reliability to the established capabilities of Stereolithography. Create smooth-surfaced prototypes, master patterns, large concept models and investment casting patterns more quickly and more precisely than ever.  

In partnership with DSM, Stratasys have configured, pre-qualified and fine-tuned a four-strong range of resins specifically to maximize the productivity, reliability and efficiency of the V650 Flex 3D printer. Create success with thermoplastic elastomers, polyethylene, polypropylene and ABS:

Next-generation stereolithography resins, ideal for investment casting patterns.

Stereolithography accuracy with the look, feel and performance of thermoplastic.

For applications needing strong, stiff, high-heat-resistant composites. Great detail resolution

A clear solution delivering ABS and PBT-like properties for stereolithography.

Thanks to reduced downtime and increased workflow, the Stratasys V650 Flex prints through short power outages, and if you ever need to re-start, you can pick up exactly where you left off. Years of testing have helped deliver not only the stamina to run and run, but also low maintenance needs and high efficiency. To make life even easier, the V650 Flex runs on 110V power, with no need to switch to a 220V power source.

For ease of use, every V650 Flex comes with a user-friendly, touch-enabled interface developed in parallel with SolidView build preparation software. This software contains smart power controls and an Adaptive Power Mode for automated adjustment of laser power, beam size and scan speeds for optimum build performance. 

The V650 Flex also comes equipped with adjustable beam spot sizes from 0.005” to 0.015” that enhance control, detail, smoothness and accuracy. With more precise printing comes better informed decision-making and better chances of success. You have twice the capacity and, to ease workflow further, this production-based machine provides a large VAT for maximum output (build volume 20”W x 20”D x 23”H) and interchangeable VATs.

Through partnering with Stratasys and Stereolithography now comes with an invaluable component: peace of mind. The V650 Flex is backed by the end-to-end and on-demand service and world-class support that is guaranteed with Stratasys. Any field issues get fixed fast, and their 30 years’ experience in 3D printing enable us to help you do more than ever, more efficiently.

Discover how you can work with advanced efficiency thanks to the all new Stratasys V650 Flex.

Contact the industry experts at PADT via the link below for more information:

All Things ANSYS 036 – Updates for Design Engineers in ANSYS 2019 R1 – Discovery Live, AIM, & SpaceClaim

 

Published on: May 6th, 2019
With: Eric Miller, Ted Harris, & Clinton Smith
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and CFD Team Lead Engineer Clinton Smith for a round-table discussion regarding new capabilities for Design Engineers in the latest release of the ANSYS Discovery family of products (Live, AIM, & SpaceClaim). Listen as they express their thoughts on exciting new capabilities, long anticipated technical improvements, and speculate at what has yet to come for this disruptive set of tools.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Discovery AIM & Live in 2019 R1 here: shorturl.at/gyKLM

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Discovery Updates in ANSYS 2019 R1 – Webinar

The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.

Two key tools helping design engineers meet such demands are ANSYS Discovery AIM and ANSYS Discovery Live. ANSYS Discovery AIM seamlessly integrates design and simulation for all engineers, helping them to explore ideas and concepts in greater depth, while Discovery Live operates as an environment providing instantaneous simulation, tightly coupled with direct geometry modeling, to enable interactive design exploration.

Both tools help to accelerate product development and bring innovations to market faster and more affordably.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1. This webinar will include discussions on updates regarding: 

  • Suppression of loads, constraints, & contacts
  • Topology Optimization
  • Improving simulation speed
  • Transferring data from AIM to Discovery Live

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 035 – The History of ANSYS: An Interview with Dr. John Swanson, author of the original program & founder of ANSYS Inc.

 

Published on: April 22nd, 2019
With: Eric Miller, Ted Harris, & Dr. John Swanson
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris for a very special interview for users of ANSYS software, Dr. John Swanson. Dr. Swanson is known as the founder of “Swanson’s Analysis Systems” in 1970; the company that would later be known to the public as ANSYS Inc. He also wrote the original ANSYS program in his home, and since leaving the company has gone on the work in philanthropy and alternative energy.

A John Fritz Medal winner, and member of the National Academy of Engineering, John is considered an authority and pioneer in the application of Finite Element methods to engineering.

We are incredibly thankful that John was able to join us for this interview, and we hope you enjoy learning a little bit about the history of ANSYS from the founder himself.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Analyze, Visualize, and Communicate – What’s New With EnSight In ANSYS 2019 R1 – Webinar

Effective prototyping in today’s day and age requires not only an understanding of your product’s capabilities but also those of the environment it operates in, and how said environment impacts its use.

Engineers are finding that it is no longer possible to ignore the interactions between fluids and the structures that surround them, as they strive to optimize their product’s performance. 

EnSight helps you visualize coupled fluid-structure interaction data to gain the insights you need; providing a highly effective environment regardless of the complexity of the situation and the simulation being run. After exploring your data, EnSight can also be used to create a high quality visual representation to effectively communicate your results, thanks to the ability to place your model in immersive environments, add realistic lighting conditions, and so much more. 

Join PADT’s CFD Team Lead Engineer, Clinton Smith as we explore the capabilities of this tool, and take a look at what’s new in ANSYS 2019 R1, including updates on:

  • Parallel Fluent to Parallel Ensight capabilities
  • Transnational visual symmetry
  • EnVision handling of multi-panel display
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing the Stratasys F120 3D Printer

An industrial 3D printer at a price that brings professional 3D printing to the masses. Introducing the powerfully reliable F120, the newest addition to the Stratasys F123 Series. Stratasys brings their industrial expertise to transform the 3D printing game.

The F120 is everything you have come to expect from Stratasys: Accurate results, user-friendly interface and workflow, and durable 3D printing hardware. Their industrial-grade reliability means there is low maintenance compared to others.

When it comes to touch-time, there is little to no tinkering or adjustment required. The F120 is proven to print for up to 250 hours, uninterrupted with new, large filament boxes, as well as printing 2-3 times faster than competition, making for a fast return on investment.

Worried about lengthy and complicated setup time? Why wait to print – the Stratasys F120 is easy to install and set up, whether you’re new to 3D printing or not. Ease of use comes standard with GrabCAD Print machine control software. Dramatically simplify your workflow and see how the Stratasys F120 sets the standard for ease of use, with no specialized training or dedicated technician required.

The Stratasys F120 outperforms the competition. But don’t just take our word for it. Over 1000 hours were spent independently testing a number of key build attributes, including feature reproduction, part sturdiness and surface quality. The Stratasys F123 Series and its engineering-grade materials came out on top.

When considering purchasing a printer; time-to-part, failed print jobs, downtime, repairs, and schedule delays all should be accounted for.

The Stratasys F120 has all the features and benefits of their larger industrial-grade 3D printers, along with the superior speed, reliability, minimal touch-time, and affordable purchase price, giving you the best cost-per-part performance. Print complex designs with confidence thanks to soluble support, and enjoy unrivaled ease of use and accuracy with every print.

Don’t waste time and resources on tools that aren’t up to the task. Enhance your productivity. Make it right the first time with the F120.

Want to learn more about this exciting new tabletop printer that’s blowing away the competition?

Contact the industry experts at PADT via the link below:

All Things ANSYS 034 – Celebrating 25 Years of ANSYS Simulation: Changes In The Last Quarter Century & Where The Future Will Take Us

 

Published on: April 8th, 2019
With: Eric Miller, Ted Harris, Tom Chadwick, Sina Ghods, & Alex Grishin
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris, Tom Chadwick, Sina Ghods, and Alex Grishin, for a round-table discussion on their experience and history with simulation, including what has changed since they started using it and what they’re most impressed and excited by, followed by some prediction and discussion on what the future may hold for the world of numerical simulation.

Thank you again for those of you who have made the past 25 years something to remember, and to those of you who have come to know PADT more recently, we look forward to what the next 25 will bring.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Stratasys To Release First Pantone Validated 3D Printer & Much More! – New Product Announcement 2019

In an exciting statement this week, Stratasys, world leader and pioneer of all things of 3D Printing technology announced the launch of three new products: F120 3D Printer, V650 Flex Large Scale Stereolithography Printer, and Pantone Color Validation on the J750 and J735 3D Printers.

As a certified platinum Stratasys channel partner, PADT is proud to offer these new releases to manufacturers, designers, and engineers of all disciplines in the four corners area of the United States (Arizona, Colorado, Utah, and New Mexico).

Check out the brochures listed below, and contact PADT at info@padtinc.com for additional information. More on these offerings will be coming soon.

Introducing the Stratasys F120
Affordable Industrial-grade 3D printing

The newest member of the F123 platform brings the value of industrial grade 3D printing capabilities to an accessible price point​.

To get professional 3D printing results, you need professional tools. But most people think they can make do with low-priced desktop printers. They quickly find out, however, that these printers don’t meet their expectations.

It doesn’t have to be a choice between great performance and price. The Stratasys F120 delivers industrial-grade 3D printing at an attractive price with consistent results that desktop printers can’t match.

Introducing the Stratasys V650 Flex
A Configurable, Open VAT, Large Scale Stereolithography Printer by Stratasys

Introducing the Stratasys V650 Flex: a production ready, open material Vat Polymerization 3D Printer with the speed, reliability, quality, and accuracy you would expect from the world leader in 3D printing.

Upgrade to the Stratasys V650 Flex 3D Stereolithography printer and you can add game-changing advances in speed, accuracy and reliability to the established capabilities of Stereolithography.

Create smooth-surfaced prototypes, master patterns, large concept models and investment casting patterns more quickly and more precisely than ever.

Introducing Pantone Color Validation for the J750 and J735 3D printers
3D printing with true color-matching capabilities is here

Say goodbye to painting prototypes and say hello to the Stratasys J750 and J735 3D Printers. As the first-ever 3D printers validated by Pantone, they accurately print nearly 2,000 Pantone colors, so you can get the match you need for brand requests or design preferences.

This partnership with Pantone sets the stage for a revolution in design and prototype processes. As the industry’s first PANTONE Validated™ 3D printers, they allow designers to build realistic prototypes faster than ever before – shrinking design-to-prototype and accelerating product time-to-market.

Simulate Multibody Dynamics More Accurately with ANSYS Motion – Webinar

As mechanical systems continue to get more advanced and interconnected, there is an ever growing need for tools that can accurately analyze the impacts of various forces on the entirety of the system. Mechanical systems often contain complex assemblies of interconnected parts undergoing large overall motion, and thus require engineering simulation for optimal design.

Tools that produce multibody dynamics solutions are better able to account for these components and thus provide more accurate results quicker than running simulations of each component individually. 

One of the latest offerings from ANSYS Inc. is designed to do just that.

ANSYS Motion is a third generation engineering solution based on an advanced multibody dynamics solver. It enables fast and accurate analysis of rigid and flexible bodies and gives accurate evaluation of physical events through the analysis of the mechanical system as a whole. ANSYS Motion uses four tightly integrated solving schemes: rigid body, flexible body, modal and mesh-free EasyFlex. This gives the user unparalleled capabilities to analyze systems and mechanisms in any desired combination.

Join PADT’s Senior Staff Technologist, Jim Peters for a look at how this tool works, along with a deeper dive into its benefits and capabilities, including:

  • Multiple Advanced Toolkits
  • Various Application Areas
  • Accurate Boundary Conditions
  • Easy Interface with Other Software
  • Tightly Integrated Multi-body & Structural Analysis Solvers
  • And Much More

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 033 – Using ANSYS Simulation to Disrupt the World of Capacitor Technology

 

Published on: March 25th, 2019
With: Eric Miller & Sean Katsarelis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Sean Katsarelis form Polycharge for a discussion on how they leverage the ANSYS Startup Program and simulation tools to disrupt the world of capacitor technology.

Listen as they discuss the various capabilities and applications best suited for this market, along with updates on the worlds of PADT and ANSYS.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 032 – What’s New in ANSYS Mechanical: Updates Made in 2019 R1

 

Published on: March 11th, 2019
With: Eric Miller & Ted Harris
Description:  

PADT’s Simulation Support Manager, Ted Harris for a discussion on what updates have been made available in the 2019 R1 version on ANSYS Mechanical. Listen as they discuss the various capabilities and applications for this new release, along with what makes these updates so significant.

Want to learn more about what to expect in ANSYS Mechanical 2019 R1? Check out PADT’s webinar covering everything you need to know about the tool’s latest update.

Watch here: https://bit.ly/2SSntmd

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS