3D Thursday – 4th of July Style

I was in search of something Independence Day/3D printing related to celebrate the 4th of July.  It seems like a lot of people had the same idea.  Thomas Jefferson……yup, he was 3D printed at RedEye on Demand.  President Obama was 3D printed at the first ever White House Maker Faire last month.   So, after sifting through replicas of the Statue of Liberty or American Flags, I came across something really cool.  

3D-printed-Ellis-Island-3D-Model-Don-Foley-via-3D-Printing-IndustryDesigner Don Foley  has created a very detailed model of the Ellis Island Customs House which you can download for free for the next 2 weeks.   

instructions-for-3D-printed-Ellis-Island-Customs-House-by-Don-Foley-via-3D-Printing-Industry
His design is in 4 separate sections that can be taken apart to see the beautiful and intricate detail on each of the floors.  It’s a beautiful design of a very important part of American history.

And just for fun, here is an interesting article about the creation of an exact replica of the Liberty Bell using 3D scanning.

Happy 4th of July!

A look inside the Objet500 Connex3 Multi-material 3D printer

This week our we printed some beautiful multi-colored sponsor awards for the 2014 Arizona SciTech Festival which officially launches in August.  Intern extraordinaire, Diserae Saunders, placed a GoPro inside our Objet500 Connex3 to record the magic.  Enjoy the video and check out the Arizona SciTech Festival for information on this great program that promotes science, technology and innovation in Arizona!

3D Scanning and 3D Printing for Makers

20140623-180851-65331867.jpg

Off to a great start sharing the Capture Scanner and Geomagic Software at TechShop in Chandler. Great group, great questions.

An inside look at our Connex500

We wanted to see what 3d printing looked like from the inside of the machine so our new intern, Diserae Sanders, placed a GoPro inside our Connex500 during a print job.  The item being printed is a demo bicycle pedal printed in multiple materials.  

This video is the first in a series we plan to do on 3D printing. If there is something you would like to see us do a video on, please post it in the comments below.

3D Scanning & Printing for Makers

Attention Makers, Tinkerers & 3D Enthusiasts

 When :   Monday, June 23, 2014 
                   6:00 PM to 7:00 PM

Where: TechShop Chandler
                 249 E. Chicago Street
                 Chandler, AZ 85225

Attend Live – Register Now
Attend Virtually – Register Now


Join us for an evening of 3D Scanning and Printing!!!

We will be discussing some practical ways to utilize 3D scanning and printing specifically for Makers.

techshop_logo_transparent_v8-[Converted]_1

Whether you are new to 3D printing or you need a refresher on how 3D scanning can help with your designs, this workshop is for you. Anyone, novice to seasoned expert, is invited and encouraged to attend and share their knowledge and questions.

 
Two ways to participate:

In Person

If you are in the area, please join us at Tech Shop Chandler by registering HERE.

 Virtually

If you can’t be here in person, you can join us virtually by registering HERE.Robot_Montage_MG_4605_preview_featured
Light refreshments will be served (only to in-person attendees, sorry virtual participants)

Registration is required as space is limited.

If you have any questions, please contact Kathryn Pesta at kathryn.pesta@padtinc.com or 480.813.4884.

Stratasys adds flexible color to their digital material palettes

connex3_shorevaluepress_hand_horiz
Earlier this week, Stratasys announced the addition of 10 new color pallets expanding the digital materials offering to represent hundreds of new options of both flexible color materials and rigid gray materials available for the Objet500 Connex3 Color Multi-material 3D Printer

connex3_flexpalette_cyt_hands_portrait  connex3_flexpalette_myt_hands_portrait  connex3_flexpalette_mct_hands_portrait

The first three pallets are built using TangoPlus combined with combinations of VeroCyan, VeroMagenta and VeroYellow. These new pallets allow for the printing of a range of colors and translucent tints in nine Shore A values (Shore A 27-95).

connex3_flexpalette_cyk_hands_portrait  connex3_flexpalette_mck_hands_portrait  connex3_flexpalette_myk_hands_portrait

Three additional pallets using TangoBlack Plus and combinations of VeroCyan, VeroMagenta and VeroYellow allow for users to blend a wide range of subtle vibrant-to-dark shades into the same part with TangoBlack Plus in seven Shore A values.

connex3_mkw_palette_portrait  connex3_ykw_palette_portrait  connex3_kwt_palette_portrait

The final four palettes that were introduced offer additional combinations of VeroWhite and VeroBlack with either VeroCyan, VeroMagenta or VeroYellow allowing for users to build sophisticated prototypes in a range of subtle grays alongside muted or vibrant color. 

connex3_blue_palette_landscape
The addition of these ten palettes combined with their existing palettes allow for virtually limitless combinations of flexible, rigid and translucent colors in one print job.

“The Objet500 Connex3 is the only 3D printer that combines colors with multi-material 3D printing. The ability to mix rigid, flexible, transparent and opaque colors offers users unprecedented versatility to design and perfect products faster,” says Stratasys Director of Materials & Applications Fred Fischer. “By extending the range of material options available, users can improve workflow speeds and enhance efficiency.”

These new options are available immediately to Objet500 Connex3 Color Multi-material 3D Printer owners through a free software update. 

Check out this great video on the new materials.

3D Printing brings history to life

640px-Vincent_van_Gogh_-_National_Gallery_of_ArtDid you hear that they have 3D printed Vincent van Gogh’s ear? How about the 3D printed spine of King Richard III?  This week alone 3D printing has given us two amazing examples of how this technology can be used to look at history in amazing new ways.

In the case of van Gogh, researchers used real living cells from his great-grandson to bioprint the cells to resemble van Gogh’s severed ear.  The ear is being kept technically alive in a nutrient solution and is said to be able to actually “hear”.  You can read more about this amazing application here.

Richard_III_earliest_surviving_portraitKing Richard III has been famously written as having a hunched back by William Shakespeare.  Anthropologists at the University of Cambridge wanted to determine if the description was accurate or exaggerated. Utilizing CT scans to create a model of the spine they were able to create 3D printed replica of his spine based on the models.  It turns out that while he did have terrible scoliosis, there was no evidence that he had a hunch as described by Shakespeare.  You can read more about this research here.

Just two of many new and innovative ways to integrate 3D printing into just about anything!

3D Printing…….Pancakes

It seems like people are using 3D printing for just about anything these days…….and that is a very good thing.  From art to dentistry and all things in-between, 3D printing has allowed people without engineering expertise or special equipment to be truly innovative in their fields.

main_pancakebot
Just the other day we ran across a really unique and creative use of 3D printing……..The Pancakebot! As the name suggests, it lets you 3D print custom-shaped pancakes.  Fun and delicious!  Pancakebot started as a project that Miguel Valenzuela tinkered with for his young daughters using LEGO Mindstorms. There is a great video on the website that shows Pancakebot in action!model

All fun aside though, this is just one example of how 3D printing and the Maker movement as a whole is innovating how we think about making anything.  The idea of printing pancakes may seem simple and silly, but it just takes small ideas like that to get people excited about what is really possible.  Besides, can you just imagine sitting down to breakfast at Disneyland and having a Pancakebot roll up to your table to custom print any character you can imagine?  Even if Pancakebot doesn’t become a mainstream kitchen staple, it is still an amazing use of the technology, and also one that can engage and inspire kids toward STEM and STEAM education.  If that’s all something like Pancakebot does, then I would consider that a big win.

If you want to make your own, the instructions are here.pbot2

PADT Colorado Presents: Scanning & 3D Printing That Works

When:   June 12, 2014
                4:00 pm to 6:00 pm

Where:  PADT Colorado
                2009 W. Littleton Blvd
                Suite 200
                Littleton, CO 80120

Click Here to Register

In today’s digitally driven environment there is an increasing need to 3D Print parts from CAD data and Scan data. With the right software and hardware combination this can either be a seamless process or a tremendous obstacle.  Geomagic, Solidworks and Stratasys have solved this problem to provide a very efficient solution for your design, scanning and printing requirements.

Capture_Design (1)

 For this event, PADT is teaming up with Alignex and Geomagic to provide a live demonstration of 3D scanning into CAD resulting in a 3D printed part. Our technical staff will be available, along with representatives from our vendors, to not just show you these tools in action, but to answer questions about how to apply these technologies to meet your design, prototyping, manufacturing, and scanning needs. 

solidworkalignex-banner400
These events are a fantastic opportunity to catch up on the latest technical advances in these three critical areas.  We will be covering:

  • Demonstration of the Geomagic Capture 3D Scanner 
  • Solving the most difficult part of part scanning, getting a useful computer model, using Solidworks software
  • How to effectively combine these three technologies with each other, CAD, quality systems, soft tooling, injection molding, and other manufacturing processes.
  • Demonstration of 3D printing on a Stratasys printer
  • Anything that any of our guests want to discuss and share

Stratasys

This informal open house will start at 4:00 PM and will continue till around 6:00 PM.  Snacks and beverages will be available. Anyone, novice to seasoned expert, is invited and encouraged to attend and share their knowledge and questions. 

Registration is required as space is limited.

If you have any questions, please contact Kathryn Pesta at kathryn.pesta@padtinc.com or 480.813.4884.

 

 

Color 3D Printing ANSYS ANSYS Mechanical and Mechanical APDL Results

[updated on 6/18/14 with images of an optimized bracket]

When we announced that Stratasys had released a color 3D Printer, I promised that I would figure out a way to get an ANSYS Mechanical or Mechanical APDL solution printed in 3D as soon as possible. Here it is:
3D-Color-FEA-Plot
Pretty cool.  I posted this picture on our social media and it got more retweets-shares-comments-likes-social media at’a boys than anything we have ever posted.  So there is definitely some interest in this. Now that the initial “WOW!” factor is gone, it is time to talk technical details and share how to get a plot made.

Stratasys Objet500 Connex3

There have been some machine around for some time that can print colors. Unfortunately they used a process that deposited a binding agent (fancy name for glue) into a bed of powder. The glue could be died different colors, allowing you to mix three base colors to get a color part. The problem with that technology is that the parts were faded and very fragile. On top of that the machines were messy and hard to run.  

With the Objet500 Connex3 from Stratasys, we now have a machine that makes robust and usable prototypes, that can be printed in color. The device uses inkjet print heads to deposit a photopolymer (a resin that hardens when you shine ultraviolet light on it) one layer at a time. This machine has four print heads: one for support, one for a base material, and two for colored material.   The base material can be black, white, or clear.  Then you can mix two colors in to get a 46 color pallet on a given run.  Download the brochure here for more details on the device, or shoot us an email.

As an example of how to use this technology, we took the results from a modal analysis on a simple low-pressure turbine blade (from a jet engine) and plotted out the deflection results for the 1st, 3rd, and 7th mode. The 7th mode also includes the exaggerated deflected shape.

Turbine-Blade-Modal-s

[Added 6/18/14]  

We recently combined ANSYS and Stratasys products for an optimization test case for a customer. We used Toplogoical optimization to remove chunks of material from an aerospace mounting bracket.  Then we 3D plotted the results to share with the international team looking at using this process to design parts that are lighter because they are not constrained by traditional manufacturing requirements. Here is what the first pass on the part looked like:
TopoOptMount_7

Getting a Printable File 

Almost every Additive Manufacturing machine, from 3D Printers to Manufacturing Systems, use an STL file as the way to define a part to be made.  The file contains triangular facets (a mesh) on the surface. The problem is that this file does not have a standard for defining colors.  The way that we get around this is you make an STL file for each color you want, sort of an STL assembly. Then when you load the files into the machine, you assign colors to each STL object.  That is great if you are printing an assembly and each solid object in you Model is a different color, but gets a bit dicey for a results contour.

So, we need a way to get an STL file for each color contour in your plot.  Right now non of the ANSYS products output an STL file.  Needless to say we have been talking with development about this and we hope there will be a built in solution at the next release.  In the interim, we have developed two methods.

Method 0: Have PADT Print your Part

Before we go over the two methods, we should mention that we offer almost every RP technology as a service to customers, including the new Objet500 Connex3. We have written a tool that converts ANSYS MAPDL models into STL’s that represent color bands.  It comes in two parts, a macro that you run to get the data, and a program we have that turns the data into STL files.

  So the easiest way to get a Color 3D Plot of your results is to:

  1. Download the macro ans2vtk.mac and run it. Instructions are in the header.
  2. Upload the resulting *.vtk file to PADT. Find instructions here.
  3. Email rp@padtinc.com and let us know the name of the file, that you want a Color 3D Print, and what units your part is and scale factor, if any, to apply to your part.  
  4. We will generate a quote.  
  5. You give us a PO or a credit card
  6. We pre-process the part and show you the resulting contours, making sure it is what you want
  7. We print it, then ship it to you.

This is a screen shot of the model in our internal tool:

3d-printing-ansys-results-valve-vtk

Method 0.5: Use the PADT Script

If you own a Connex3 and are not a service provider, we would be happy to share the internal script that we use with you.  You would follow the same process as above, but would run the script yourself to make the STL files. You will need to install some opensource tools as well. Email me to discuss.

Method 1: RST to CFD-Post to Magics 

This is how we did the first sample models, because it works out of the box and required no coding.  To use it you need to have a licence of  ANSYS CFD-Post and Magics from Materialise.  CFD Post outputs a color facet file in the VRML2 format, and Magics can convert that into a bunch of STL file.

NOTE: For this to work you need Magics and your contours need to be pretty simple. A complex part won’t work  because Magics won’t be able to figure out the STL volumes. 

We start by attaching a CFD Post object to our model:

project-page

Open up CFD Post and make a plot you like. If you don’t know ANSYS CFD Post, here is an article we did a while back on how to use it to post ANSYS Mechanical and Mechanical APDL results. 

Set the number of contours to a smaller number. You can have up to 46 colors, but that means you have to make 46 separate STL files by hand. I picked 7 contours, which gives me 6 colors:

plot_in_cfdpost

Now simply go to File > Save Picture and select VRML as your format. Note, it will bury the plot way down in your project directories, so I like to change the path to save it at the top level of the directory:

save-wrl

The next step is to read the file in to Magics.

WRL File in Magics_Color Code

In Magics, you can select facets by color and write each one out as a separate STL file.

Once you have done that, go in to the Objet Studio Software that came with your printer and assign colors to each STL file. We just kind of eyeball the closest color to the original plot:

FEA Objet studio

You can see here that we actually printed 3 at a time, just made copies and we only had to define colors on the original.  Then Print.

Here is what it looks like in the printer when it finished. We ran some other parts next to the three valves:
printing

You’ll notice it looks all yellow. That is the support material. It is water soluble and we just wash it off when the part is done. 

Method 2: Macro for Element Based Contours

That method kind of was a pain, so we decided it would be a good idea to write a little macro in APDL that does the following:

  1. Specify number of colors and value to plot.  (It uses the current selected nodes/elements.)
  2. Select elements by contour range
  3. Create surface elements on those elements
  4. Convert those surface elements in to an STL file for each contour.

The advantage of this approach is that ANSYS MAPDL directly creates the STL files and all you have to do is read that into Objet Studio and assign colors.  The disadvantage is that it is plotting element faces, so if a contour changes across a face, it doesn’t capture it. The way it works now is that the face color is represents the contour color for the lowest value on that face.  Not ideal, but I only had about 3 hours to write something from scratch and that is as far as I got.

This is what it looks like in Objet Studio:

macro-1-in-studio

Here is the macro: mkcolstl_mac.zip

Just run in in MAPDL or put it in ANSYS Mechanical as a post processing command snippet.

3D-plots-table

PADT in the Press: AZ Republic Article on 3D Printing

Peter Corbett, from the Arizona Republic published a story last week on 3d Printing called: “3D PRINTERS: TURNING SCIENCE FICTION INTO REALITY

Near the end of the article, there is a section called “Tempe Firm a 3-D Leader” where they talk a lot about PADT, what we do here, and the history of 3D Printing.  Always great to get this technology and our company recognized.  

PADT-AZ-Republic-2014_05_10

http://www.azcentral.com/story/money/business/tech/2014/05/10/3d-printing-touching-layer/8956075/

3D Printing a Building – An Important Example of the Real Value of 3D Printing

We have recently been asked to present 3D Printing at a variety of events, many not in our traditional mechanical engineering space, and a common theme is emerging.  Once people see through the hype and really understand what the technology can and can’t do, they want to understand what the real long term value is.

I’ve been mulling it for a while, then a Facebook friend of mine sent me the video below of a company in China that has a working 3D Printer for buildings.  It is basically an FDM machine that uses concrete. It is still early days and much work is still needed. But it shows the one key value of 3D printing to the general public:

3D Printing gives people without special training or equipment the ability to make stuff.

Here is the video:


3dprint examplesIf I want to build a sturdy house, I need to know how to lay brick/frame/hang sheetrock/prefab concrete.   I also need all the various tools required to do that.  If I have a 3D house printer, I just need the raw materials and a model of the house I want. Imagine volunteers showing up in a remote village with a 3D Printer on the back of a flatbed.  Those volunteers don’t need to be trained on how to build a house. Just how to run the printer.  If you have ever volunteered for a Habitat for Humanity or a mission that involves house building, you know what I’m talking about. The two real construction workers on the crew do 90% of the work and the rest of you try not to put a nail through your hand.  

There are other applications. Take a military unit that needs to quickly build a shelter at a forward operating base. Instead of requiring experienced combat engineers, hit print.  Or even in your own backyard. Want a small cabana for Grandma to live in.  Hire a contractor and wait six months through delays and cost overruns, or rent a 3D printer – my guess is the 3D printer will show up on time.

Take this thought and apply it to the traditional use of 3D Printers, prototyping in mechanical product development, and it still applies. I ordered that first SLA model of a fan blade way back in 1990 or so because we needed to make sure the turbine engine fan blade shape we redesigned (using ANSYS, of course) was manufacturerable, had no unexpected bumps (trust, me it happened before), and could be assembled into the existing disk. Instead of going to a machine shop and having an expert machine, broach and grind it, we went straight from the solid model to a printed part. No need for experts or the 5 or 6 pieces of special equipment required to machine and broach that blade.

Just a few examples where 3D printing enables end-users of a physical item to make it without expertise, skills, or special equipment: dental implants, jewelry, art work, fixtures or tooling for a manufacturing process, scaffolds for growing new body parts, and even fancy chocolates.  All of these examples show how 3D printing lets the person who needs an object, create that object themselves. This reduces time and distractions from the true focus of their effort.

This is what is really exciting. Not making a replacement part for your washing machine or “bringing manufacturing back to the US (automation and good old fashioned market forces will do that, not 3D printing) but being able to make whatever you really want.  I will sit here and print out my mechanical parts and assemblies, happily avoiding the need to use a machine shop to build a prototype.  And while I do that, I’ll keep get great joy from scanning the interweb to see what new and truly novel applications people will come up with. 

3D Printing Information for 5th Digital Printing Press Conference, 2014

dppcPADT was pleased to give a talk on 3D Printing at the 5th Digital Printing Press Conference on April 30th, 2014 in Scottsdale.  

Any time I get a chance to attend an industry specific conference like this one, it is a real eye opener.  There is a huge amount of work around the world in making digital printers.  I learned a huge amount that is applicable to other things that PADT does. In addition, the audience was very interested in 3D Printing and asked some very insightful questions, and provided some insight in to how ink jet is growing and evolving in additive manufacturing. 

As promised during the presentation, here are some useful links:

Pictures and Reflections from PADT’s 20th Anniversary Party

PADt-20-Logo-Rect-500wPADT held our 20th anniversary party at our primary offices in Tempe Arizona on April 10th. Despite the record high temperatures, around 400 people stop by to help us celebrate.  There was good food, good entertainment, and most importantly, good people.  

A highlight of the event is that April 10th was proclaimed PADT day in Tempe!  That was an unexpected honor.  

The only problem was not enough time to talk with everyone.  If you could not make it, no worries. We have several events planned throughout the year.

Here are some images that we captured:

Most of these pictures were taken by Aaron Moncur from PipelineDesign.

#padt20

Color 3D Printer Added to PADT’s Rapid Prototyping Product and Services Offering

PADT’s new Objet500 Connex3 is up and running, just in time for our 20th Anniversary party tonight.  The latest machine from Stratasys is the first true 3D Color Printer that allows users to print accurate and durable parts in whatever combination of color they want, including tinted transparent material. The machine is comfortably nestled between our FORTUS 400 and FORTUS 250MC.  

connex3-new-machine-padt
We are especially pleased to have several executives and support people from Stratasys, the manufacturer of this machine, here for our party tonight.  They will be around to answer questions and will be offering a brief presentation on their technology as well.

Yesterday we successfully ran the standard “wrench” demo models:
connex3-wrench-test-modelsAnd overnight we ran some more sample parts along with a printout of a 3D FEA result on a valve model:connex3-sample-fea-results
The parts are still inside the support material, so you can’t see all the colors. Have no fear, we will be blogging about the FEA model very shortly.

PADT has been offering this machine for sale since its introduction in February and we have already sold one and have several other users about to purchase.  The advantages of having a color part without having to paint on are significant.  With our own machine we can now build benchmark parts for potential buyers and we can also offer color printing as part of our Rapid Prototyping services

We will be showing off this machine, along with everything else PADT does, at our party tonight.  But if you can’t make it and would like to learn more, just reach out to our sales team at sales@padtinc.com, our prototyping services team at rp@padtinc.com or just give us a call at 480.813.4884.

UPDATE:

Here is the cleaned valve displacement 3D Plot:
color-valve-deflection-1