Scanning Helps Pediatric Heart Surgeon Make Implant Choices

heart-assist-deviceThe week we had the opportunity to help a surgeon make better decisions for their pediatric heart patient.  Dr Stephen Paphal from the Phoenix Children’s Heart Center had a young patient that needed a ventricular assist device. He could implant a device that they knew would fit in the patient, but they also had an alternative, larger device that performs better. The question they needed to answer was: will the larger device fit in the patient?

This surgeon’s team has previously done work using mechanical engineering technology to help them make better decisions, you may have read about their use of 3D Printing to evaluate different treatment options.  They often work with computer models of patients and devices n collaboration with spinal surgeon Dr. Sandro LaRocca in New Jersey, so they had almost all the tools they needed to help this patient.

For this case, they had a computer model of the smaller assist device, and a computer model of the patient’s heart area that they extracted from a CAT scan. Using those two models and visualization software they were able to insert the device model into the body model to verify that the smaller device would fit.

The issue they faced was that they had no computer model for the larger device.  Creating a model the traditional way would take to long. So they called PADT and asked if we could scan the actual object and give them a computer model that they could use.

Just in Time Scanning

One of PADT’s engineer, Johnathon Wright, took the device to our Geomagic Capture blue light scanner to extract a surface model from the real part.  In this image you can see the device being scanned:

heart-assist-scan-on-tableBecause the device is reflective, we covered it with a white powder to get a better scan. That is all the preparation needed.  The part was placed on a very sophisticated rotational displacement device (a $10 Lazy Susan from WalMart) and the scanner is turned on.  The  little reflective dots you can see on the Lazy Susan are used by the scanning software to determine the position of the objects relative to the scanner.

In this image you can see what the part looks like to the scanner:heart-assist-blue-light-scan-1A rectangular pattern of blue light is projected on to the part being scanned, and the included software measures the distortion in the grid to calculate the shape of the object. As you rotate the object (or the scanner) more data is gathered and an accurate point cloud of the external surface is created.

Here is what the point cloud looks like when the scan is completed:

heart-assist-scan-data

In about an hour, Johnathon was able to go from “can you do this” to a water-tight solid that the Doctor could use with his computer model of the patient to see if this larger, better part fit in the patient’s chest.

Here is what the whole setup looks like:

heart-assist-scan-2

Johnathon used Geomagic’s scanning tools running on a PADT CUBE computer that is specifically optimized for scanning to make the process faster and more accurate. In the past, a task like this would have required an expensive and temperamental laser scanner, a dedicated lab, and probably four to eight hours of engineering time to clean up the resulting scan data. As you can see, the device sits on a desktop and requires very little infrastructure or special equipment.

Disruptive Technology

Any day we can help a physician strive for a better surgical outcome is a good day. Beyond that this is also a great example of how three important aspects of the technology enabled us to deliver useful information quickly, making desktop scanning a disruptive technology.

The first key technology is the blue-light scanning itself.  A form of structure-light 3D scanning, this approach uses a blue light because it contrasts the object better. The breakthrough with this technology is that it does not require expensive lasers or complex optics.  Faster computing allows for the complex algorithms used to be quickly and accurately applied.  The approach does not require any special equipment beyond the scanner itself. This results in an affordable device that is easily deployed and operated.  How easy, the 3D motion capture device on the Microsoft Xbox Kinect is a structure-light 3D scanner – using infrared light instead of blue.

Modern software used to convert the scan data into useful information is the second technology deployed for this solution.  In the past the process of calculating the points on a scanned surface, cleaning up spurious data, and converting it to a form that could be easily used was tedious and difficult.  The Geomagic software suite has a modern, intuitive user interface that sits on top of very sophisticated tools that automate many of the steps that used to take us hours to carry out.

The final key technology that makes desktop scanning so disruptive is one that we take for grated today: standards. We were able to produce an STL file from the scan data and the Doctor’s team was able to read that directly in to their visualization software. It is a simple thing, but without standard file formats, transferring so much data would also involve translators which introduce errors and time.

Engineering Better Outcomes

Here at PADT we truly enjoy applying technology developed in the Aerospace or electronics space to other industries, especially medical applications.  This is another great example of how useful engineering tools can be, improving someones life directly.

PADT Presents 3DPAZ Contest and FIRST Robotics Grant

3DPAZ
PADT has always been a proud supporter of STEM education in our community.  This summer we have been busy planning some new activities to help support local schools.  Today we are busy attending the Innovation Arizona Summit which is a joint collaborative of the Arizona SciTech Festival, the MIT Enterprise Forum Phoenix and the Arizona Commerce Authority.

 As part of our attendance, we will be promoting our first ever 3D printing contest, 3DPAZ  which will challenge high school students in Arizona with the task of creating or improving an existing engineering product.  We are very excited to be launching this contest and cannot wait to see what students come up with. Please visit our website for more information on how to take part in this contest by clicking here.

We are also very excited to be extending our support to the FIRST Robotics Competition by way of a new grant program for Arizona schools or organizations that are competing in the in the 2014/2015 FRC season.  If you are interested in either the 3DPAZ contest or the FRC Grant program, please email Kathryn Pesta at kathryn.pesta@padtinc.com.

3D Printed Quill Pen for GISHWHES 2014 Scavenger Hunt

quill-pen-2Sometimes you get strange messages on Facebook.  This weekend I heard a beep and checked my phone “Can you 3D Print a Quill Pen?”  Most messages involve asking me why I posted something stupid or annoying, so this one caught my attention.  Turns out my friend Chelsea is taking part in the 2014 “GREATEST INTERNATIONAL SCAVENGER HUNT THE WORLD HAS EVER SEEN” or GISHWHES.  One of the items in the scavenger hunt is to print out an ink quill pen on a 3D Printer and write “We need to buy more Toner” on a sheet of paper with the pen.  

I can’t resist a challenge like that, so I told her no problem.  And it worked like a charm. 

The process we used was very straightforward:

First I went into a CAD program, SolidEdge in this case, and build a solid model of a quill pen.  Not being quill pen designer I found some web sites on how to cut a pen tip from a real feather, and tried to mimic the resulting geometry:

Quill-Cad-Model Pen-Tip-Quill-Pen
We then wrote an STL file out and sent that to our RP team.  They read that into our preparation software and separated the feathers from the stem, designating a rubber like material for the feather area for artistic purposes, and a hard white plastic for the stem and the tip.

That file was then sent to our Stratasys Objet500 Connex3 and printed in about 30 minutes.  

This video shows the printing process:

Once it was done, we just needed to wash out the support material and it was ready to go.

The moment of truth was then here.  Our intreped Scavenger Hunter took out her handy-dandy pot of India Ink and dipped the quill in, the she wrote out the requested message:
quill-pen-2

I worked like a charm, our handwriting was the biggest issue.

Wanting to see if it enhanced my artistic skills, I used it to sketch the following masterpiece:
quill-pen-face

This is why I use CAD systems.

Here is an image of the final part. The tip is stained black from the ink.
quill-pen-4

All and all a fun project, and I guess the team gets 80 points for doing this task, so we were glad to help.

You can learn more about 3D Printing by visiting here. Our contact us for more information on 3D Printing, Simulation, or Rapid Prototyping.

Talking About 3D Printing on Talk Radio

radio-microphone-on-the-airWith the increase of interest in 3D Printing from the general public, PADT has been asked to speak about the technology over several different forms of media. The local Phoenix TV stations were kind enough to come in and learn about the technology, including a great interview on the local PBS station.  We have been asked to give presentations to schools, inventor groups, and even a conference on traditional digital printing. Last week we crossed over into a new area for us, talk radio.

Don’t worry, this was not political talk radio… we are still waiting for Rush Limbaugh’s call.  A local financial station, Money Radio, wanted to talk about 3D Printing. Renee Palacios and your truly were interviewed by John Barnabas, host  for “Happiness, Opportunity and Technology.”

You can listen to the full broadcast here:

You can always learn more about 3D Printing on our Rapid Prototyping Page  or contact us.

If you need someone to talk about 3D Printing to your organization or if you are in the media and need recognized experts who can explain the technology, contact us and we would be happy to work with you.

Throwback Thursday: 3D Printing on “Good Morning America” in 1989

3dprinting-1989

Note: This post is not displaying correctly, here is a link to the video:
http://youtu.be/NpRDuJ5YgoQ

Take a look at this science segment that Jeff Strain found on Stereolithography from 1989.  If you ignore the hair styles (Joan Lunden rocked that helmet hair) the report isn’t that much different from news coverage that 3D Printing is getting today. But the technology has sure progressed.

To add some additional perspective, according to the 2014 Wohlers Report, 104 systems were sold in 1989. 94 SLA machines from 3D Systems and 10 systems from now defunct Japanese SLA providers. 

The same report estimates that for 2013 9,823 commercial systems were sold by over 33 different suppliers.  This does not include the personal printer (low cost desktop) systems, which was estimated at over 72,000 units!.  That is 9,345% growth over 24 years for commercial systems.. 66,702 systems have been tracked as old.  

Take a look at the video. It is truly fascinating how the message still resonates and how predictions for replacing traditional manufacturing were maybe a bit optimistic.  But even in the early days, this report captured the promise of the technology. 

It has been an incredible ride, and it is not over yet.

A 3D Mouse Testimonial

The following is from an email that I received from Johnathon Wright.  I think he likes his brand new 3DConnexion Space Pilot Pro.
-David Mastel
  IT Manager
  PADT, Inc.

——————-

top-panel-deviceRecently PADT became a certified reseller for 3Dconnexion. Shortly following the agreement a sleek and elegant SpacePilot PRO landed on my desk. Immediately the ergonomic design, LCD display, and blue LED under the space ball appealed to the techie inside of me. As a new 3D mouse user I was a little skeptical about the effectiveness of this little machine, yet it quickly has gained my trust as an invaluable tool to any Designer or Engineer. On a daily basis it allows me to seamlessly transition from CAD to 3D printing software and then to Geomagic Scanning software, allowing dynamic control of my models, screen views, hotkeys and shortcuts.

Outside of its consistency as an exceptional 3D modeling aid, the SpacePilot PRO also has a configurable home screen that allows quick navigation of email, calendar or tasks. This ensures that I can keep in touch with my team without having to ever leave my engineering programs, which is invaluable to my production on a daily basis. Whether you are a first time user who is looking to tryout a 3D Mouse for the first time or an experienced 3D mouse user who is looking to upgrade, you need to check out the SpacePilot Pro. I can’t imagine returning to producing CAD models or manipulating scan data without one. Combine the SpacePilot PRO cross-compatibility with its programmability and ease of use and you have a quality computer tool that applies to a wide range of users who are looking at new ways to increase productivity.

Link to You Tube video – watch it do its thing along with a look at my 3D scanning workstation, the GEOCUBE: http://youtu.be/fsfkLPaZJe4

Johnathon Wright
Applications Engineer,
Hardware Solutions
PADT, Inc.

———————————————————————————————-
Editors Note:

Not familiar with what a 3D Mouse is?  It is a device that lets a use control 3D objects on their computer in an intuitive manner. Just as you move a 2D mouse on the plane of your desk, you spin a 3D Mouse in all three dimensions.  Learn more here

spacepilot-pro-cad-professional-2-209-p

Additive Manufacturing Motor Trends

Additive manufacturing (AM) has been used in the motor sports world for years.  Now more than ever, race teams have found that additive manufactured parts have the quality and durability to meet their demands. From NASCAR to the World Rally Championship, race teams around the world are excited about the possibilities that AM brings to the table. For an interesting webinar on-demand and a great whitepaper, click the image below. 68905-Motor-Trends-Webinar_960x350

3D Printing and PADT hit the Airwaves

money_radioLocal station Money Radio – 1510AM  99.3FM – is broadcasting a show on 3D Printing from PADT.  Technology, Opportunity and Happiness, hosted by John Barnabas, will be broadcasting live from PADT on July 29th from 12 noon till 1:00 pm.  The show includes a studio audience and will focus on how 3D printing is impacting business and the markets.  

There is room in the audience for about 30 people, so register now to reserve your seat.  We will cover the basics of the technology, but the real discussion will be about how this technology has and is transforming the way people innovate, and the way companies manufacture products. Lunch will be served and we will keep the discussion going and giving tours after the broadcast for anyone that wants to learn more.

If you can’t attend, you can listen live in Arizona on 1510 AM or 99.3 FM.  And you can always listen from anywhere over the web hereStratasy-Mojo-3D-Printer-in-Shopping-Cart_thumb.jpg

3D Color Printing the 2014 Arizona SciTech Festival Awards

photo 2The best way to promote and celebrate science and technology is with science and technology.  And this year PADT was able to do just that by using 3D Color Printing to make the recognition awards for the 2014 sponsors of the Arizona SciTech Festival.

The Arizona SciTech Festival is a new but growing player in the Arizona STEM landscape.  After three short years it has become the preferred way for science and technology companies and educators to engage with the public.  This year’s festival, held in February and March, was a huge success.  And none of it would be possible without the support of sponsors. PADT was honored to once again the awards that are given to these sponsors in recognition of their contributions. 

In the past we mixed traditional manufacturing and 3D Printing to make the awards. But this year we were able to use our new Stratasys Objet500 Connex3 to make the bulk of this years awards, and our Stratasys FORTUS 400 to make the stands.  The resulting awards are better than we had hoped for. 

The Process

The way the color printer works is you have to create a separate STL file for each color you want to print. So I needed to take a 2D vector art file and convert it into a collection of 3D STL files that represent the part I want printed.

I started by taking an Adobe Illustrator file of the AZ SciTech Festival logo, cleaning it up, and exporting it as a *.DWG file.
azstf-award-illustrator
I then imported it into my CAD tool. I happen to use SolidEdge, but the process should work with any modern CAD tool. I had to clean up the lines a lot.  In a graphic art image you can have small gaps, little line segments, and even polygons that self intersect. But in CAD you have to clean that all up. Plus some features were just too small to see in the 3D Printed object, so I simplified those. This was the most difficult part of the process.
azstf-award-solidedge-sketch

Once everything is clean you simply go through and extrude each polygon that you want printed, using the cleaned up sketch as your geometry.  Here is the first solid, and the simplest, the tail:
azstf-award-solidedge-extrude1

Once all the polygons are extruded, I assigned colors so I could visualize what the final part would look like. I also put a round on all the top edges, knowing from experience that even putting a small round on a part like this will increase the final parts attractiveness.
azstf-award-solidedge-extruded

The base needed to be a separate solid, because I needed it to be a different color. So I just made a new part for that and made an assembly. This keeps all of the solids separate. The letters were made just like the lizard logo, I went in to Adobe Illustrator and created the text outline, following the circle that defines the award. I exported that as DWG, imported it into SolidEdge, then extruded each letter.  
azstf-award-solidedge-medalian

The next step was to export the assembly as an STL file.  This file contained all the solids.  This was read in to the software that comes with the Objet500 Connex3. The operator then had to click on each object and assign a color from the chosen pallet.  It turns out that the official ScitTech Festival colors match one of the pallets closely, so we were able to get all the colors in the print. 

Once this was done, we simply printed 28 at a 3″ diameter, and 9 at 2″. Here is a video showing the printing process.

The resolution and brightness of the colors was very nice. Here are some images. Color parts just look better.
p7

For the base, I just came up with something that was thin and easy to build in using FDM because I wanted a strong part that was inexpensive that would also take a decal with the recipients name on the front, and information about the award on the back.  
azstf-award-solidedge-base

Here is a stack of the printed bases.
photo 1

And the final awards, ready to go to all those sponsors.
p12

Why Does it Matter

This effort is great example of the power of 3D Printing to a create a smaller number of custom objects. Standard awards form an awards shop are cheaper, but they are generic.  Using traditional methods to make custom awards is expensive and often labor intensive.  By making the whole award using a 3D Printer we were able to reduce the cost and the time for these unique objects, and were able to use advanced technology to highlight the sponsorship of an event that celebrates just that.  Kind of cool.

It is also a great example of the long term power of 3D Printing.  As was covered in a recent blog post, the real power of this technology is that it lets people without manufacturing or craftsman skills to create real objects, without a collection of equipment they don’t need or don’t know how to use. The applications of this power are endless. 

If you want to learn more about how you can do your own 3D Printing or how PADT can provide it to you as a service, contact us today.

3D Thursday – 4th of July Style

I was in search of something Independence Day/3D printing related to celebrate the 4th of July.  It seems like a lot of people had the same idea.  Thomas Jefferson……yup, he was 3D printed at RedEye on Demand.  President Obama was 3D printed at the first ever White House Maker Faire last month.   So, after sifting through replicas of the Statue of Liberty or American Flags, I came across something really cool.  

3D-printed-Ellis-Island-3D-Model-Don-Foley-via-3D-Printing-IndustryDesigner Don Foley  has created a very detailed model of the Ellis Island Customs House which you can download for free for the next 2 weeks.   

instructions-for-3D-printed-Ellis-Island-Customs-House-by-Don-Foley-via-3D-Printing-Industry
His design is in 4 separate sections that can be taken apart to see the beautiful and intricate detail on each of the floors.  It’s a beautiful design of a very important part of American history.

And just for fun, here is an interesting article about the creation of an exact replica of the Liberty Bell using 3D scanning.

Happy 4th of July!

A look inside the Objet500 Connex3 Multi-material 3D printer

This week our we printed some beautiful multi-colored sponsor awards for the 2014 Arizona SciTech Festival which officially launches in August.  Intern extraordinaire, Diserae Saunders, placed a GoPro inside our Objet500 Connex3 to record the magic.  Enjoy the video and check out the Arizona SciTech Festival for information on this great program that promotes science, technology and innovation in Arizona!

3D Scanning and 3D Printing for Makers

20140623-180851-65331867.jpg

Off to a great start sharing the Capture Scanner and Geomagic Software at TechShop in Chandler. Great group, great questions.

An inside look at our Connex500

We wanted to see what 3d printing looked like from the inside of the machine so our new intern, Diserae Sanders, placed a GoPro inside our Connex500 during a print job.  The item being printed is a demo bicycle pedal printed in multiple materials.  

This video is the first in a series we plan to do on 3D printing. If there is something you would like to see us do a video on, please post it in the comments below.

3D Scanning & Printing for Makers

Attention Makers, Tinkerers & 3D Enthusiasts

 When :   Monday, June 23, 2014 
                   6:00 PM to 7:00 PM

Where: TechShop Chandler
                 249 E. Chicago Street
                 Chandler, AZ 85225

Attend Live – Register Now
Attend Virtually – Register Now


Join us for an evening of 3D Scanning and Printing!!!

We will be discussing some practical ways to utilize 3D scanning and printing specifically for Makers.

techshop_logo_transparent_v8-[Converted]_1

Whether you are new to 3D printing or you need a refresher on how 3D scanning can help with your designs, this workshop is for you. Anyone, novice to seasoned expert, is invited and encouraged to attend and share their knowledge and questions.

 
Two ways to participate:

In Person

If you are in the area, please join us at Tech Shop Chandler by registering HERE.

 Virtually

If you can’t be here in person, you can join us virtually by registering HERE.Robot_Montage_MG_4605_preview_featured
Light refreshments will be served (only to in-person attendees, sorry virtual participants)

Registration is required as space is limited.

If you have any questions, please contact Kathryn Pesta at kathryn.pesta@padtinc.com or 480.813.4884.

Stratasys adds flexible color to their digital material palettes

connex3_shorevaluepress_hand_horiz
Earlier this week, Stratasys announced the addition of 10 new color pallets expanding the digital materials offering to represent hundreds of new options of both flexible color materials and rigid gray materials available for the Objet500 Connex3 Color Multi-material 3D Printer

connex3_flexpalette_cyt_hands_portrait  connex3_flexpalette_myt_hands_portrait  connex3_flexpalette_mct_hands_portrait

The first three pallets are built using TangoPlus combined with combinations of VeroCyan, VeroMagenta and VeroYellow. These new pallets allow for the printing of a range of colors and translucent tints in nine Shore A values (Shore A 27-95).

connex3_flexpalette_cyk_hands_portrait  connex3_flexpalette_mck_hands_portrait  connex3_flexpalette_myk_hands_portrait

Three additional pallets using TangoBlack Plus and combinations of VeroCyan, VeroMagenta and VeroYellow allow for users to blend a wide range of subtle vibrant-to-dark shades into the same part with TangoBlack Plus in seven Shore A values.

connex3_mkw_palette_portrait  connex3_ykw_palette_portrait  connex3_kwt_palette_portrait

The final four palettes that were introduced offer additional combinations of VeroWhite and VeroBlack with either VeroCyan, VeroMagenta or VeroYellow allowing for users to build sophisticated prototypes in a range of subtle grays alongside muted or vibrant color. 

connex3_blue_palette_landscape
The addition of these ten palettes combined with their existing palettes allow for virtually limitless combinations of flexible, rigid and translucent colors in one print job.

“The Objet500 Connex3 is the only 3D printer that combines colors with multi-material 3D printing. The ability to mix rigid, flexible, transparent and opaque colors offers users unprecedented versatility to design and perfect products faster,” says Stratasys Director of Materials & Applications Fred Fischer. “By extending the range of material options available, users can improve workflow speeds and enhance efficiency.”

These new options are available immediately to Objet500 Connex3 Color Multi-material 3D Printer owners through a free software update. 

Check out this great video on the new materials.