Introducing Design Days: Free engineering consultation for Startups

PADT_StartUpLabs-1PADT and CEI are teaming up to answer any startup’s questions about engineering and manufacturing for their physical product. Over the years we have found lots of early stage companies who benefited from spending a little bit of time with an experienced product development engineer. Finding time for them to stop by PADT was always difficult to schedule and never seemed worked out. Or we would meet people at events and try and talk in a corner, still not good.cei_logo

So last month during Phoenix StartupWeek CEI and PADT tried having some time where people could stop by and talk. It went really well for everyone involved, so Design Days was born.

Our first one will be held on April 14, 2016 at CEI’s offices in Phoenix.  The idea is simple, you get one hour with an experienced mechanical engineer to talk about whatever you want. We can spend the time talking about:

  • Suggestions for how to properly design your product
  • Get contacts at local resources that can help you
  • Brainstorm solutions to technical problems
  • Discuss the weather (it’s your hour)
  • Get an idea of what it would take to design and prototype your product
  • Answer questions about software and hardware tools you may need
  • Bounce ideas off someone new
  • Review manufacturing options
  • Get advice on the next steps you should be taking
  • Or whatever else you want to discuss

You don’t have to be an existing CEI client, a new company or an old one. You just need to want to talk to our engineers.

 

Sign up for one of the available one hour slots here.   Our plan is to do this once a month, and if it works, try some other incubators as well.

Here is some basic information you should be aware of:

  • Do not ask for Non-Disclosure Agreement (NDA). PADT engineers operate under a strict company code of ethics; therefore no additional NDA is required.
  • This is meant for companies developing physical products, not software.
  • It is open to companies at ANY stage of development, not just startups. Entrepreneurs of any age, including students, are also welcome.
  • This is not a discussion about funding nor is it a sales pitch (from either side)
  • Do not expect a functioning prototype or design nor will PADT engineers solve your technical problems. To fully engage in PADT’s design, prototyping and simulation services, there will be a cost involved to be agreed upon by both parties.

    padt-cei-design-days
    Our impromptu trial “Design Days” session during Phoenix StartupWeek.

Phoenix Business Journal: 5 reasons why nerds celebrate Pi Day

pbj-phoenix-business-journal-logo

Have you heard? It’s Pi Day! This post, “5 reasons why nerds celebrate Pi Day” shares the reasons why those of us in the know like Pi day so much.
pie-pi

Kids, Pizza, Engineering – A Fantastic SciTech Festival Open House at PADT

ScitechFestivalLogoWe thought we would open PADT’s doors to families and maybe a few people would stop by. Over 250 people did just that.  What a great evening of smiling kids and adults enjoying the excitement of engineering.  Exciting engineering? Yes, we know enough to not talk about quality system protocols, matrix inversions, and non-linear turbulence model convergence. We stuck to 3D Printing, elephants on skateboards, and 3D scanners. And we fed everyone pizza.

FullSizeRenderIt was a great evening where everyone learned something.  The focus was on exposing what engineers do, what PADT does, to people who may not be technical. Mostly kids but we also saw it as a way for engineers to show their family members and friends what engineering is about.  The results far exceeded our expectation, mostly because of how great everyone who showed up was.

Some of the quotes from people who have emailed to thank us are:

“Thank you for opening up your office to me.  What a cool place!  Even though I have been familiar with and worked with 3D printing for 20+ years, it is always nice to see the new technology, products, and the output of the products. “

“… to see my son and all of the other kids so excited and amazed was truly awesome. Mason told me it was the best night of his life! And this morning his first words to me where thanking me for taking him to the event and when can we go back.”

“This is such a great opportunity for me to show my grandkids what I spent my life doing, and seeing them get so excited about it is wonderful”  

The best part of the event for most of us here at PADT were the fantastic questions.  As one of our engineers said “for 2 hours I was just lost in the joy of positive human interaction.”  We do love what we do here, but it was nice to share it with other people.

Below are some pictures from the evening.  Make sure you sign up for PADT’s email list to get invites to future events.

IMG_9051
We were pleased to be named a AZ SciTech Festival Signature Event

 

At several points in the evening, the line was headed out the door.
At several points in the evening, the line was headed out the door.

 

The Demo room was full of 3D Printers and the kids loved handling the parts.
The Demo room was full of 3D Printers and the kids loved handling the parts.
IMG_6080
Our office robot was a huge hit.
IMG_9042
The seminar room was turned into a hands-on lab for everyone to touch and feel the engineering tools we use.
IMG_5977
Some of the youngest attendees were able to give ANSYS AIM a literal spin and model the effect of a kid, a dad, and an elephant standing on a skateboard.
IMG_9045
Some people just took to a given tool, even advanced simulation.
Students with exposure to engineering were able to ask our experts in-depth questions about technologies.
IMG_6064
The haptic device was a huge hit. It give real feedback as you edit and probe an object on the computer. Needless to say, kids adapted to it far faster than the adults.
IMG_6109
Engineering students were able to dive deep into the mechanics behind 3D Printing as well as its real world applications in industry.
IMG_9039
This is Ovid. He is PADT’s new mascot. We hope to use him more in the future to help explain what we do here.
IMG_9037
This station shows how 3D Printing works, by stacking layers of material. Ovid doesn’t look as good in low resolution.
IMG_6150
Scanning was a great way for everyone to see how we inspect and reverse engineer objects.

Can I parameterize ANSYS Mechanical material assignments?

So we have known for a long time that we can parameterize material properties in the Engineering Data screen. That works great if we want to adjust the modulus of a material to account for material irregularities. But what if you want to change the entire material of a part from steel to aluminum? Or if you have 5 different types of aluminum to choose, on several different parts, and you want to run a Design Study to see what combination of materials is the best? Well, then you do this. The process includes some extra bodies, some Named Selections, and a single command snippet.
The first thing to do is to add a small body to your model for each different material that you want to swap in and out, and assign your needed material to them. You’ll have to add the materials to your Engineering Data prior to this. For my example I added three cubes and just put Frictionless supports on three sides of each cube. This assures that they are constrained but not going to cause any stresses from thermal loads if you forget and import a thermal profile for “All Bodies”.

ansys-material-parameters-01

Next, you make a Named Selection for each cube, named Holder1, Holder2, etc. This allows us to later grab the correct material based on the number of the Holder.

ansys-material-parameters-02

You also make a Named selection for each group of bodies for which you want to swap the materials. Name these selections as MatSwap1, MatSwap2, etc.

ansys-material-parameters-03

The command snippet goes in the Environment Branch. (ex. Static Structural, Steady-State Thermal, etc.)

ansys-material-parameters-04

!###############################################################################################################################
! MATSWAP.MAC
! Created by Joe Woodward at PADT,Inc.
! Created on 2/12/2016
!
! Usage: Create Named Selections, Holder1, Holder2, etc.,for BODIES using the materials that you want to use.
! Create Named Selections called MatSwap1, MatSwap2, etc. for the groups of BODIES for which you want to swap materials.
! Set ARG1 equal to the Holder number that has the material to give to MatSwap1.
! Set ARG2 equal to the Holder number that has the material to give to MatSwap2.
! And so on....
! A value of 0 will not swap materials for that given group.
!
! Use as is. No Modification to this command snippet is necessary.
!###############################################################################################################################
/prep7
*CREATE,MATSWAP,MAC
*if,arg1,NE,0,then
 *get,isthere,COMP,holder%arg1%,TYPE
 *get,swapgood,COMP,matswap%ARG2%,TYPE
 *if,isthere,eq,2,then
 esel,s,,,holder%arg1%
 *get,newmat,elem,ELNEXT(0),ATTR,MAT
 !swap material for Body 1
 *if,swapgood,eq,2,then
 esel,s,,,matswap%ARG2%
 emodif,all,mat,newmat
 *else
 /COM,The Named Selection - MatSwap%ARG2% is not set to one or more bodies
 *endif
 *else
 /COM,The Named Selection Holder%ARG1% is not set to one or more bodies
*endif
*endif
*END
MATSWAP,ARG1,1 !Use material from Holder1 for Swap1
MATSWAP,ARG2,2 !Use material from Holder1 for Swap2
MATSWAP,ARG3,3 !Use material from Holder1 for Swap3
MATSWAP,ARG4,4 !Use material from Holder1 for Swap4
MATSWAP,ARG5,5 !Use material from Holder1 for Swap5
MATSWAP,ARG6,6 !Use material from Holder1 for Swap6
MATSWAP,ARG7,7 !Use material from Holder1 for Swap7
MATSWAP,ARG8,8 !Use material from Holder1 for Swap8
MATSWAP,ARG9,9 !Use material from Holder1 for Swap9

alls
/solu

Now, each of the Arguments in the Command Snippet Details corresponds to the ‘MatSwap’ Name Selection of the same number. ARG1 controls the material assignment for all the bodies in the MatSwap1 name selection. The value of the argument is the number of the ‘Holder’ body with the material that you want to use. A value of zero leaves the material assignment alone and does not change the original material assignment for the bodies of that particular ‘MatSwap’ Named Selection. There is no limit on the number of ‘Holder’ bodies and materials that you can use, but there is a limit of nine ‘MatSwap’ groups that you can modify, because there are only nine ARG variables that you can parameterize in the Command Snippet details.

ansys-material-parameters-05

You can see how the deflection changes for the different material combinations. These three steps, holder bodies, Named Selections, and the command snippet above, will give you design study options that were not available before. Hopefully I’ll have an even simpler way in the future. Stay tuned.

Phoenix Business Journal: When was the last time you thanked an engineer?

pbj-phoenix-business-journal-logoHave you ever thanked an engineer?  In this week’s TechFlash post I explore how we live in a world that has been transformed for the better (mostly) by engineers.  We are simple creatures who avoid the spotlight… but a thanks you would be nice. When was the last time you thanked an engineer?

Bring the kids for an evening of STEM fun at PADT’s AZ SciTech Festival Open House

Scitech Logo

PADT is excited to open our doors to the community and show you and your families what engineering is all about.  Bring the family down for a tour of PADT’s Tempe office and we will show them why engineering rocks. This family friendly event is a great way for kids to see what engineers really do all day.  Tour our 3D printing lab and check out how “We Make Innovation Work”.          Register Here

WHEN: Wednesday, February 24th from 6:00pm to 7:30pm
WHERE: PADT Headquarters
  7755 S. Research Drive, Suite 110
  Tempe, AZ 85284

The Arizona SciTech Festival is a state-wide celebration of science, technology, engineering and math held annually in February and March.  Through a series of over 1,000 expos, workshops, conversations, exhibitions and tours held in diverse neighborhoods throughout the state, the Arizona SciTech Festival excites and informs Arizonans from ages 3 to 103 about how STEM will drive our state for next 100 years. Spearheaded by the Arizona Commerce Authority, Arizona Science Center, the Arizona Technology Council Foundation, Arizona Board of Regents, the University of Arizona and Arizona State University, the Arizona SciTech Festival is a grass roots collaboration of over 700 organizations in industry, academia, arts, civic, community and K-12.

Phoenix Business Journal: Build and bust is so 20th century: How to develop better products with simulation

pbj-phoenix-business-journal-logoFor this week’s contribution to the PBJ’s TechFlash blog I cover something that is near and dear to PADT – the replacement of testing with simulation, or virtual prototyping.  Learn why “Build and Bust is so 20th Century

And the Best Conference Award Goes To …..

AADM Expo

At PADT, we’re as big of a fan as anyone of the cool, trendy software and IT companies that run up billion dollar valuations in Silicon Valley and keep us all entertained and productive with their latest apps and platforms.

But as an engineering product and services company, we’re hardware geeks at heart and one of our favorite conferences is coming up quick. It’s the Aerospace, Aviation, Defense and Manufacturing (AADM) Conference hosted by the Arizona Technology Council and Arizona Commerce Authority on March 3 at the Hilton Scottsdale Resort.

Arizona has a rich history in this sector. TechAmerica’s 2014 Cyberstates Report ranks Arizona fourth nationwide for jobs in the space and defense systems manufacturing industry, employing more than 8,300 people.  Industry giants such as Raytheon, Honeywell, Boeing, Lockheed Martin and General Dynamics all have a big presence here. Luke Air Force Base, Fort Huachuca and the Yuma Proving Ground all provide ideal places for testing and flying in our cloudless skies and more than 300 days of sunshine.

When you look at manufacturing, you’ll find thousands of varied companies located here that are propelling Arizona’s economy into the next era of growth. Industries leaders such as Intel, Microchip, and Frito Lay all have significant Arizona operations.

Now in its fifth year, this conference has become the gathering place for Arizona’s AADM industry. You’ll not only have a chance to hear what the big companies are up to, you’ll meet potential suppliers and customers during the interesting presentations and well-attended cocktail reception. And for as little as $750 you can get a booth space and two conference tickets – that’s a deal you won’t find in New York City! The traffic at our booth always keeps us hopping and give us the opportunity to capture great leads.

If you haven’t checked it out yet, get on it, check out the sponsorships and  register now. And don’t forget to stop by the PADT booth. We’ll show you how we make innovation work!

ANSYS, Inc. Launches New Magazine, Dimensions

ansys_dimensions-1There are so many aspects to numerical simulation worth talking about these days, and a lot of resources to get that information.  Applications, theory, how-to, and where it fits into the business of making stuff. Here on The Focus we tend to concentrate on practical hot-to things, and the ANSYS Advantage magazine has focused on the application stories along with some how-to. What has been missing a a resource for how simulation impacts business, and how users of simulation are making other improvements in their business.

ansys_dimensions-3Enter “Dimensions.”  This new e-publication is from the same team that does the ANSYS Blog and  ANSYS Advantage, but it has a decided business slant – WAIT!!!.  I know, your an engineer, the world “business” scares you.  Don’t worry, this is value added info, not a bunch of fluff.

Take a look at the first issue here.  I’ll be honest, I kind of ansys_dimensions-5opened up expecting to page through going “whatever,” “right, no one does that,” and “who cares.”  But I found myself skimming all of the articles with interest, and reading a couple completely.  There is some good stuff in here.  LIke an interview with Airbus engineers on about the challenge they face in designing their products. Or who Whirlpool uses social networking to facilitate communication between their users around the world. There is some simulation stuff in there, like how Siemens Power leverages simulation to make better power generation products.  And a lot more.

Take a look, it won’t hurt, I promise.  If you want something more technical, forward the link to your boss at least.

ansys_dimensions-4 ansys_dimensions-2

Phoenix Business Journal: Why Now is the Time for Arizona to Take the Next Step with Tech Startups

pbj-phoenix-business-journal-logoPADT’s December contribution to the TechFlash column in the Phoenix Business Journal is a call to action for Arizona to step up their startup game. “Why Now is the Time for Arizona to Take the Next Step with Tech Startups” suggests the following actions:

  1. Work Together
  2. Make University IP Licensing Work
  3. Give Back by Taking More Risk
  4. Get Involved in Moving Startups Forward
  5. Stop Whining and Get to Work

 

Activating Hyperdrive in ANSYS Simulations

punch-it-chewie-ansysWith PADT and the rest of the world getting ready to pile into dark rooms to watch a saga that we’ve been waiting for 10 years to see, I figured I’d take this opportunity to address a common, yet simple, question that we get:

“How do I turn on HPC to use multiple cores when running an analysis?”

For those that don’t know, ANSYS spends a significant amount of resources into making the various solvers it has utilize multiple CPU processors more efficiently than before.  By default, depending on the solver, you are able to use between 1-2 cores without needing HPC licenses.

With the utilization of HPC licenses, users can unlock hyperdrive in ANSYS.  If you are equipped with HPC licenses it’s just a matter of where to look for each of the ANSYS products to activate it.

ANSYS Mechanical

Whether or not you are performing a structural, thermal or explicit simulation the process to activate multiple cores is identical.

  1. Go to Tools > Solve Process Settings
  2. The Solve Process Settings Window will pop up
  3. Click on Advanced to open up the Advanced Settings window
  4. You will see an option for Max number of utilized cores
  5. Simply change the value to your desired core count
  6. You will see below an option to allow for GPU acceleration (if your computer is equipped with the appropriate hardware)
  7. Select the GPU type from the dropdown and choose how many GPUs you want to utilize
  8. Click Ok and close
hyperdrive-ansys-f01
Go the proper settings dialog
hyperdrive-ansys-f02
Choose Advanced…
hyperdrive-ansys-f03
Specify the number of cores to use

Distributed Solve in ANSYS Mechanical

One other thing you’ll notice in the Advanced Settings Window is the option to turn “Distributed” On or Off using the checkbox.

In many cases Distributing a solution can be significantly faster than the opposite (Shared Memory Parallel).  It requires that MPI be configured properly (PADT can help guide you through those steps).  Please see this article by Eric Miller that references GPU usage and Distributed solve in ANSYS Mechanical

hyperdrive-ansys-f04
Turn on Distributed Solve if MPI is Configured

ANSYS Fluent

Whether launching Fluent through Workbench or standalone you will first see the Fluent Launcher window.  It has several options regarding the project.

  1. Under the Processing Options you will see 2 options: Serial and Parallel
  2. Simply select Parallel and you will see 2 new dropdowns
  3. The first dropdown lets you select the number of processes (equal to the number of cores) to use in not only during Fluent’s calculations but also during pre-processing as well
Default Settings in Fluent Launch Window
Default Settings in Fluent Launch Window
Options When Parallel is Picked
Options When Parallel is Picked

ANSYS CFX

For CFX simulations through Workbench, the option to activate HPC exists in the Solution Manager

  1. Open the CFX Solver Manager
  2. You will see a dropdown for Run Mode
  3. Rather than the default “Serial” option choose from one of the available “Parallel” options.
  4. For example, if running on the same machine select Platform MPI Local Parallel
  5. Once selected in the section below you will see the name of the computer and a column called Partitions
  6. Simply type the desired number of cores under the Partitions column and then either click “Save Settings” or “Start Run”
Change the Run Mode
Change the Run Mode
Specify number of cores for each machine
Specify number of cores for each machine

ANSYS Electronics Desktop/HFSS/Maxwell

Regardless of which electromagnetic solver you are using: HFSS or Maxwell you can access the ability to change the number of cores by going to the HPC and Analysis Options.

  1. Go to Tools > Options > HPC and Analysis Options.
  2. In the window that pops up you will see a summary of the HPC configuration
  3. Click on Edit and you will see a column for Tasks and a column for Cores.
  4. Tasks relate to job distribution utilizing Optimetrics and DSO licenses
  5. To simply increase the number of cores you want to run the simulation on, change the cores column to your desired value
  6. Click OK on all windows
hyperdrive-ansys-f09
Select the proper settings dialog
hyperdrive-ansys-f10
Select Edit to change the configuration
Specify Tasks and Cores
Specify Tasks and Cores

There you have it.  That’s how easy it is to turn on Hyperdrive in the flagship ANSYS products to advance your simulations and get to your endpoint faster than before.

If you have any questions or would like to discuss the possibility of upgrading your ship with Hyperdrive (HPC capabilities) please feel free to call us at 1-800-293-PADT or email us at support@padtinc.com.

GCOI 2015 – Celebrating Arizona’s Technology Community

gcoi_iconFor those of us that are part of the Arizona Technology community, the official kickoff of holiday and end of year celebrations is the Governor’s Celebration of Innovation, or GCOI.  A who’s who of key people from startups to large aerospace firms gather at the convention center to recognize students, academicians, companies, and individuals who have had a significant impact on the State’s high tech industries.  This is always a special evening for PADT because many of the attendees, and usually a few of the award winners, are our customers.

In fact, for 2015 we are proud to congratulate the following long time PADT customers who were recognized last night:

  • Medtronic Tempe Campus for Innovator of the Year, Large Company
  • Raytheon Missile Systems for winning the Pioneering Award
  • ASU’s Michael Crow, the OneNeck IT Services People’s Choice Lifetime Achievement Award winner (ASU is a large PADT customer… so we feel Dr. Crow is our customer as well.)

You can find a full list of winners and some great pictures  from the event in Tishin Donkersley’s article at AZ Tech Beat.

This fantastic event is put on by the Arizona Technology Council and the Arizona Commerce Authority.  For those that were there: Mac & Cheese bar FTW.

gcoi-2

About the Awards

As in past years, PADT was honored to be able to fabricate the awards that were handed out. This year we used the overall design for the event, created by Atom, as our starting point. We used our Stratasys FDM printers to make the stair steps and “tech guy silhouette” The graphics are then printed on large stickers that are adhered to the back of an Arizona’ish shaped piece of plexiglass.

gcoi-awards-2015-1

The PADT Booth

This year we decided to not bring a 3D Printer and instead focus on parts made on a wider variety of printers. The hit for visitors were the metal parts that were made on ConceptLaser Direct Laser Melting systems.  In addition we got to talk about the great work that our product development team did for GlobalStar on the Spot devices and Orthosensor for their intelligent orthopedic sensors. We even had a few simulation people come by to talk ANSYS.

1112151507a

Hopefully you had a chance to talk with Andrew Miller, Kathryn Pesta, or Mario Vargas. If you missed us and want to know more about PADT, what we do, or the Arizona Technology Community, reach out and we will be happy to chat.

IMG_7799

Presentation: Leveraging Simulation for Product Development of IoT Devices

SEMI-AZ-IOT-4

SEMI-AZ-IOT-5
Yours truly going over the impact of Simulation on IoT Product Development

The local SEMI chapter here in Arizona held a breakfast meeting on Monetizing Internet of Things (IoT) and PADT was pleased to be one of the presenters. Always a smart group, this was a chance to sit with people making the sensors, chips, and software that enable the IoT and dig deep in to where things are and where they need to be.

The event was hosted by one of our favorite customers, and neighbor right across the street, Freescale Semiconductor.  Speakers included IoT experts from Freescale, Intel, Medtronics, ASU, and SEMICO Research.

Not surprisingly I talked about how Simulation can play a successful role in product development of IoT devices.

You can download a copy of the presentation here: PADT-SEMI-IOT-Simulation-1.pdf

UPDATE (11/9/2015): Great write-up by Don Dingee on this event in the SemiWiki. Click here to read it. It includes a great summary of the other speakers.

You can also see more details on how people use Simulation for this application on the ANSYS, Inc. website here.  We also like this video from ANSYS that shows some great applications and how ANSYS is used with them:

A couple of common themes resonated across the speakers:

  1. Price and size need to come down on the chips used in IoT (this was a semiconductor group, so this is a big part of their focus)
  2. Lowering power usage and increasing power density in batteries is a key driver
  3. The biggest issue in IoT is privacy and security. Keeping your data private and keeping people from hacking in to IoT devices.
  4. Another big problem is dealing with all the data collected by IoT devices. How to make it useful and how to store it all.  One answer is reducing the data on the device, another is only keeping track of what changes.
  5. It is early, standards are needed but they are still forming.

If you look at this list, the first two problems are addressable with simulation:

SEMI-AZ-IoT-2

PADT has a growing amount of experience with helping customers simulate and design IoT devices as well as the chips, sensors, and antenna that go in to IoT devices.  To learn more, shoot us an email at info@padtinc.com or call 480.813.4884.

 

Manufacturing Open House Highlights – October 2015

padt-mfg-openhouse-2015-1Here at PADT we help people who make products, stuff that gets manufactured.  So we focused our open house yesterday on advanced manufacturing and invited the community to come out and network, learn, and share.  Even though it was a busy week for technology events in Arizona, we had a great turnout on a surprisingly cloudy Wednesday evening.

October is Manufacturing month and this open house was part of the Arizona Commerce Authority’s coordinated events to highlight manufacturing in Arizona.   You can learn more about other events in the state here.

This event was a bit more casual and less structured then past PADT open houses, letting attendees spend more time one-on-one with various experts and dig deep in to technologies like metal 3D Printing, urethane casting, topological optimization, and scanning.

What struck all of us here was the keen interest in and knowledge about the various tools we were showing across a wide range of attendees.  From students with home built 3D Printers to managers from local aerospace companies that are on the forefront of Additive Manufacturing, the questions that were asks and comments that were made with insightful and show a transition of this technology from hype to real world application.

Below are some more quick snapshot taken during the event.

A big thanks to everyone who made it out and we hope to see more of you next time. If you have any questions about the application of advanced manufacturing technologies to your products, don’t hesitate to reach out to us at info@padtinc.com or 480.813.4884.  As always, visit www.PADTINC.com to learn more.

padt-mfg-openhouse-2015-2
PADT’s Dr. Dhruv Bhate explains the latest developments in metal Additive Manufacturing.

padt-mfg-openhouse-2015-3
PADT’s Director of Engineering, Rob Rowan, discusses how PADT Medical has helped companies turn their medical device ideas into products.
 

 

 

 

 

Ademola Falade, PADT's scanning expert, describes how blue light scanning has changed how we capture geometry of existing parts.
Ademola Falade, PADT’s scanning expert, describes how blue light scanning has changed how we capture geometry of existing parts.

PADT's Seminar Room was packed with people talking to PADT's expert engineering staff.
PADT’s Seminar Room was packed with people talking to PADT’s expert engineering staff.
 

 

PADT’s 3D Printing Demo room was the place to hang and discuss different ways to use 3D Printing.
  
 

Beyond the Hype – Additive Manufacturing and 3D Printing Worldwide, A Summary of Terry Wholers’ Thoughts

3d-printing-terry-wholers-padt-1Terry Wholers is the founder and principal consultant of Wohlers Associates Inc., an independent consulting firm that was launched 28 years ago. Wohlers and his team have provided consulting work to over 240 organizations in 24 countries as well as to 150 companies in the investment community. He has authored over 400 books, articles, and technical papers. Terry has twice served as a presenter at the White House. For the past 20 years hes has been the principal author for the Wohlers Report which is an annual worldwide publication focused on Additive Manufacturing and 3D Printing. In 2007 more than a 1,000 industry professionals from around the world selected Terry as the most influential person in Rapid Prototyping Development and Additive Manufacturing.

PADT was fortunate enough to sponsor, with the local SME group, an event in Fort Collins, Colorado where Terry came and shared his views on the industry. What follows is a summary of what we learned. They are basically notes and observations.  Please contact us for any clarification or details: 

Terry Wohlers started his talk by asking: How many people have heard of 3D printing?

He noted that these days it was pretty much everyone and if you haven’t then you must be living in a cave. It is like everyone can’t get enough of it.

There has been a lot of growth. In the last 5 years the industry has quadrupled. Last year it was a 4.1 billion industry and this year 5.5 billion. Terry doesn’t own any stock in any of the different 3D printing companies. He cautioned everyone to not confuse the share prices with the growth and the expansion within this industry.

After this introduction, Terry stated that there were really two things in the industry that really excited him.  3D Printing for Manufacturing and for Production Parts.

3D Printing in Manufacturing.

The first area to watch is the use of this technology for manufacturing applications. The team looking at the sales data drew a line in the sand for the low cost hobbyist printers at $5,000. There were 140,000 of them sold last year compared to under 13,000 above $5k. However, they don’t cost much so the money is still in the industrial machines. Here are the revenues for 2014:

Industrial: 1.12 Billion, or 86.6%.
Hobbyist: 173.3 Million, or 13.4%

There are FDM clones everywhere. 300 or more brands. There is a lot of open source software out there to develop your own FDM printer.

One thing to watch in the industry is expiring patents. This opens up competition and lowers prices and sometimes brings better machines to market.  Right now, the SLS patent expired in June of last year so we are seeing new Selective Laser Sintering devices coming to market.

An exciting example of using 3D printing in manufacturing is the landing gear created by Stratasys. It was built and assembled with a Stratasys FDM printer and used for a fit check. Very Cool!

3d-printing-terry-wholers-padt-2

www.makepartsfast.com/2008/06/523/how-to-make-accurate-cad-to-stl-file-transitions

In medical, some great examples of tooling are jigs, fixtures, drill press, and custom cutting guide for knee replacement. You can take scanned data and create a custom cutting guide for replacing your knee. Tens of thousands of those have been done.

Lots of work is being done on test fixtures as well.

In tooling, with additive manufacturing you can do things that are highly complex. Instead of just straight gun drilled cooling channels you can make the cooling channels conform to the purpose of the part. You can reduce 30-300% cycle time by improving the cooling channels for injection molding dies.  It turns out that Lego is printing their molds! They are using conformal cooling to increase their cycle times.

On the aerospace side of things, end use parts are literally taking off.  Airbus is flying today 45,000 to 60,000 Ultem plastic parts. Both passenger and non-passenger planes have Ultem parts on them.

3D Printing for Final Production Parts

The second area to watch is the next frontier, and that is what excites him. You can do structural ribs in 3D printed parts. You need to make sure there are places in your parts to remove the support material used if you are going to use structural ribs. Design is absolutely critical. When he was at Solidworks world in Orlando a few years ago, there was a 3D printed bird that was flapping its wings.

This is a part of that bird that was being flown.

3d-printing-terry-wholers-padt-4 3d-printing-terry-wholers-padt-3
Two weeks ago Terry did a four day course at NASA on Design for Additive Manufacturing. The importance of the subject now is that companies and organizations are paying a lot of money to host people to teach them how to design for additive manufacturing. It was a great learning experience and NASA has already signed up for a second course that is focused on metals. NASA 3D printed a turbopump with 45%fewer parts that runs at 90,000 rpm, and creates 2,000 hp. This turbopump manufactured with conventional methods costs $220,000 for one, they can 3D print 2 of them in Inconel for $20,000.

A big part of Design for Additive Manufacturing is using the correct thinking but also using the right tools. There is a lack of both. We are taught to design for the conventional method of manufacturing. Now we have to undo some of that and think, hey there can be a better way to design this part.

One of those ways is Topology Optimization (let mathematics decide where to place the support structure so there is a increased strength to weight ratio). Another is the use of lattice structure (mesh and cellular). Ever since the beginning of time, man would make parts out of a solid material. Well now you can have a thin skin and a lattice structure on the interior to produce something superior in some cases.

We need these kind of tools integrated into the different CAD software’s so that we can design better parts.  This bracket is flying on a Airbus. This cabinet bracket is made out of titanium and is flying on the A35 Airbus. It was designed for 2.3 tons and actually holds up to 12.5-14 tons depending on the test. Peter Zander at Airbus believes that in 2 years they will be printing 30 tons of metal per month!

3d-printing-terry-wholers-padt-5

GE Aviation is building fuel nozzles for the new leap engine. The new design is 25% lighter and five times more durable than the previous design that took 20 different parts to assemble to make one fuel nozzle. The will be printing 40,000 fuel nozzles per year.

Consumer Products:
It is going to be very big. Terry thinks this is going to be a sweet spot in the industry. Once example is this guitar called the Hive Bass. It is built out of Nylon and would cost you $3,500. You can have a custom guitar made for that price.

3d-printing-terry-wholers-padt-6
There is a Belgium company that creates custom frames for eyewear.

3d-printing-terry-wholers-padt-7

There is also a lot of Jewelry available for consumers along with many other products.

For metal part production there are many steps needed to finish the part. About 9 steps that Terry counted so it can be a long process.

Myth: Additive Manufacturing is fast! Well that depends on Polymers versus Metals and the size and complexity of the parts. Airbus had one build that took 14 days to print with their metal printer! GE mentioned that they have to print the same part twice before they get it right because they will have to reorient the part or change the build parameters to get the best quality build possible.

According to some estimates the global manufacturing economy is in the range of $13 trillion. If this technology were to penetrate 2% of it then that is over a quarter of a trillion dollars. 5% is approaching two thirds of a trillion!

Terry finished by asking: How many of you think this will be North of the 5% estimate?

We want to thank Terry for giving such an informative talk, and New Belgium Brewing for hosting. The networking afterwords was fantastic. 

If you would like to stay up to date on 3D Printing, we recommend the Wohlers Report. It is our primary reference document here at PADT.