Gone Skiing: Aerodynamics – Does It Matter Which Way Your Skis Are Pointing On Your Roof Rack?

Categories: ,

I was on the gondola up at Keystone for night-skiing a week ago, after a long day at Beaver Creek, because the last thing I am going to do at 3:00 pm is try to make it back to Denver, as everyone knows it’s hardly more than a parking lot at that point. As it gets later, there’s nothing like a solo gondola ride, however, a solo ride would stop this story right about now.

On the Derler

On the gondola, I overheard a conversation where one gentleman was discussing how he was unable to open the hatch of his vehicle when his skis are in his roof rack. That’s fair, I know older WRX wagons with the spoiler would not be able to open with skis on the roof no matter what, so I figured that was the case. It turns out, that was NOT the case. The reason his hatch would not open was that he orients the skis with the tails forward because it is ‘more aerodynamic’ that way… I was skeptical, but held my tongue, knowing that I had the tools at my disposal to investigate!

I decided to make a model that would allow me to simulate various conditions to get to the bottom of this. My initial hypothesis is that the addition of the ski rack and crossbars is what has the largest effect on aerodynamics, and orientation of the skis probably has a negligible effect after that. As a side note, I am solely concerned with aerodynamics in this case, and am not worrying about the amount of the ski’s base material that is exposed for a given orientation. I am of the mindset that tree trunks and hidden rocks on the mountain are more of a danger to your bases than small rocks on the highway anyway. If you are waiting to comment, “Just get a roof box!”, I understand as I own both a box and a rack at this point, and they both have their advantages, and I will not be exploring the aerodynamics of a box…

…yet…

I was able to start by finding some faceted geometry of a Subaru Forester online (I’m from Colorado, can you tell?) and was able to import that into ANSYS Spaceclaim. Once in Spaceclaim, I was able to edit the faceted geometry to get nice exterior panel surfaces, which I then combined to get a single clean faceted exterior for the car.

Forester NoRack 1

Faceted Forester Geometry (Equipped with factory side rails)

After that, I used Spaceclaim to generate the remainder of the rack and skis, including crossbars, a ski rack, and a pair of skis (Complete with the most detailed bindings you have ever seen!). I made a combined part of the crossbars, rack, and skis for each one of my orientations, as this allows me to report the forces on each combined part during the simulation.

Forester RackOnePair 1

Added CAD geometry for the crossbars, ski rack, and a pair of skis

For the simulation, I used ANSYS Discovery Live, the newest tool from ANSYS that allows for instant and interactive design exploration. This tool lets me actively add my CAD geometry and shows results in realtime. I was able to start with just the car and then add and swap my ski/rack geometry with simple button clicks. With traditional simulation tools, I would have needed to create a mesh for each one of these cases, analyze them one at a time, and the post-process and compare results after the fact. After launching Discover Live, it’s as easy as selecting the type on analysis I want to run.

Discovery Start Page
The various types of solutions that can be done in ANSYS Discovery Live. For the purpose of this blog, I am using ‘Wind Tunnel’

Once I have selected ‘Wind Tunnel’ for my solution, I can select my geometry, and then am prompted for the direction of flow, as well as selecting the ‘floor’ of my domain. Once that is done, results show up on the screen instantly. I only needed to modify the flow velocity to ~65 mph. I am most interested in the force on the faces of the combined crossbars, rack, and skis in each orientation, so I created Calculations for each one, which is done by simply selecting the part and using the popup toolbar to create the graph.

DL popup
Popup toolbar allows for the quick creation of solution calculations

I was already off and running. I ran each one of the cases until the force plot had become steady.

Forester only
Car Only
Tips Forward
Skis Tips Forward Orientation
Tails Forward

Skis Tails Forward Orientation

Seeing that the force results for the Tips Forward vs. Tails Forward cases were very similar, I decided I should also run a ‘Bases Up’ Orientation, even though I STRONGLY advise against this, as UV wrecks the base material of your skis/snowboard.

Bases Up
Ski Bases Up and Tips Forward Orientation

In addition to the contour plot shown in the images above, you can also use emitters to show streamlines and particle flow, which also give some pretty neat visualizations.

Tips Forward streams
Streamlines shown on the Tips Forward orientation
Tips Forward emitter

Particle Emitter shown on the Tips Forward orientation

The graph plots show values for the Total Y Force for Tips Foward, Tails Forward, and Bases Up orientations to be 37.7 N, 39.1 N, and 37.1 N, respectively. Using Discovery Live, I was able to quickly run all 3 of these simulations, showing that there is not a major difference in the forces on the ski rack between the three orientations. So, put the skis on the roof in the direction that makes life easiest for you, and keep those bad boys paired to protect your bases from the sun, because splitting them isn’t going to help with aerodynamics anyway!

Next steps would be taking a specific case and running in 2D, then 3D, in ANSYS Fluent.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

03/27/2024

High Frequency Updates in Ansys 2024 R1 - Webinar

03/27/2024

2024 Arizona Space Summit

03/28/2024

SAF Blue Carpet Event

03/28/2024

2024 Arizona Space Summit

04/03/2024

Low Frequency Updates in Ansys 2024 R1 - Webinar

04/03/2024

Venture Madness Conference Reception + Expo

04/08/2024

39th Space Symposium

04/09/2024

39th Space Symposium

04/10/2024

Discovery Updates in Ansys 2024 R1 - Webinar

04/10/2024

39th Space Symposium

04/11/2024

39th Space Symposium

04/24/2024

Structures Updates in Ansys 2024 R1 (2)

05/08/2024

Fluent Materials Processing Updates in Ansys 2024 R1 - Webinar

05/22/2024

Optics Updates in Ansys 2024 R1 - Webinar

06/12/2024

Connect Updates in Ansys 2024 R1 - Webinar

06/26/2024

Structures Updates in Ansys 2024 R1 (3) - Webinar

06/27/2024

E-Mobility and Clean Energy Summit

07/10/2024

Fluids Updates in Ansys 2024 R1 - Webinar

08/05/2024

2024 CEO Leadership Retreat

10/23/2024

PADT30 | Nerdtoberfest 2024

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: