PADT Medical

Press Release: PADT, Avnet and Tiempo Development Introduce Design Days, Hosted by Center for Entrepreneurial Innovation

Posted on February 16, 2017, by: Eric Miller

PADT-Press-Release-IconPADT and CEI have partnered with Avnet and Tiempo Development to offer a free technical advice to local startups at CEI.  Anyone needing advice on mechanical design, electrical design, or software can now sign up for an hour with an engineer from one of these fantastic local technology leaders. CEI has been a great host for these events with just PADT for a while now, and we are pleased to announce that we have added electrical and software to what is offered, and we are officially anouncing it to the whole community. Check out the press release to learn more or visit the the CEI website: info.ceigateway.com/padt-design-days Official copies of the press release can be found in HTML and PDF.

Press Release:

PADT, Avnet and Tiempo Development Introduce Design Days, Hosted by Center for Entrepreneurial Innovation

Design Days Brings Arizona’s Top Product Development Experts Together to Provide Free Technical Advice to Local Startup

TEMPE, Ariz., February 16, 2017 ─  In a move that gives startups and product developers the opportunity to get design and production consultations from the top product development experts in Arizona, Phoenix Analysis & Design Technologies (PADT), in partnership with Avnet, Tiempo Development and the Center for Entrepreneurial Innovation (CEI), are officially opening Design Days to the local startup community. Hosted by the Center for Entrepreneurial Innovation (CEI) at 275 N. GateWay Drive Phoenix, Arizona 85034. The next session takes place on February 21 from 1- 4 p.m. “We’ve compiled a roster of top industry experts in product development from a wide-range of disciplines for Design Days,” said Patti Dubois, Assistant Executive Director at CEI. “Our goal is simply to lend a hand to entrepreneurs who aspire to develop great products and software. When we’re able to help an organization or individual grow and innovate, it elevates Arizona’s technology community as a whole.” CEI lends its fantastic space as participants will gain access to engineers who will be available to offer one-on-one assistance with product development needs. These experts will provide their opinions on the feasibility of an idea, make recommendations on the product development process, provide ballpark estimates on design and development costs, identify key differentiators of a product and more. All companies and individuals needing product development support for physical and software designs are encouraged to participate. “CEI is the leading incubator and accelerator in the Valley making them the perfect host for Design Days,” said Eric Miller, principal and co-founder at PADT. “We are proud to partner with CEI, Avnet and Tiempo in support of helping entrepreneurs develop revolutionary innovations that will continue to put Arizona on the map as a leading tech hub.” PADT, the Southwest’s largest provider of simulation, product development, and 3D printing services and products, will provide physical product design and prototyping consultation. Avnet, a global company ranked on the FORTUNE 500, with extensive knowledge of electronic component solutions and embedded computing products, will give advice on electrical engineering. Tiempo Development, named one of the 5000 Fastest-Growing Private Companies in America, from 2011 to 2015, specializes in offshore software development in nearshore locations, and will provide software architecture consultation. “We’re very excited to be involved with Design Days and to work alongside these wonderful partners,” said Mike Hahn, VP of engineering at Tiempo Development. “Our organization has always been dedicated to giving back to the Valley, and I can’t think of better way to support our community than by offering our staff’s expertise to budding startups and entrepreneurs.” “CEI has helped to establish one of the premier locations for young technology hopefuls in the nation, said Eric Leahy, Emerging Business Development Manager, Avnet. “The opportunity to be part of the next generation of a tech superstar’s growth is something we are always eager to do. I’d like to give a big thanks to CEI, PADT and Tiempo for working with us in putting on such a great event.” Visit the Design Days page at http://www.ceigateway.com/ or here to register and find out more. Participants can select the specific consultation category they are interested in when they register. This free service is offered every month and qualification requirements are listed on the Design Days page. About Phoenix Analysis and Design Technologies Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com. About CEI The Center for Entrepreneurial Innovation is a community-based business incubator supported by and located on the GateWay Community College campus. CEI provides targeted business services and proactive business support to create a systematic link between technology development, compelling markets and opportunities; entrepreneurial and managerial talent development; early stage capital sourcing; and education and training, interns, coaching and business counseling from Maricopa Small Business Development Center (SBDC) analysts and other leading industry specialists. For more about CEI, visit www.ceigateway.com. About Avnet, Inc. From components to cloud and from design to disposal, Avnet, Inc. (NYSE:AVT) accelerates the success of customers who build, sell and use technology by providing a comprehensive portfolio of innovative products, services and solutions. Avnet is a global company ranked on the FORTUNE 500 with revenues of $26.2 billion for the fiscal year 2016. For more information, visit www.avnet.com. About Tiempo Development Tiempo offers a unique and very successful combination of a Nearshore business model, Agile Methodology, deep expertise, and advanced talent management. Building the powerful software that fits client vision and strategy, no matter whether that client relies on it to run the business or whether it is a product provided to customers. Tiempo helps companies accomplish software releases with great velocity and most cost-effectively. To learn more, visit visit www.tiempodev.com or contact Tiempo Development.

# # #

Media Contact Alec Robertson TechTHiNQ on behalf of PADT 585-281-6399 alec.robertson@techthinq.com PADT Contact Eric Miller PADT, Inc. Principal & Co-Owner 480.813.4884 eric.miller@padtinc.com
 

Thoughts on Biofabrication (and a Visit to WFIRM)

Posted on November 3, 2016, by: Dhruv Bhate, PhD

The Wake Forest Institute of Regenerative Medicine (WFIRM) hosted about 400 attendees at the annual Biofabrication conference, held this year at Winston-Salem, NC (Oct 28-Nov 1, 2016). The conference included a 2 hour tour of WFIRM's incredible facilities, 145 posters, 200 or so presentations and a small trade show with about 30 exhibitors. As a mechanical engineer attending my first bio-related conference, I struggled to fully comprehend many concepts and terms in some of the deeper technical presentations. Nonetheless, there was a lot I DID learn, and this post serves to summarize my thoughts on the four high-level insights I gleaned amidst the pile of information on offer. I hope these are of value to the larger community that is not on the front lines of this exciting and impactful area of research.

More than Organs

To say biofabrication is all about making organs is like saying manufacturing is all about making spacecrafts carrying humans to Mars. It misses a lot of the other valid human needs that can be met and suggests organs are the end of the biofabrication R&D curve, when they only represent one manifestation (arguably the most difficult one in our current sense of the world) of the application of the science. If we take a step back, biofabrication is fundamentally about "manufacturing with living materials" - in that sense, biofabrication blurs the lines between natural and man-made entities. If you could manipulate and engineer living cells in physical constructs, what all could you do? Here is a list of some examples of the different applications that were discussed at the conference:
  • Toxicology Studies - Organovo's examples of skin, liver and kidney tissue being used to evaluate drug efficacy
  • Body-on-a-Chip - A solution to aid in pre-clinical work to study whole systems (a key regulatory hurdle) and potentially displace animal studies in the future
  • Tissues for Therapy - This could involve patches, stents and other such fixes of a therapeutic nature (as opposed to replacing the entire organ in question)
  • Non-Medical Applications - Modern Meadow is a company that is using biofabrication techniques to make leather and thereby help reduce our dependency on animal agriculture. Biofabricated meat is another potential application.
  • Functional Tissues and Organs - An interesting thought presented by Prof. Rashid Bashir is that replacing organs with matched constructs may not be optimal - we may be able to develop biological entities that get the job done without necessarily replicating every aspect of the organ being replaced. A similar thought is to to use biological materials to do engineering tasks. The challenge with this approach is living cells need to be kept alive - this is easier done when the fabricated entity is part of a living system, but harder to do when it is independent of one.
  • Full Organ Replacement - Replicating an organ in all its detail: structurally and functionally - WFIRM has done this for a few organs that they consider Level 1-3 in terms of complexity (see Figure 1). Level 4 organs (like the heart) are at the moment exceedingly challenging due to their needs for high vascularity and large size.

Fig 1. Levels of complexity in organs, adapted from Dr. Anthony Atala's talk at the conference. Image Attributions: Cancer Research UK (Wikimedia Commons), NA, Mikael Häggström (Wikimedia Commons), OpenStax College (Wikimedia Commons)

It Takes a Village (and a Vivarium)

Imagine this is the early 2000s and you are tasked with establishing a center dedicated to accelerating the progress of regenerative medicine. What are the parts this center needs to house? This was probably what Dr. Anthony Atala and others were working out prior to establishing WFIRM in 2004. To give you a sense of what goes on in WFIRM today, here is a (partial) list of the different rooms/groups we visited on our tour: decellularization, imaging, tissue maturation, bioprinting, electrospinning, lab-on-a-chip, direct writing, vivarium that cares for animals (mice, ferrets, sheep, pigs, dogs - beagles to be specific, and "non-human primates") and a cleanroom for pre-clinical studies. Add administrative, outreach and regulatory staff. Today, about 450 people work at WFIRM and many more collaborate. Going into this conference, I was well aware this field was an inter-disciplinary one. The tour opened my eyes to just how many interdependent parts there are that make an end-to-end solution possible, some more interdisciplinary in nature than others and just how advantageous it must be to have all these capabilities under one roof dedicated to a larger mission instead of spread across a large university campus, serving many masters.

"I Have a Hammer, Where is the Nail?"

I will be honest - I justified my interest in biofabrication on the very dubious basis of my experience with 3D printing, a long standing interest in the life sciences that I had hitherto suppressed, and the fact that I am married to a cancer researching biochemist - bioprinting was my justification for finally getting my feet (close to a) wet (lab). I suspect I am not alone in this (support group, anyone?). When I described this to the only surgeon who entertains my questions, he accurately summarized my approach in the afore mentioned hammer-nail analogy. So, armed with my hammer, I headed to the biofabrication conference seeking nails. The good news is I found a couple. As in exactly two. The bad news? See the section above - this stuff is hard and multi-faceted - and there are folks with a multi-decade head start. So for those of us not on the front lines of this work or not in college planning our next move, the question becomes how best can we serve the scientists and engineers that are already in this field. Better tools are one option, and the trade show had examples of these: companies that make bioprinters (see Figure 2 below), improved nozzles for bioprinting, clean-room alternatives, biomaterials like hydrogels, and characterization and testing equipment. But solving problems that will help the biofabrication community is another approach and there were about 5-10 posters and presentations (mine included) which attempted to do just that. What are some of the areas that could benefit from such peripheral R&D engagement? My somewhat biased feeling is that there is opportunity for bringing some of the same challenges Additive Manufacturing is going through to this area as well:
  • Design for Bioprinting: fully exploiting the possibilities of bioprinting - "in Silico" has made some progress with medical devices - a similar window of value exists for biofabrication due to the design freedom of 3D printing
  • Modeling: Biofabrication almost always involves multi-materials, often with varying constitutive behaviors and further are in complex, time-varying environments - getting some handle on this is a precursor to item 1 above
  • Challenges of Scale: This has many elements: quality control, cost, automation, data security, bio-safety. This is one of the key drivers behind the recent DOD call for an Advanced Tissue Biofabrication Manufacturing Innovation Institute and is likely to drive several projects in this space over the next 5-7 years.
Moral of the story for me: carry your hammer with pride but take the time to learn, ask and probe to find the pain points that are either already there or are likely to arise in the future, and keep refining your hammer with input from the biofabrication community - conferences are the best place to do this - IF you go in with that intent and prepare ahead of time identifying the people you want to talk to and the questions you wish to ask them - something I hope to be better at next time around.
bioprinters

Fig 2. A few of the Bioprinters on display at the Biofabrication 2016 conference: Rokit, CellInk and RegenHU represented here (the others were: Advanced Solutions, Biobots and EnvisionTEC)

The Rate-of-Progress Paradox

Finally, a more abstract point. From the sidelines, we may ask how far has the field of biofabrication come and how fast is it progressing? It is one thing to sift through media hype and reconcile it with ground realities. It is quite another to discover this conflict seemingly exists even in the trenches - there are several examples of transplanted biofabricated entities, yet there is a common refrain that we have a long way to go to doing just so. And that struck me initially as a paradox as I heard the plenary talks that were alternatingly cautious and wild - but on the very last day I started to appreciate why this was not a paradox at all, it is just the nature of the science itself. Unlike a lot of engineering paradigms, there are limits to efficiencies that can be gained in the life sciences - and once these are gained (shared resources, improved methods etc.), success in one particular tissue or organ may not make the next one progress much faster. Take Wake Forest's own commonly used approach for regenerative medicine, for example: harvest cells, culture them, build scaffold constructs, mature cells on these constructs, implant and monitor. Sounds simple, but takes 5-10 years to get to clinical implantation and another 5-10 of observation before the results are published. And just because you have shown this in one area, bladder for example, doesn't make the next one much faster at all. All the same steps have to be followed: pathways to be re-evaluated, developmental studies to be done - prior to extensive animal and clinical trials. The solution? Pursue multiple tissues/organs in parallel, follow each step diligently and be patient. Wake Forest seems to have envisioned this over a decade ago and I expect the coming decade will show a cascade of biofabrication successes hit us with increasingly boring steadiness.

Concluding Thoughts

Finally, we should all be thankful to the many PhD students and post-docs from all over the world putting in the bulk of the disciplined, hard work this field demands, most of them, in my opinion, at salaries not reflective of their extensive education and societal value. We should also spare a thought for all the animals being sacrificed for this and other research, even in the context of best veterinary practices - my personal hope is that biofabrication enables us to stop all animal trials at some point in the near future - indeed, this seems to be the only technology that can. Then we can truly say with confidence, that we have first and foremost, done no harm. Thank you WFIRM, for a wonderful conference and all the work you do everyday!

Arizona Bioscience Celebrates Leaders New and Old

Posted on September 22, 2016, by: Eric Miller

padt-azbio-awards-2016The Arizone high tech community gathered in downtown Phoenix Wednesday night to celebrate the leaders in the Biotech community at the annual AZBio Awards. As the premier event of a very busy AZBio Weekthe audience was joined by key companies and investors from outside of Arizona as well. The winners showed the diversity and promise of what companies in the state have accomplished and what they plan to do in the future. Governor Ducey also stopped by to say a few words about the progress that the community has made. A list of the winners can be found at the bottom of this post with links to more information describing what they have done to make the world a better place. 20160921_193755Every year we are pleased to see more and more people that we work with take home the trophies provided by PADT.  Once again we made the awards themselves using a combination of 3D Printing and traditional manufaturing. As a bit of a humble brag, we had the pleasure of providing assistance to the following individuals, shools, and companies who were recognized: Global Med was recognized as 2016 Bioscience Company of the Year. They have used PADT for prototyping and even low volume production of their innovative telemedicine solution. Their growth has allowed for the delivery of quality health car to places around the world that are ohterwise unreachable. Salutaris MD won a Fast Track award for their device that treats wet macular digenerations.  We are proud to have been involved at the very begining during prototyping and most recently as they prepare for clinical trials. ASU's Dr. George Poste received the 2016 AZBio Pioneer Award for Lifetime Achievement for the significant contributions he has made during his carreer.  In addition the recipient of the 2016 Arizona Bioscience Researcher of the Year award was the ASU BioDesign Institute's Stephen Johnston, PhD.  The University in general, and the Biodesign Institute in particular, are long time customers and heavy users of ANSYS and Stratasys products proved and supported by PADT. Paradise Valley School's Marni Landry was recognized with the Michael A. Cusanovich Bioscience Educator of the Year.  PV school district was one of th first High Schools to adopt 3D Printing into their STEM ciriculum. In addition, we were very pleased to see that one of our awards will be headed to Washington with Kyrtsten Sinema who was recongnized for her efforts to promote BioTech and Arizona in congress. Rep Sinema represents the district that includes PADT's main office in Tempe and has been one of our favorite politicians since her bi-partisisn and common sense efforts in the Arizona State Legislature. And finaly, a shout out to one of the other Fast Track award winners, Beacon Biomedical. PADT is looking at Beacon as an Angel Investment oportunity and they are across the hallway from PADT StartupLabs at CEI in Phoenix. A big congratulations to all of the winners.  The Bioscience commnity in the state is growing and at or near critical mass. From High Schools to large corporations with everything in between, our local companies are making the world a better place through better health technology. 20160921_193817 2016 AZBio Pioneer Award for Lifetime Achievement George Poste, DVM, DSc, PhD, FRC Path, FRS Arizona State University 2016 Bioscience Company of the Year GlobalMed 2016 Public Service Award Honoree United States Congresswoman Kyrsten Sinema 2016 Arizona Bioscience Researcher of the Year Stephen Johnston, PhD Center for Innovations in Medicine, Biodesign Institute at Arizona State University Michael A. Cusanovich Bioscience Educator of the Year Marni Landry, Paradise Valley High School (CREST) Jon W. McGarity Bioscience Leader of the Year Mara G. Aspinall AZBio Fast Lane Award Honorees  

Seminar Notes: Medical Device Product Development for Startups, The Bitter Pill

Posted on September 19, 2016, by: Eric Miller

medical-device-development-bitter-pill-padt-0About 40 people joined us at CEI this Monday at the start of Arizona BioScience week for some blunt talk about Medical Device development for startups.  It was a great crowd and the quesitons were almost as (OK, maybe more) useful as the talk. The gist of the seminar was a look at what it really takes to develop a medical device.  We talked about the FDA, ISO 13485, QMS's and the very well defined process that all companies must follow.  We also talked a bit about tansfering to manufacturing and shared some lessons learned. You can find a PDF of the presentation here: padt-azbioweek-medical-dev-bitter-pill-1.pdf medical-device-development-bitter-pill-padt-4 We look forward to seeing more of you at other AZBio Week events including the AZBio Awards on the 21st and the White Hat Investor conference on the 22nd. As always, PADT is here to help with your medical device product development, or with the development of any product. medical-device-development-bitter-pill-padt-1 medical-device-development-bitter-pill-padt-2

Phoenix Business Journal: ​Getting your product made: 6 suggestions for outsourcing the manufacturing of your product

Posted on September 6, 2016, by: Eric Miller

Just-Published-PBJ-1Getting a new product manufactured is one of those critical steps that new companies often assume is just a matter of finding a vendor and outsourcing it. In "Getting your product made: 6 suggestions for outsourcing the manufacturing of your product" I go over some suggestions on how to make this critical step a success.

PADT Events – September 2016

Posted on September 2, 2016, by: Eric Miller

PADT-Events-LogoSeptember is here and it is a jam packed month of events, many of them related to BioMedical engineering.  We are continuing with ANSYS webinars and talking about 3D Printing as well. See what we have below:

uma_new-sm2September 13: Salt Lake City, UT Manufacturing Promotes Innovation Summit

The UMA Summit is a day long event filled with networking, guest speakers and informative information. In between speakers network with our vendor booths and see the latest products and services available for the Manufacturing Industry. PADT will be there with lots of example of 3D Printing and ready to engage on how manufacturing really does drive innovation. Check out the event page for times and an agenda.
Ansys-logo

September 15: Scottsdale, AZ ANSYS Arizona Innovation Conference

ANSYS and PADT are pleased to announce that we be holding a user meeting in Scottsdale for the entire ANSYS use community.  Join us for an informative conference on how to incorporate various productivity enhancement tools and techniques into your workflow for your engineering department. ANSYS Applications Engineers and local customers like Honeywell, Galtronics, On Semi, Ping, and Nammo Talley, will discuss design challenges and how simulation-driven product development can help engineers rapidly innovate new products.  See the agenda and register here.

September 19: Phoenix, AZ Seminar: Medical Device Product Development for Startups - The Bitter Pill

We will be kicking off our Arizona Bioscience Week with this a free seminar at CEI in Phoenix with a sometimes brutally honest discussion on the reality of medical device product development. No one wants to discourage a good idea, and entrepreneurs make it a long way before someone sits them down and explains how long and expensive the engineering of a medical device product is. In this one hour seminar PADT will share the hard and cold realities of the process, not to discourage people, but to give them the facts they need. Get the details and register here.
logo_MDM_Minn14_4c

September 21-22: Minneapolis, MN Medical Design & Manufacturing Minneapolis

PADT Medical will have a booth with our partner Innosurg at this premier event for medical device development.  For 22 years, Medical Design & Manufacturing Minneapolis has been the medtech innovation, communication, and solution epicenter of the Midwest. Now over 600 suppliers strong, and with more than 5,000 industry professionals in attendance, the event provides the solutions, education, and partnerships you simply won’t find anywhere else.  Learn more here. And if you are attending, please stop by and say hello, we are in booth 1643.

azbio-logo-1September 21: Phoenix, AZ AZBio Awards

Join PADT and others for this annual event that recognizes those that contribute to the growing AZ BioTech community.  The awards will be made by PADT's 3D Printing team again this year.  Stop by our table to say hello. Register here.
AZ-Bioscience-Week

September 21 & 22: Phoenix, AZ White Hat Investor Conference

The West was won by innovators, investors, and prospectors who understood the value of discovery and accepted the challenge of investing in new frontiers.  PADT will be joining others in the investment community to meet with and hear from companies (32 are signed up to present right now) in the Bioscience space and to also share ideas and network.  Registration for this special event can be found here.

exerience_it_nmSeptember 30: Albuquerque, NM New Mexico Tech Council: Experience IT NM Conference

Geek out on all things technology. The New Mexico Tech community will gather the best and the brightest entrepreneurs, technicians, hackers, and tech fans for presentations, talks, meet-ups, and parties; all to highlight the vibrant tech community in our city. The Conference takes place on the final day of a week of events, and will focus on HR, CRM, Manufacturing, and Creative concerns of the tech community with panels and presentations.  PADT's Eric Miller will be presenting in two "MakeIT" sessions. Learn more here.
PADT-Webinar-LogoThis month's webinars look at Signal Integrity and 3D Printing for Production
Wednesday, September 7, 2016 – 1:00 PM AZ/PDT, 12:00 PM MDT Investigating Signal Integrity: How to find problems before they find you Register
Thursday, September 29, 2016 – 4:00 PM AZ/PDT, 3:00 PM MDT SAE Webinar: Additive Manufacturing: From Prototyping to Production Parts Register

On the Biocompatibility of PolyJet MED610

Posted on August 2, 2016, by: Dhruv Bhate, PhD

Is PolyJet MED610 truly biocompatible? And what does that mean anyway?
IMG_0144

Figure 1. Our PolyJet Eden 260V dedicated to running MED610

A couple of months ago, our product development team contacted me to see if I could 3D print them a small bio-compatible masking device that was needed for temporary attachment to an invasive device prior to insertion for surgery. That led me to investigate all the different bio-compatible materials we did have access to at PADT on our FDM (Fused Deposition Modeling) and PolyJet machines. Given the tiny size and high detail required in the part, I decided to opt for PolyJet, which does offer the MED610 material that is claimed to be biocompatible. As it so happens, we have an Objet Eden 260V PolyJet machine that has been dedicated to running MED610 exclusively since it's installation a year ago. We printed the mask, followed all the post-processing instructions per supplier recommendations (more on that later) and delivered the parts for further testing. And that is when I asked myself the questions at the top of this post. I set off on a quest to see what I could find. My first stop was the RAPID conference in (May 2016), where the supplier (Stratasys Inc.) had a well-staffed booth - but no one there knew much about MED610 apart from the fact that some orthodontists were using it. I did pick up one interesting insight: one of the engineers there hypothesized that MED610 was not very popular because it was cost-prohibitive since its proper use required machine dedication. I then went to the Stratasys Direct Manufacturing (a service bureau owned by Stratasys) booth, but it turned out they don't even offer MED610 as a material option for service jobs - presumably because of the low demand for this material, consistent with our own observations. So I took a step back and began searching for all I could find in the public domain on MED610 - and while it wasn't much, here is the summary of my findings that I hope help anyone interested in this. I categorize it in three sources of information: claims made by the supplier, published work on in vitro studies and finally, some in vivo animal trials. But first, we must ask...

What does it mean for a Material to be Biocompatible?

A definition by Williams (The Williams Dictionary of Biomaterials, 1999) is in order: "Biocompatibility is the ability of a material to perform with an appropriate host response in a specific application." So if PolyJet MED610 is to be called biocompatible, we must ask - what application do we have in mind? Fortunately, the supplier has a recommendation.
IMG_0152

Figure 2. PolyJet MED610 printed "Hydrogel Hand Bone Scaffolds" [Design Attribution: dotmatrix, Published on December 11, 2015, www.thingiverse.com/thing:1193425]

Supplier Claims

MED610 was launched by Objet in 2011 (Objet was acquired by Stratasys in 2012) as a biocompatible material, ideal for "applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours". Stratasys claims that parts printed according to Objet MED610 Use and Maintenance Terms were evaluated for biocompatibility in accordance with standard "DIN EN ISO 10993-1: 2009, Biological Evaluation of Medical Devices-Part 1: Evaluation and testing within a risk management process. This addresses cytotoxicity, genotoxicity, delayed hypersensitivity, and USP plastic Class VI, which includes the test for irritation, acute systemic toxicity and implantation". Unfortunately, the actual data from the biocompatibility study conducted by Objet have not been made publicly available. It is important to remember that Stratasys publishes a "Use and Maintenance Terms" document that details the steps needed not just to clean the part after printing, but also on the proper setup of the machine for ensuring best chances of meeting biocompatibility requirements. These are published online at this link and include a 3 hour soak in a 1-percent NaOH solution, a 30 min soak in IPA and multiple water jet rinses, among other steps. In other words, the claimed biocompatibility of MED610 is only valid if these instructions are followed.  These steps are primarily driven by the need to completely remove supports and any support-residue, but it is not clear if this is needed if a part can be printed without supports. Given such strong process dependencies, it is only to be expected that Stratasys provide a disclaimer at the end of the document clarifying that the users of their machines are responsible for independently validating biocompatibility of any device they make with MED610. The next question is: have there been any relevant published, independent studies that have used MED610? In my search, I could only find two instances, which I discuss below.

Primary Human Cells Response (In Vitro)

In a recent (January 2016) study published in the Journal of Medical and Biological Engineering, Schmelzer et al. studied the response of primary human cells to four 3D printed materials in vitro: ABS, PC, PLA and MED610 - the only such study I could find. All samples instead went through a 100% ethanol brief rinse and were washed 5 times with de-mineralized water - this seems like a less stringent process than what the supplier recommends (3 hour 1-percent NaOH solution soak, 30 minutes IPA soak and 10 times waterjet blasting) but was designed to be identical across all the materials tested. There were some very interesting findings:
  • Different cells had different responses:
    • MED610 had the most negative impact on cell viability for keratinocytes (epidermal cells that produce keratin) - and the only material that showed statistically significant difference from the control.
    • For bone marrow mesenchymal (stem) cells, a different effect was observed: direct culture on ABS and PC showed significant growth (7X compared to control) but MED610 and PLA showed no significant effect
  • Surface Roughness influences cell attachment and proliferation:
    • In agreement with other work, the authors showed that while rougher surfaces promote initial cell attachment, subsequent cell proliferation and overall cell numbers are higher on smoother surfaces. The MED610 samples had rougher surfaces than the FDM samples (possibly due to the use of the "matte" finish option) and could be one of the contributors to the observed negative effects on cell viability, along with the leached contents from the specimen.

Glaucoma Drainage Device (In Vivo, Rabbit studies)

A group of Australian researchers published a 2015 paper where they designed and used PolyJet MED610 to manufacture a Glaucoma Drainage Device (GDD). They selected PolyJet because of its ability to resolve very fine details that they needed for the device. Importantly, the purpose of this study was to assess the effect of different design parameters on the effectiveness of the device (relieving intraocular pressure). The device was implanted into rabbit eyeballs where it remained for up to 4 weeks. The devices were printed on a Connex 350 PolyJet machine, after which the supports were removed from the devices with a water jet and "were repeatedly washed and inspected for consistency and integrity." Tubes were attached with Silicone adhesive and the entire assembly was then "washed and sterilized with a hospital-grade hydrogen peroxide system before use". The researchers did not examine the cellular and extracellular reactions in great detail, but did conclude that the reactions were similar between the MED610 device and the more standard polypropylene injection-molded device. A short video recorded by some of the researchers as part of a Bioprinting course also provides some details into the 3D printing aspects of the work done.

Concluding Thoughts

In conclusion, the question I posed at the start of this post (Is PolyJet MED610 truly biocompatible?) is too simplistic. A process and a material together are not sufficient - there are procedures that need to be defined and controlled and further and more importantly, biocompatibility itself has to be viewed in the context of the application and the specific toxicity and interaction demands of that application. And that brings us to our key takeaways:
  • MED610 is only recommended at best for applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours and there is no data to dispute the suppliers claim that it is biocompatible in this context once all recommended procedures are implemented
  • The work done by Australian researchers in using PolyJet MED610 for devoloping their Glaucoma Drainage Device in animal trials is perhaps the best example of how  this material and the technology can be pushed further for evaluating designs and hypothesis in vivo when really fine features are needed. Stratasys's FDM PC-ISO or ABS M30i materials, or other FDM extrusion capable materials like PLA, PCL and PLGA may be better options when the resolution allows - but this is a topic for a follow-on blog post.
  • More in vitro work needs to be done to extend the work done by Schmelzer et al., which suggests that MED610 potentially has leachables that do impact cell viability negatively. Specifically, effects of surface finish ("matte" vs "gloss") and sterilization on cell viability is a worthwhile follow-on step. In the interim, MED610 is expected to perform well for mucosal membrane contact under 24 hours (and why this is a great technology for dental guides and other temporary in-mouth placement).
If you have any thoughts on this matter or would like to collaborate with us and take advantage of our access to a PolyJet printer that is dedicated to MED610 or other bio-compatible FDM materials, as well as our extensive post-processing and design & analysis facilities, please connect with me on LinkedIn or send us a note at info@padtinc.com and cite this blog post. Thanks for reading!

References

  1. Stratasys Bio-compatible Materials Page: http://www.stratasys.com/materials/polyjet/bio-compatible
  2. PolyJet MED610 Data Sheets: http://www.stratasys.com/materials/material-safety-data-sheets/polyjet/dental-and-bio-compatible-materials
  3. Schmelzer, E., Over, P., Gridelli, B., & Gerlach, J. (2016). Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. Journal of Medical and Biological Engineering, 36, 153-167.
  4. Ross C, Pandav S, Li Y, et al. Determination of Bleb Capsule Porosity With an Experimental Glaucoma Drainage Device and Measurement System. JAMA Ophthalmol.2015;133(5):549-554. doi:10.1001/jamaophthalmol.2015.30.
  5. Glaucoma case study in online course on Bioprinting, University of Woolongong, Future Learn, https://www.futurelearn.com/courses/bioprinting/3/steps/87168

Do you have an Internet of Things Strategy? PADT Can Help

Posted on May 25, 2016, by: Eric Miller

thing-1-250w"It is not just a trend, it is a Tsunami. One day you will wake up and see a giant wave headed your way, and that wave will be the Internet of Things!"

This was the opening line from a presentation given by the VP of sales for a major engineering software company. It got my attention because it wasn't hype or hyperbole.  He was just pointing out the obvious. Over the past two years the signs have been there. Smart devices will connected to the internet, and older devices will be made smart and then connected. Those that don't, will no longer be competitive.

It is not all about smart thermostats. Far from it.  I went to IoT world in San Jose last week and saw a lot of people scrambling to find their solution. And a few that found them.  The best example was an older letter stamping machine, you can guess at the manufacturer, that plugged a modular device from Electric Imp in to their controller and boom - they were connected.  Some back end programming and they now had a competitive IoT device.

iot-networ-graphic-1 It is time to define and execute on your IoT strategy

When we visit customers, we will often ask them what their IoT Strategy is.  The answers vary from "we don't really think our products have an IoT play" to existing products on the market.  The focus in the media is on consumer IoT products, but the bigger push right now is for industrial Internet, where machines used in manufacturing, energy generation, raw material extraction, and processing are smart and connected. Customers from consumers to other companies will be requiring the benefits of IoT devices as they look to replace older hardware.  That is why every company that makes physical products needs to develop an IoT strategy.

PADT Can Help

We have been helping our customers define and implement their approach to IoT well, since before it was called the Internet of Things.  From assisting semiconductor companies that make MEMS sensors to making smart medical devices we are plugged in to what is needed to make IoT work. iot-landing-page-padt-1A good place to start is our IoT landing page at:

www.padtinc.com/iot

There you can find some basic information about how PADT is a more comprehensive and technically capable solution then most design houses that claim to have IoT solutions.  We are uniquely qualified to make sure the "Thing" in your IoT strategy is designed and manufactured right. pbj-phoenix-business-journal-logoWe also published a series of articles in the Phoenix Business Journal that provide some fundamental background information on the Internet of Things and how to deal with the challenges it presents: ansys-iot-wheelSimulation can play a big role in almost every aspect of making your IoT device development faster and more productive.  PADT uses ANSYS, Inc.'s comprehensive Multiphysics simulation tool set to model everything from the chip to the embedded system software. We highly recommend this white paper, "Engineering the Internet of Things" We also have a recording of a very popular webinar that we did: "Engineering the Internet of Things Devices with ANSYS Simulation" and this video on how ANSYS can drive your IoT Design: https://www.youtube.com/watch?v=ug6Jvn5ZMJs For detailed examples, check out the ANSYS IoT Landing page to get a feel for why so many companies are driving their design with ANSYS simulation software:  www.ansys.com/iot
PADT-Webinar-Logo Engineering the Internet of Things Devices with ANSYS Simulation June 21, 2016 (Tue) 1:00 PM AZ & PDT / 2:00 pm MDT

REGISTER

Make sure you subscribe to PADT's email list so you don't miss future Events

Talking is the Best Approach

We hope that you find all of the material above, and the information we will provide in the coming months useful. But they are no substitute for giving us a call or sending us an email and setting up a face-to-face to talk about your IoT strategy and device development needs.  If you are doing the work in-house, we have the hardware and software tools you need to be successful. If you need outside help, you won't find engineers with more applicable experience. Give us a call at 1-800-293-PADT or email info@padtinc.com. shutterstock_321231902

Synergy in Action, or How PADT is More than the Sum of its Parts

Posted on May 10, 2016, by: Andrew Miller

PADT-Company-Photo-2016-01-600wPADT talks a lot about synergy as a key strength and a key element of the value we provide to our customers. Our three departments, Manufacturing, Services, and Sales, are in constant communication, always leveraging one another’s expertise to solve problems. Strong internal relationships — a consequence of being under the same roof — precipitate easy and abundant information and resource sharing. Communication, paradigm, alignment, synergy: clear as day.

But what does any of that mean?

When a PADT product development customer meets us for the first time, he or she may be shown a slide that looks like this: synergy-f01 Strong bilateral communication among the Product Development, 3D Printing, and Analysis groups means that the project is enriched by contributions from experts across several fields, multiplying the value we add in the development process. For instance, the product will likely someday run into a sticky problem without a clear solution. PADT can attack it from multiple angles, such as design adjustment, finite element analysis (FEA) optimization, and the iterative testing of 3D printed prototypes.

Ok, but still: what does any of that mean?

A longtime customer of PADT’s product development group recently ran into an urgent problem without a clear path to a solution. Their manufacturing partner called them and said that a particular subassembly in their design will cost three times more than expected, which would raise the price of the product above the maximum the market would bear. PADT was presented with the problem: how do we reduce the subassembly cost by 66% while maintaining overall performance, and how do we confidently select a solution in under a week? PADT’s three engineering groups jumped in to help. The Product Development group held a brainstorming session and came out with two adjustments to bring overall cost down. First, the subassembly of three bonded unique steel parts would be replaced by a single injection molded plastic part. This change reduces component cost to within the target, but also significantly reduces the final assembly’s structural integrity.
synergy-f02

Reduction of 3 parts to 1 part

Secondly, a plastic stiffener truss was added between components to mitigate the reduction in overall stiffness. This change adds a little assembly cost, but also significantly increases the final assembly’s structural integrity, which had been weakened by the first change.
synergy-f03

Addition of Stiffening Member

The Analysis group conducted a series of FEA simulations, first to determine the increased bending under load and second to select a material to balance the conflicting requirements for stiffness, strength, and cost. After multiple simulation iterations, it was determined that Product Development had selected a permissible path forward and that a glass-filled polypropylene provides the best combination of the three parameters.
synergy-f04

Bending under load for Material Choices 1, 2, and 3

The 3D Printing group then printed the new design for qualitative “look and feel” testing and quantitative force/deflection study. The group was able to closely match the properties of the selected material from their collection of printable filaments and top-shelf industrial printers, reproducing even the fine details — subtle fillets, radii — that boost strength but are missed with lower quality printers. Through prototype tests, it was determined that Analysis selected an appropriate material and Product Development selected an appropriate design. In the end, PADT was able to confidently select a solution to the customer’s unique cost problem in under a week. Thanks to the synergy of three groups — Product Development, Analysis, and 3D Printing — the customer was able to stay on schedule and enter the market at a relevant price.

So how can PADT help my product?

PADT’s system for delivering services is a textbook example of synergy in action, and it represents a uniquely effective solution to your company’s product problems. Whether you’re in concept design or high-volume production, PADT will tailor-make a solution that fits your budget, schedule, and technical requirements. Give us a call at 1–800–293-PADT or email info@padtinc.com.

Video: Product Development with PADT: How We Make Innovation Work

Posted on May 4, 2016, by: Eric Miller

thumbnailProduct Development is a key part of what PADT does, but we often struggle with sharing what we do in this area and why we do it better. We are engineers.  To help, we put together this video that asks our engineers the key questions that customers ask every day, and their answers truly do show how "We Make Innovation Work." https://youtu.be/UM-hicIQiMk See something you like or have more questions, give us a call at 1-800-293-PADT or email info@padtinc.com. A big thanks to TechTHiNQ and CEI for producing this video.

Introducing Design Days: Free engineering consultation for Startups

Posted on March 25, 2016, by: Eric Miller

PADT_StartUpLabs-1PADT and CEI are teaming up to answer any startup's questions about engineering and manufacturing for their physical product. Over the years we have found lots of early stage companies who benefited from spending a little bit of time with an experienced product development engineer. Finding time for them to stop by PADT was always difficult to schedule and never seemed worked out. Or we would meet people at events and try and talk in a corner, still not good.cei_logo So last month during Phoenix StartupWeek CEI and PADT tried having some time where people could stop by and talk. It went really well for everyone involved, so Design Days was born. Our first one will be held on April 14, 2016 at CEI's offices in Phoenix.  The idea is simple, you get one hour with an experienced mechanical engineer to talk about whatever you want. We can spend the time talking about:
  • Suggestions for how to properly design your product
  • Get contacts at local resources that can help you
  • Brainstorm solutions to technical problems
  • Discuss the weather (it's your hour)
  • Get an idea of what it would take to design and prototype your product
  • Answer questions about software and hardware tools you may need
  • Bounce ideas off someone new
  • Review manufacturing options
  • Get advice on the next steps you should be taking
  • Or whatever else you want to discuss
You don't have to be an existing CEI client, a new company or an old one. You just need to want to talk to our engineers.   Sign up for one of the available one hour slots here.   Our plan is to do this once a month, and if it works, try some other incubators as well. Here is some basic information you should be aware of:
  • Do not ask for Non-Disclosure Agreement (NDA). PADT engineers operate under a strict company code of ethics; therefore no additional NDA is required.
  • This is meant for companies developing physical products, not software.
  • It is open to companies at ANY stage of development, not just startups. Entrepreneurs of any age, including students, are also welcome.
  • This is not a discussion about funding nor is it a sales pitch (from either side)
  • Do not expect a functioning prototype or design nor will PADT engineers solve your technical problems. To fully engage in PADT's design, prototyping and simulation services, there will be a cost involved to be agreed upon by both parties.
    padt-cei-design-days

    Our impromptu trial "Design Days" session during Phoenix StartupWeek.

MD+DI: 3-D Printing Applications Changing Healthcare

Posted on March 15, 2016, by: Eric Miller

md+di-logo-13-D Printing is having a significant impact on healthcare technology. In "3-D Printing Applications Changing Healthcare" PADT's Dhruv Bhate gives real world examples of how this technology is enabling never-before-seen breakthroughs.  

Phoenix Business Journal: 5 reasons why nerds celebrate Pi Day

Posted on March 14, 2016, by: Eric Miller

pbj-phoenix-business-journal-logo Have you heard? It’s Pi Day! This post, "5 reasons why nerds celebrate Pi Day" shares the reasons why those of us in the know like Pi day so much. pie-pi

Video: Automated Test Fixture for Biopsy Device

Posted on November 6, 2015, by: Eric Miller

biobsy-test-fixture-1How do you figure out when and why a product is failing?  When the failure is due to repetitive operation the only practical way is to build a machine that operates the product over and over again. Designing, building, and running this type of device is one of the many services that PADT offers its customers. The video below is an example of how PADT's Medical Device team developed an automated text fixture for a customer that needed to understand the failure mechanisms of a biopsy device. The fixture was designed to operate the device, repeating field operations, and capture behavior over time with the goal of capture which components failed, the nature of each failure, and the nature of each failure. The apparatus repeats four operations that constitute one operation of the device. Video is used with a counter to determine when a failure occurred and how. The project brought together test, controls, and mechanical design engineers. It also utilized PADT's in-house 3D Printing and machining capability. This is also a perfect example of how a customer can hand over an entire project that they need done, but don't have the resources to do in-house. PADT's team created the test specification, designed the hardware, conducted the tests, and delivered actionable information to the customer. If you have a project you do not have the resources to complete in-house, consider having our engineers take a look at it to see how we can help.

Presentation: Leveraging Simulation for Product Development of IoT Devices

Posted on October 16, 2015, by: Eric Miller

SEMI-AZ-IOT-4
SEMI-AZ-IOT-5

Yours truly going over the impact of Simulation on IoT Product Development

The local SEMI chapter here in Arizona held a breakfast meeting on Monetizing Internet of Things (IoT) and PADT was pleased to be one of the presenters. Always a smart group, this was a chance to sit with people making the sensors, chips, and software that enable the IoT and dig deep in to where things are and where they need to be. The event was hosted by one of our favorite customers, and neighbor right across the street, Freescale Semiconductor.  Speakers included IoT experts from Freescale, Intel, Medtronics, ASU, and SEMICO Research. Not surprisingly I talked about how Simulation can play a successful role in product development of IoT devices. You can download a copy of the presentation here: PADT-SEMI-IOT-Simulation-1.pdf UPDATE (11/9/2015): Great write-up by Don Dingee on this event in the SemiWiki. Click here to read it. It includes a great summary of the other speakers. You can also see more details on how people use Simulation for this application on the ANSYS, Inc. website here.  We also like this video from ANSYS that shows some great applications and how ANSYS is used with them: A couple of common themes resonated across the speakers:
  1. Price and size need to come down on the chips used in IoT (this was a semiconductor group, so this is a big part of their focus)
  2. Lowering power usage and increasing power density in batteries is a key driver
  3. The biggest issue in IoT is privacy and security. Keeping your data private and keeping people from hacking in to IoT devices.
  4. Another big problem is dealing with all the data collected by IoT devices. How to make it useful and how to store it all.  One answer is reducing the data on the device, another is only keeping track of what changes.
  5. It is early, standards are needed but they are still forming.
If you look at this list, the first two problems are addressable with simulation: SEMI-AZ-IoT-2 PADT has a growing amount of experience with helping customers simulate and design IoT devices as well as the chips, sensors, and antenna that go in to IoT devices.  To learn more, shoot us an email at info@padtinc.com or call 480.813.4884.