Instantaneous Simulation Results – Introducing ANSYS Discovery Live

Simulation software enables product development engineers to gain insights that were previously possible only through making and breaking expensive prototypes. However, such software isn’t for every engineer. It can be difficult to learn and master, and often simulation results take time to set up and calculate. But what if simulation could be faster and easier?

With its Discovery Live technology, ANSYS revolutionizes product design.

This simulation software provides instantaneous simulation results while you design and edit and enables you to experiment with design ideas for on-the-spot feedback. These immediate insights make simulation useful and relevant to every engineer for upfront CAE. Discovery Live’s speed and simplicity represents a quantum leap forward in simulation technology, and it enables you to spend more time with answers instead of questions.

With Discovery Live, you can:

  • Experiment with design ideas, easily make changes
    and receive instantaneous engineering insights
  • Perform 10 to 1,000 simulations in the same timeframe that was once needed to perform just one simple simulation
  • Simulate on newly created models or any imported CAD file
  • Investigate more options earlier in the design process and develop new products that get to market faster
  • Explore all your “what if” design ideas at little to no cost in time and effort
  • Facilitate breakthroughs and innovations and take your engineering efforts to the next level

Superior CFD Requires Superior Software – ANSYS Fluent 18.2 Webinar

As Computational Fluid Dynamics (CFD) remains one of the most flexible and accurate tools for developing solutions involving fluid flows in a variety of industries, it is important of engineers to stay up to date on the software that makes it all possible: ANSYS.

Thanks to the latest version ANSYS Fluent, engineers now more than ever, can generate unexpected insights and additional value, helping to greatly improve the effectiveness of their product development process.

Join PADT’s CFD Team Lead Engineer, Clinton Smith, for a live webinar, covering the various improvements and enhancements made to the Fluent tool in ANSYS 18.2.

By attending this webinar, you will learn how Fluent 18.2 can help users to:

  • Define a scalar transport equations to improve results for chemical species
  • Visualize injection position and orentation during model setup
  • Accurately predict cavitation in high pressure devices with non-condensable gases
  • And much more!

Don’t miss your chance to attend this upcoming event,

click below to secure your spot today!

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

 You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Phoenix Business Journal: ​If the DMV can be efficient, so can your business

I still can’t believe it. I’m still kind of mad.  I went with my son to get his driver’s licence and it was a smooth and efficient process.  After I got done reeling from this change in a cornerstone of common modern struggles, I realized that “​If the DMV can be efficient, so can your business.”  We no longer have an excuse for being inefficient, if the DMV can clean up its act we have to.

Press Release: PADT and Stratasys Announce Lockheed Martin Additive Manufacturing Laboratory at Metropolitan State University in Denver

PADT-Press-Release-IconPADT and Stratasys have worked with Lockheed Martin to establish a new Additive Manufacturing Laboratory at Metropolitan State University in downtown Denver.  The Lockheed Martin Additive Manufacturing Laboratory is the first-of-its-kind facility in Colorado. It is focused on giving students and industry access to the equipment and faculty needed to develop the next generation of manufacturing tooling, based on the use of 3D printing to make the tooling.

This is PADT’s third successful contribution to the creation of Academia + Industry + Equipment Manufacturer lab, the others being at ASU Polytechnic focused on characterization of 3D Printed parts and at Mesa Community College, focused on training the needed technicians and engineers for running and maintaining additive manufacturing systems. These types of efforts show the commitment from Stratasys, industrial partners, and PADT to making sure that the academic side of new manufacturing technology is being addressed and is working with industry.

We reported on the grand opening of the facility here,and are very pleased to be able to announce the official partnership for the Laboratory.  Great partners make all the difference.

Official copies of the press release can be found in HTML and PDF.

Press Release:

PADT and Stratasys Announce First-of-its-Kind Additive Manufacturing Lab in Colorado, Located at Metropolitan State University of Denver

Lockheed Martin Additive Manufacturing Laboratory helps students and engineers spur design and creation of composite tooling applications to reduce manufacturing lead times and streamline costs

TEMPE, Ariz. and Minneapolis, MN – August 28, 2017 ─ Phoenix Analysis and Design Technologies (PADT) today announced the company is teaming with Stratasys Ltd. (Nasdaq: SSYS), a global leader in applied additive technology solutions, to unveil a first-of-its-kind additive manufacturing lab in Colorado – located at the Metropolitan State University of Denver. Expected to open later this fall, the Lockheed Martin Additive Manufacturing Laboratory is unique to the state, dedicated to advance use of 3D printing for creation of composite tooling applications addressing complex design and manufacturing requirements. Empowering next-generation manufacturing, 3D printing allows designers and engineers to improve efficiency and lead times while minimizing costs.

At the centerpiece of this lab are additive technology solutions from Stratasys, enabling students and engineers to speed production and streamline efficiencies with 3D printed, custom tooling solutions addressing even the most complex designs and shapes.  Backed by the Stratasys Fortus 900mc Production 3D Printer, the environment is funded through a grant from Lockheed Martin Space Systems – and now becomes one of the few located in Colorado and the only one at a higher-education institution in the Rocky Mountain region.

Building the Lockheed Martin Additive Manufacturing Laboratory at MSU Denver is a major development in the progression of additive manufacturing tooling applications,” said Rey Chu, Principal and Co-Founder, Manufacturing Technologies at PADT, Inc.The expertise and dedication of Stratasys and PADT – combined with the generosity of Lockheed Martin and vision for advanced workforce development from MSU Denver – will help propel our industry far beyond where it is today.

“We’re excited to work with Lockheed Martin to propel creation of highly innovative, additive manufacturing curriculum at MSU Denver. Both students and local businesses now have access to leading 3D printing solutions for development of composite structures – enabling manufacturers to save time, money, and solve even their most unique design challenges,” said Tim Schniepp, Director of Composite Solutions at Stratasys. “We have no doubt the lab will quickly become a cornerstone of additive manufacturing innovation across the State of Colorado.”

 Initially deployed at MSU Denver, the additive manufacturing curriculum will later become available for use by other academic institutions across the country. Additionally, PADT will work with MSU Denver, Lockheed Martin and other users to build a Fortus 900mc Users Group within the Rocky Mountain region.

Supporting Quotes

Brian Kaplun, Manager, Additive Manufacturing at Lockheed Martin Space Systems: “Lockheed Martin believes this first-of-its-kind laboratory at MSU Denver can shape the future of space. We’ve built 3D-printed parts that traveled 1.7 billion miles to Jupiter, and we look forward to developing a workforce that understands how to use this technology for future flight hardware, tooling and other advanced manufacturing applications.”

Robert Park, Director, Advanced Manufacturing Sciences Institute at Metro State University of Denver: “MSU Denver is fortunate to have such great partners who support our passion for nurturing young minds to shape the future of the additive manufacturing industry. We’re also excited to work with Stratasys and PADT on progressing the industry beyond its current scope.”

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

About Lockheed Martin Space Systems

Headquartered in Bethesda, Maryland, Lockheed Martin is a global security and aerospace company that employs approximately 97,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services.

About Metropolitan State University of Denver
MSU Denver is a leader in educating Coloradans through university programs particularly relevant to the state’s economy and the demands of today’s employers. With the highest number of ethnically diverse students among the state’s four-year colleges, MSU Denver offers 67 bachelor and five master degrees in accounting, business, health administration, teaching and social work. Nearly 20,000 students are currently enrolled at MSU Denver, and 75 percent of the University’s 88,000 graduates have remained in Colorado as valuable members of the state’s workforce. More information can be found at www.msudenver.edu.

About Stratasys

Stratasys (NASDAQ: SSYS) is a global leader in applied additive technology solutions for industries including Aerospace, Automotive, Healthcare, Consumer Products and Education. For nearly 30 years, a deep and ongoing focus on customers’ business requirements has fueled purposeful innovations—1,200 granted and pending additive technology patents to date—that create new value across product lifecycle processes, from design prototypes to manufacturing tools and final production parts. The Stratasys 3D printing ecosystem of solutions and expertise—advanced materials; software with voxel level control; precise, repeatable and reliable FDM and PolyJet 3D printers; application-based expert services; on-demand parts and industry-defining partnerships—works to ensure seamless integration into each customer’s evolving workflow. Fulfilling the real-world potential of additive, Stratasys delivers breakthrough industry-specific applications that accelerate business processes, optimize value chains and drive business performance improvements for thousands of future-ready leaders around the world.

Corporate Headquarters: Minneapolis, Minnesota and Rehovot, Israel.

Online at: www.stratasys.com  http://blog.stratasys.com and LinkedIn.

Stratasys, Fortus, and FDM are registered trademarks, and the Stratasys signet is a trademark of Stratasys Ltd. and or its subsidiaries or affiliates. All other trademarks belong to their respective owners.

# # #

PADT Media Contact
Alec RobertsonTechTHiNQ on behalf of PADT
585.281.6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com
Stratasys Media Contact
Craig Librett
Stratasys
Principal & Co-Owner
518.424.2497
craig.librett@stratasys.com

 

All Things ANSYS EP003: Awesome Additions to ANSYS Mechanical 18.2 and a Look at Scripting with the ANSYS Customization Toolkit

Published on: August 28, 2017
With: Joe Woodward, Ted, Harris, Eric Miller
Description: Ted and Joe join Eric to talk about the recent release of ANSYS 18.2 including a look at the enhancements in ANSYS Mechanical that we will use right away. Our regular look at news and events bracket a fantastic discussion on ANSYS ACT and how to use it to script and build your own applications on top of ANSYS products.
Listen:
Subscribe:

 

Silicon Desert Insider: What’s so exciting about metal 3-D printing anyway?

The ability to take a model of some object on a computer and make a physical copy with one machine, 3-D Printing or Additive Manufacturing, has been around for more than twenty-five years.  Recently, the bug noise in 3D Printing has been around metal 3D Printing.  It is a big deal, and in “What’s so exciting about metal 3-D printing anyway?” I explain why engineers are so head-over-heals for this new capability.

Recording – Leveraging On-Demand Cloud HPC for Simulation with Nimbix

High Performance Computing (HPC) has proven to be critical for simulation tools like ANSYS thanks to its ability to help engineers perform a wider range of analyses faster than ever before.

PADT is proud to be working with Nimbix, the creators of an award winning HPC platform developed for enterprises and end users who demand performance and ease of use in their process.

Check out the following recording of our co-hosted webinar, with Nimbix Application & Sales Engineer Adil Noor, and PADT’s Lead Application Engineer, Manoj Mahendran, discussing the benefits of leveraging HPC and Cloud Computing for simulation, along with a look at how PADT has deployed ANSYS on the Nimbix platform.

All Things ANSYS EP002: We talk about HFSS and Files Storage and Management with EKM

Published on: August 14, 2017
With: Ahmed Fayed, Michael Griesi, Joe Woodward, Eric Miller
Description: In our second try at a podcast we sit down with Michael, our inhouse HFSS expert, to talk about what HFSS is and how it can be used.  We also had the oportunity to have Ahmed join us from PADT’s IT team to talk about dealing with file storage when you use ANSYS products. We focused on how we use ANSYS EKM to get a handle on all of them.  This episode also includes news and our first ever commercial break.
Listen:
Subscribe:

 

All Things ANSYS EP001: Topological Optimization and other additions in ANSYS 18

Published on: July 31, 2017
With: Trevor Rubinoff, Joe Woodward, Ted Harris, and Eric Miller
Description: In our first ever attempt at a podcast we gather a few engineers around microphone and share our thoughts. Besides talking about our new podcast, we take a look at what we have learned about Topological Optimization with ANSYS as well as each of our favorite features in ANSYS 18. We also introduced a regular segment where we go over news in the ANSYS world.
Listen:
Subscribe:

 

ANSYS ACT Console Snippets

So this is just a quick post to point out a handy feature in ANSYS Workbench, the ACT Console. There are times when you want some functionality in Mechanical that just is not yet there. In this example, a customer wanted the ability to get a text list of all the Named Selections in his model.  A quick Python script does just that.

import string,re

a=ExtAPI.DataModel.AnalysisList[0]  #Get the first Analysis if multiple are present 
workingdir=a.WorkingDir 
path=workingdir.split("\\\\") 

#Put the output file in the "user_files" directory for the project. 
userdir=string.join(path[:len(path)-4],"\\\\")+"\\\\user_files"  

#Use the name of the system in case the snippet is 
#used on multiple independent systems in the project. 
system_name=re.sub(" ","_",a.Name)  
model = ExtAPI.DataModel.Project.Model 
nsels = model.NamedSelections                  #Get the list of Named Selections 

if nsels:    #Do this if there are any Named Selections
     f=open("%s\\\\%s_named_selections_checked.txt"%(userdir,system_name), "w") 
     for child in nsels.Children:
        f.write("%s\n"%child.Name)
     f.close()

So to use a piece of Python code, like this, we use the ACT Console in Mechanical. To access the ACT Console in Mechanical 17.0, or later, just hit this icon in the toolbar.

The Console allows you to type, or paste, text directly into the black command line at the bottom.  But if we are going to reuse this code, then the use of Snippets is the way to go. In R17.0 they were called ‘Bookmarks’, but they worked the same way.

When you add a Snippet, a new window allows you to name the snippet and type in, or paste in, your code.

When you hit Apply, your named snippet is added to the list

From then on, to use the snippet you just click on it, and hit ‘Enter’. The text is basically, repasted into the command window, so you can set any variables needed prior to hitting your snippet.

The snippets are persistent and remain in the console, so they are available for all new projects. Using snippets is a great way to reduce time for repetitive tasks, without having to create a full blown ACT extension.

Happy coding!

Phoenix Business Journal: ​Making a statement about who you are in a digital, shared world

In our new modern world, much has changed. We are more connected and more mobile, working anywhere we need to.  And with the emergence of the sharing economy we are letting others drive us and staying in other people’s homes.  This impacts a lot of things in our lives, but one major input is that “​Making a statement about who you are in a digital, shared world” is very different.  Take a look at this post and think about it.  How do you share who you are?

Getting to Know PADT: Simulation Services

This is the fourth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

The A in PADT actually stands for Analysis.  Back in 1994 when the company was started, computer modeling for mechanical engineering was called Analysis. It was such an important part of what we wanted to achieve that we put it in the name.  Unfortunately, Analysis was a bit to generic so the industry switched to Numerical Simulation, or simply simulation. In the 23 years since we started, analysis… sorry, simulation, has been not just a foundation for what PADT does for our customers, it has become a defacto tool in product development.  Through it all there has been a dedicated group here that is focused on providing the best simulation as a service to customers around the world.

Driving Designs with Simulation

Many companies know about PADT with regards to simulation because we are an ANSYS Elite Channel Partner – selling and supporting the entire suite of ANSYS simulation tools in the Southwestern US. The success of simulation in the design and development of physical products is a direct result of the fact that these fantastic tools from ANSYS can be used to drive the design of products.  This can be done in-house by companies designing the products, or outsourced to experts. And that is where PADT has come in for hundreds of customers around the world.  The expertise we use to support and train on ANSYS products derives directly from our real world experience providing CFD, structural, thermal, electromagnetic, and multiphysics simulations to help those customers drive their product development.

For those not familiar with simulation, or who only use the basic tools embedded in CAD software as a quick check, understanding why it is so important hinges on understand what it really is. Numerical Simulation is a methodology where a physical product is converted into a computer model that represents its physical behavior.  This behavior can be many different physics: stresses, vibration, fluid flow, temperature flow, high frequency electromagnetic radiation, sloshing of liquids, deformation during impact, piezoelectric response, heating from static electromagnetic waves, cooling from air flow. The list goes on and on. Pretty much anything you studied in physics can be modeled using a numerical simulation.

The process of doing the simulation consists of taking the physical object and breaking it into discrete chunks, often very small relative to the size of the object, so that equations can easily be written for each chunk that describes the physical behavior of that chunk relative to the chunks around it.  Imagine writing equations for the fluid flow in a complicated valve housing, very hard to do. But if you break it up into about one million small polyhedrons, you can write an equation for flow in and out of each polyhedron. These equations are then assembled into a giant matrix and solved using linear algebra.  That is why we need such large computers.  We mostly use the world’s leading software for this, from ANSYS, Inc.

More than Building and Running Models

Knowing how to build and run finite element and CFD models is key to providing simulation as a service. PADT’s team averages over 18 years of experience and few people come close to their knowledge on geometry preparation, meshing, setting up loads and boundary conditions, leveraging the advantages of each solver, and post processing. That is a good starting point. But what really sets PADT apart is the understanding of how the simulation fits into product development, and how the information gathered from simulation can and should be used.  Instead of providing a number or a plot, PADT’s experienced engineers deliver insight into the behavior of the products being simulated.

How each project is conducted is also something that customers keep coming back for.  Nothing is ever “thrown over the wall” our passed through a “black box.” From quote through delivery of final report, PADT’s engineers work closely with the customer’s engineers to understand requirements, get to the heart of what the customer is looking for, and deliver useful and actionable information.  And if you have your own in-house simulation team, we will work closely with them to help them understand what we did so they can add it to their capabilities. In fact, one of the most popular simulation services offered by PADT is automation of the simulation process with software tools written on top of ANSYS products.  This is a fantastic way to leverage PADT’s experience and knowledge to make your engineers more efficient and capable.

Unparalleled Breadth and Depth

Based on feedback from our customers, the other area where PADT really stands out is in the incredible breadth and depth of capability offered.  Whereas most service providers specialize in one type of simulation or a single industry, more than twenty years of delivering high-end simulation to evaluate hundreds of products has given PADT’s team a unique and special level of understanding and expertise. From fluid flow in aerospace cooling systems to electromagnetics for an antenna in a smart toy, a strong theoretical understanding is combined with knowledge about the software tools to apply the right approach to each unique problem.

No where is this breadth and depth exemplified than with PADT’s relationship with ANSYS, Inc. Since the company was founded, PADT engineers have worked closely with ANSYS development and product management to understand these powerful tools better and to offer their advice on how to make them better.  And each time ANSYS, Inc. develops or acquires a new capability, that same team steps up and digs deep into the functionality that has been added. And when necessary, adding new engineers to the team to offer our customers the same expert access to these new tools.

 

The best way to understand why hundreds of companies, many of them large corporations that are leaders in their industry, come to PADT from around the world for their simulation services needs is to talk to us about your simulation services needs. Regardless of the industry or the physics, our team is ready to help you drive your product development with simulation. Contact us now to start the discussion.

 

How ANSYS Helped Us View the Solar Eclipse

Here in the Phoenix area, we weren’t treated to the full total eclipse that others in the USA got to see.  Our maximum coverage of the sun was a bit over 60%.  Still, there was an eclipse buzz in the PADT headquarters and although we had some rare clouds for a few minutes, the skies did part and we did get to view the partial eclipse from the parking lot.

So, how did ANSYS help us view the eclipse?  It was in an indirect way – via a pinhole camera I made from an old ANSYS installation software box.  The software box, a hobby knife to cut out a viewing port, a couple of post-it notes to allow for a small hole and a clear projection area, and a thumb tack were all that was needed, along with a couple of minutes to modify the box.

 

Here we can see the viewing port cut into the software box.  On the opposite side is a pin hole to allow the sun’s light to enter the box.

After heading out to the eclipsing grounds (the parking lot), we quickly lined up the pin hole and the projection screen and got our views of the partially obscured sun:

Here is a close up of the sun’s image projected inside the box:

Others viewing the eclipse here at PADT HQ had a range of filters, eclipse glasses, etc.  With the projection method as shown above, though, we don’t have to worry about eye damage.  So, in a way, ANSYS did help us view the eclipse safely, by providing a box that was easy to convert to a pinhole camera.

While we enjoyed the partial eclipse here in Arizona, we did have a couple of PADT colleagues in the path of totality.  Here is a picture from one of my coworkers who viewed the eclipse in South Carolina:

We hope you enjoyed the eclipse as well, either in person or via images on the web.  We’re looking forward to the next one!

Finally, In case you missed an earlier astronomical rarity back in 2012, here is a photo of the planet Venus transiting in front of the sun’s disk (black dot on the left side).  The next one of these won’t be until December, 2117.

 

Phoenix Business Journal: ​Building tomorrow’s science and technology leaders with Arizona’s Pioneering Chief Science Officer program

There is a great STEM program here in Arizona called the “Chief Science Officer” that is backed by the Arizona Commerce Authority and the Arizona Technology Council.  In “Building tomorrow’s science and technology leaders with Arizona’s Pioneering Chief Science Officer program” I go over some highlights on how they take kids interested in Science, Technology, Engineering, and Math and help them become leaders in their schools and advocates for better STEM education.

Phoenix Business Journal: ​Taking time to be thankful for being able to do this engineering thing

Not a lot of people have the same advantage that I do, I have a profession that I really like. Being an engineer is fascinating and a true pleasure because engineering is hard, and when smart people do it right it is so interesting and exciting. It is about the process and figuring stuff out – like a solving good puzzle, but better. Learn more about why I like what I do in “Taking time to be thankful for being able to do this engineering thing