Live Webinar: Stratasys and Aerospace Manufacturing & Design

stratasys-SSYS-TYPEMARK-rgb-400x

Next week, Stratasys will be hosting a live webinar with Aerospace Manufacturing and Design.  Hear from drone manufacturer Monarch about the competitive advantages they have gained by using Stratasys 3D Printing in their design process.

Register Here

Monarch is a drone manufacturer who uses 3D printing to provide a wide range of application-focused drone services for the agriculture, energy and land survey industries.  Building these drones with the use of 3D printing gives them the ability to produce a wide range of drones for specialized applications and build custom drones in a short period of time, giving them a tremendous advantage over the competition.  Monarch chose the Stratasys Fortus 400mc 3D printer because of its ability to build large parts that are strong and rugged enough to fly their drones.  They have taken advantage of these capabilities to design and build drones for special applications that include inspecting crops, wind turbines and solar panels, aerial surveying, accident and crime scene mapping, historical building documentation and many others.

When: May 25th at 1:00pm EST

Register Here

Just One CUBE With Just One Click! A 1.3x Speedup For ANSYS® Mechanical™

Greetings from the HPC numerical simulation proving grounds of PADT, Inc. in Tempe, Arizona. While bench marking the very latest version of ANSYS® Mechanical™ I learned something very significant and I need to share this information with you right now.As I gazed down on the data outputs from the new solve.out files, I began to notice something. Yes change indeed, something was different, something had changed.

A brief pause for emphasis, in regards in overall ANSYS® productivity and amazing improvements please read this post.

However, pertaining to this blog post, I am focusing on one very important HPC performance metric to me. It is one of the many HPC performance metrics that I have used when creating a balanced HPC server for engineering simulation.. But wait there is more! so please wait just a little bit longer, for very soon I will post even more juicy pieces of data garnered from taken from these new ANSYS® benchmark solver files.

To recap in all of its bullets points & glories:

  • For today and just for today, we are focusing on just one of the performance metrics.
    • The Time Spent Computing The Solution!
  • This 1.3x speedup in solve times was achieved using just one CUBE workstation and with just one click!
    • Open ANSYS®and while you are creating your solve.
    • Select, withjust one click either the INTEL MPI or IBM Platform MPI.
    • Next, run your test repeat as necessary using whichever MPI version that you did not start your test with.

The ANSYS® Mechanical™ Benchmark Description:

  • V15sp-5
    • Sparse solver, symmetric matrix, 6000k DOFs, transient, nonlinear, structural analysis with 1 iteration
    • GPU Accelerator or Co-Processor enabled for: NVIDIA and Intel Phi
    • A large sized job for direct solvers, should run incore on machines with 128 GB or more of memory, good test of processor flop speed if running incore and I/O if running out-of-core

CUBE ANSYS Numerical Simulation Appliance Used:

The ANSYS® Mechanical™ Benchmark Results:


TIME SPENT COMPUTING THE SOLUTION TIME SPENT COMPUTING THE SOLUTION
IBM Platform MPI INTEL MPI
Cores 2016 CUBE w16i-v4 2016 CUBE w16i-v4 This Speedup is…X faster!
2 396.1 380.9 1.04
4 239.7 229.6 1.04
6 210.1 196.7 1.07
8 182.9 168.7 1.08
10 167.2 161.4 1.04
12 167.1 160.7 1.04
14 196.1 151.3 1.30
16 184.7 161.7 1.14

justonecubejustoneclickspeedup

Wow! using these latest 14nm INTEL® XEON®  CPU’s, phew, I have been forever changed! As you can see from the data above, in just one simple click, changing from the IBM Platform MPI to using INTEL MPI and look! the benchmark time spent computing times are faster! A 1.3x Speedup!

Now in this specific benchmark example along with the use of the latest  ANSYS® Mechanical achieving a 1.3x speedup without spending another penny is very wise and not so foolish.

Disclaimer: Please check with your ANSYS Software Sales Representative for the very latest on solver updates and information. Because some of the models and compatibility can very on the . You may need to use the MS-MPI, INTEL-MPI or IBM Platform MPI for your distributed solving. If you are not sure please contact your local ANSYS® Corporate Software Sales or ANSYS® Software Channel Partner that was assigned specifically to you and/or your company.

References:

http://www.ansys.com/Solutions/Solutions-by-Role/IT-Professionals/Platform-Support/Benchmarks-Overview/ANSYS-Mechanical-Benchmarks

Phoenix Business Journal: Connectivity – What makes the Internet of Things a big deal

pbj-phoenix-business-journal-logoIn this second article on the Internet of Things, or IoT, we take a look at ways you can connect a smart device to the internet.  “Connectivity: What makes the Internet of Things a big deal” gives some basic information on options and talks about the important decisions you need to make when developing your connectivity plan.

Synergy in Action, or How PADT is More than the Sum of its Parts

PADT-Company-Photo-2016-01-600wPADT talks a lot about synergy as a key strength and a key element of the value we provide to our customers. Our three departments, Manufacturing, Services, and Sales, are in constant communication, always leveraging one another’s expertise to solve problems. Strong internal relationships — a consequence of being under the same roof — precipitate easy and abundant information and resource sharing. Communication, paradigm, alignment, synergy: clear as day.

But what does any of that mean?

When a PADT product development customer meets us for the first time, he or she may be shown a slide that looks like this:

synergy-f01

Strong bilateral communication among the Product Development, 3D Printing, and Analysis groups means that the project is enriched by contributions from experts across several fields, multiplying the value we add in the development process. For instance, the product will likely someday run into a sticky problem without a clear solution. PADT can attack it from multiple angles, such as design adjustment, finite element analysis (FEA) optimization, and the iterative testing of 3D printed prototypes.

Ok, but still: what does any of that mean?

A longtime customer of PADT’s product development group recently ran into an urgent problem without a clear path to a solution. Their manufacturing partner called them and said that a particular subassembly in their design will cost three times more than expected, which would raise the price of the product above the maximum the market would bear. PADT was presented with the problem: how do we reduce the subassembly cost by 66% while maintaining overall performance, and how do we confidently select a solution in under a week?

PADT’s three engineering groups jumped in to help.

The Product Development group held a brainstorming session and came out with two adjustments to bring overall cost down. First, the subassembly of three bonded unique steel parts would be replaced by a single injection molded plastic part. This change reduces component cost to within the target, but also significantly reduces the final assembly’s structural integrity.

synergy-f02
Reduction of 3 parts to 1 part

Secondly, a plastic stiffener truss was added between components to mitigate the reduction in overall stiffness. This change adds a little assembly cost, but also significantly increases the final assembly’s structural integrity, which had been weakened by the first change.

synergy-f03
Addition of Stiffening Member

The Analysis group conducted a series of FEA simulations, first to determine the increased bending under load and second to select a material to balance the conflicting requirements for stiffness, strength, and cost. After multiple simulation iterations, it was determined that Product Development had selected a permissible path forward and that a glass-filled polypropylene provides the best combination of the three parameters.

synergy-f04
Bending under load for Material Choices 1, 2, and 3

The 3D Printing group then printed the new design for qualitative “look and feel” testing and quantitative force/deflection study. The group was able to closely match the properties of the selected material from their collection of printable filaments and top-shelf industrial printers, reproducing even the fine details — subtle fillets, radii — that boost strength but are missed with lower quality printers. Through prototype tests, it was determined that Analysis selected an appropriate material and Product Development selected an appropriate design.

In the end, PADT was able to confidently select a solution to the customer’s unique cost problem in under a week. Thanks to the synergy of three groups — Product Development, Analysis, and 3D Printing — the customer was able to stay on schedule and enter the market at a relevant price.

So how can PADT help my product?

PADT’s system for delivering services is a textbook example of synergy in action, and it represents a uniquely effective solution to your company’s product problems. Whether you’re in concept design or high-volume production, PADT will tailor-make a solution that fits your budget, schedule, and technical requirements.
Give us a call at 1–800–293-PADT or email info@padtinc.com.

Webinar on the new Stratasys J750 The first ever, full-color, multi- material 3D Printer

J750 Shoes 3

REGISTER 

Stratasys recently released the most advanced PolyJet 3D Printer on the market.  The Stratasys J750 promises to be a game changer by printing complex parts with diverse properties quickly while minimizing post processing time.  We invite you to join us for a webinar to learn more about this amazing technology.

Realistic Prototypes

The J750 provides true, full-color capability. The color range is possible because with the J750, you can choose between 5 different colors: cyan, magenta, yellow, black and white allowing the J750 to achieve a broad color spectrum.

Color textures and gradients are also possible now allowing for a variety of realistic patters like wood grain, plaid or even photographs and illustrations.

Full color is also now able to be combined with a variety of material characteristics such as a range of transparencies and durometers.  All of this variety can now be done in a single print.

Register now and learn how to create stunning prototypes quickly and efficiently with full color realism.

Half Head

Versatile

The J750 not only produces incredibly realistic models, it is also capable of creating thousands of colors, translucencies and durometers simply by combining base resins right on the build tray.  The versatility provided by the J750 can drastically reduce the amount of time spend on post processing a model.  Before the Stratasys J750, no single 3D printer could deliver full color, smooth surfaces and multiple materials. A shop that wanted to achieve all of these qualities would have had to adopt multiple 3D printing technologies and still resort to extensive post-processing, such as sanding, painting and bonding.

 

J750_ControlPnl_hands - Medium Quality JPG

Fast, Efficient Workflow

PolyJet Studio is the latest generation of ObjetStudio Software.  The intuitive interface makes it easy to choose materials, optimize the build and manage print queues.

The six-material capacity means less time spending changing over materials, less waste purging to switch materials and less overall down time.

There is so much more to the J750.  Please join us for a webinar to learn more and get your questions answered by our Application Engineer and PolyJet Technology expert, James Barker.

REGISTER today for our upcoming webinar to find out even more about this game-changing technology.

If you have any questions or encounter a problem while registering, please email kathryn.pesta@padtinc.com or call Kathryn at 480.813.4884.

Take a look at some other cool prototypes made on the J750.

J750 Console StickshiftJ750 Cartoon CharactersJ750_Tennis Shoes_GreenSide2 - Low Resolution JPGJ750_Liver2 - High Resolution JPGFEAJ750_Sushi 1_R - Low Resolution JPG

PADT and ASU Collaborate on 3D Printed Lattice Research

The ASU Capstone team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest.
ASU student team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest

Over the past two academic semesters (2015/16), I had the opportunity to work closely with six senior-year undergraduate engineering students from the Arizona State University (ASU), as their industry adviser on an eProject (similar to a Capstone or Senior Design project). The area we wanted to explore with the students was in 3D printed lattice structures, and more specifically, address the material modeling aspects of these structures. PADT provided access to our 3D printing equipment and materials, ASU to their mechanical testing and characterization facilities and we both used ANSYS for simulation, as well as a weekly meeting with a whiteboard to discuss our ideas.

While there are several efforts ongoing in developing design and optimization software for lattice structures, there has been little progress in developing a robust, validated material model that accurately describes how these structures behave – this is what our eProject set out to do. The complex internal meso- and microstructure of these structures makes them particularly sensitive to process variables such as build orientation, layer thickness, deposition or fusion width etc., none of which are accounted for in models for lattice structures available today. As a result, the use of published values for bulk materials are not accurately predictive of true lattice structure behavior.

In this work, we combined analytical, experimental and numerical techniques to extract and validate material parameters that describe mechanical response of lattice structures. We demonstrated our approach on regular honeycomb structures of ULTEM-9085 material, made with the Fused Deposition Modeling (FDM) process. Our results showed that we were able to predict low strain responses within 5-10% error, compared to 40-60% error with the use of bulk properties.

This work is to be presented in full at the upcoming RAPID conference on May 18, 2016 (details at this link) and has also been accepted for full length paper submission to the SFF Symposium. We are also submitting a research proposal that builds on this work and extends it into more complex geometries, metals and failure modeling. If you are interested in the findings of this work and/or would like to collaborate, please meet us at RAPID or send us an email (info@padtinc.com).

Our final poster and the Fortus 400mc that we printed all our honeycomb structures with
The final poster summarizing our work rests atop the Stratasys Fortus 400mc that we printed all our honeycomb structures on

Webinars: Overview of Add-On Products that Work with ANSYS Mechanical

PADT-Webinar-LogoWith the introduction of the new ANSYS Mechanical Enterprise, many add-on products that had to be purchased separate, are now included. In these webinars PADT’s engineers will provide an overview of the key applications that users now have easy access to.

Each product will be reviewed by one of PADT’s engineers. The will share the functionality of each tool, discuss some lessons we have learned in using and supporting each tool, and provide a short demonstration. Each session will have time for Questions and Answers.

ANSYS-Footer-RBD-STR-ACT

Sign up for the one you want, or all three. Everyone that registers will receive a link to the recording and to a copy of the slides. So register even if you can not make the specific dates.

Here are the times and links to register:

Overview of ANSYS Rigid Body Dynamics (RBD) and ANSYS Explicit STR
May 19, 2016 (Thu)
11:00 am MST & PDT / 12:00 pm MDT

      REGISTER

Overview of ANSYS SpaceClaim and ANSYS AIM
May 24, 2016 (Tue)
11:00 am MST & PDT / 12:00 pm MDT

    REGISTER

Overview of ANSYS Customization Toolkit (ACT) and ANSYS DesignXplorer (DX)
May 26, 2016 (Thu)
11:00 am MST & PDT / 12:00 pm MDT

     REGISTER

We hope to see you online.  If you have any questions, contact us at support@padtinc.com or call 480.813.4884.

ANSYS_Mechanical_Header

KJZZ: Has Arizona’s Biotech Community Achieved Critical Mass?

kjzz-logoKJZZ’s Mark Brodie interviewed PADT’s Eric Miller as a follow on to the blog post Eric did on the AZ BioTech industry.  He asked great questions on where the industry is and what we should be doing next.

PADT Events – May 2016

April was a busy month, but May looks a bit more normal.  We hope to see some of you at the following PADT events happening in the next 5 or 6 week. You can also get a summary of what happened in April below.


iot_world_logo

May 11: Internet of Things World
Santa Clara, CA

A couple of us are headed to Santa Clara for this gigantic event.  No booth, we will be walking around and checking it out.  With so much of our work turning towards support IoT, we felt this was a good place to network and find other partners. Look for us if you are there… we will of course have PADT shirts on.


rapid-logo-100May 16-19: RAPID Show
Orlando, FL

The other big Additive Manufacturing show in the US is Rapid, held in Orlando, FL this year. PADT will be presenting at least one, and perhaps two times at this event. We will also be hanging out with Stratasys and other partners in the exhibit area.


SBIR-ConfMay 23: National SBIR/STTR Conference
National Harbor, Maryland

PADT will be visiting this years gathering on SBIR and STTR contracts.  It is a great opportunity to meet the program officers that are in charge of projects we are applying for as well as a place to meet other companies like PADT that are strong participants in the program.


PADT-Webinar-Logo

We have 4 fantastic webinars for May. All PADT webinars are recorded, so even if you can’t make the specified time register and we will send you a link to the recoreding.

Thursday, May 19, 11:00 AM
Overview of ANSYS Rigid Body Dynamics (RBD) and ANSYS Explicit STR
RegisterFriday, May 20, 1:00 PM
The Stratasys J750 – A new revolutionary full color 3D Printer
Register

Tuesday, May 24, 10:00 AM Phx
Overview of ANSYS SpaceClaim and ANSYS AIM
Register

Thursday, May 26, 10:00 AM Phx
Overview of ANSYS Customization Toolkit (ACT) and ANSYS DesignXplorer (DX)
Register


April Events in Review

April matched March in the number of events.  We made a lot of new contacts and were able to learn about some new industries and people.


amug-2Our 3D printing sales and services team got off to a great start at this years AMUG Annual Meeting in St. Luis. PADT’s Dhruv Bhate gave two very well received presentations.  Besides catching up with customers and partners, the team was able to check out the latest technologies in Additive Manufacturing


navy_sbire-1The RevAZ team at the Arizona Commerce Authority was nice enough to let PADT host their seminar on Additive Manufacturing and the Navy SBIR Program. We had a great turnout of over 30 people for the seminar put on by Jonathan Leggett, the NAVSEA SBIR Program Manager on how to better utilize the SBIR program. This was followed by one-on-one discussions with John and people from RevAZ.


SpaceSymposiumThis year’s Space Symposium in Colorado Springs was fantastic. The best part was meeting Bill Nye and learning more about the mission to mars. Even better was having our customers from different Aerospace companies meet in our booth and interact.


AZTC-Tucson-LnLThe Tucson tech community provided a great audience for our Lunch & Learn with the AZ Technology Council on “Innovation is easier said than done: Why skipping product simulation is no longer an option” Dan Hartman gave a great talk on the subject.


SMR-FlownexFlownex shined at this year the SMR 2016 conference in Atlanta. Many people in the nuclear field were able to see Flownex for the first time and get a feel for how powerful it is for designing a modular reactor.


There were two lectures to students in April. Dhruv Bhate crossed the valley and gave an inspirational talk to students at Peoria High School.  As always, the students questions and feedback were fantastic.  Later in the month, Ted Harris headed down to the University of Arizona in Tucson to talk to an engineering class about Finite Element Analysis.


nacet-design-daysApril also saw the start of a new initiative at PADT, Design Days. This is where some of our product development engineers visit incubators and offer up free advice for an hour.  Nothing too complicated, just one-on-one time for Startups with an experienced engineer.  We started at NACET in Flagstaff where we met some great inventors.  Next was a larger event at CEI in Phoenix followed by sessions at Chandler Innovations.


AZBio-2016The last big event in a busy month was the AZBio Expo in Phoenix. As always, this event is packed full of people in the Arizona Biotech space. We caught up with long time customers and met some new people. The talks were informative and at time entertaining.

Video: Product Development with PADT: How We Make Innovation Work

thumbnailProduct Development is a key part of what PADT does, but we often struggle with sharing what we do in this area and why we do it better. We are engineers.  To help, we put together this video that asks our engineers the key questions that customers ask every day, and their answers truly do show how “We Make Innovation Work.”

See something you like or have more questions, give us a call at 1-800-293-PADT or email info@padtinc.com.

A big thanks to TechTHiNQ and CEI for producing this video.

Phoenix Business Journal: ​Sensors and controls – Making a product smart enough for the Internet of Things

pbj-phoenix-business-journal-logoEveryone is talking about the Internet of Things, or IoT.  This is the first of four posts that look at what IoT is and how your products can take advantage of it. We start with “Sensors and controls: Making a product smart enough for the Internet of Things” to understand what makes a product smart, the first step in enabling a product for the IoT.

Phoenix Business Journal: ​Has the Arizona biotech community achieved critical mass?

pbj-phoenix-business-journal-logoThe Arizona BioTech industry has come a long way, but has it come far enough to be self sustaining?  In “Has the Arizona biotech community achieved critical mass?” I take a look at where we are and how close we are to this critical goal.

An Eye for the Win! – Signal Integrity with ANSYS

DDRComparisonIn today’s world of high speed communication we are continuously pushing the envelope in data throughput and reliability – There are many challenges that restrict speedy progress: Time – Spinning multiple boards to find and fix problems costs valuable time and money; Cost – additional test procedures can significantly add to this cost; Scalability of Solutions – it’s fundamentally difficult to accurately predict what might happen solely through previous experiences; which is often why multiple spins are required.

ANSYS has the simulation platform that enable signal integrity engineers to predict and improve the performance of high speed communication channels before any board is prototyped – Imagine being able get the design right the first time by testing several design parameters such as different trace routing, power profiles and components.

This sounds like a great proposition but in actuality what do you get from doing that? The answer is a reduced design cost, detailed insight into the design and a reduced time to market. The only way to obtain this “full picture” is to understand the electrical, thermal and mechanical aspects of the design.

EyediagramEye Diagram of Data Signal Obtained in ANSYS

A critical characterization in high speed communication channel design is the Eye diagram. Extensive testing is done to obtain Eye diagrams for various signal nets across a PCB or Package – ANSYS can provide the Eye diagram so that engineers can address potential failures and weaknesses in their design before it is sent out for prototyping. Bathtub curves, effects of jitter and identifying crosstalk are equally important in the design of communication channels and all can be obtained and considered with ANSYS tools.

ANSYS supports IBIS-AMI modeling, SERDES design, TDR measurement and Statistical Eye analysis among much more. With chip, memory and board manufacturers all utilizing ANSYS products it is easy to incorporate and analyze real world product performance of the entire PCB.

TDRTDR Measurement Across Net

ANSYS allows all aspects of the design to be tested and optimized before prototyping. Apart from signal integrity ANSYS tools can also accurately model power integrity concerns such as decoupling capacitor optimization, thermal response and structural issues, as well as cooling solutions for chips, packages, PCBs and full electronic systems. With the ability to analyze and help optimize different design characteristics of a PCB, ANSYS can provide engineers with “the full picture” to help reduce cost and time to market, and to understand the design’s expected real world operation.

VoltageDropBoardWarpageElectronicsCooling

Top: Voltage Drop; Middle: PCB Warpage;
Bottom: Cooling Flow Through Enclosure

The “Eye” is only a phone call away.

Please give us a call at 1-800-293-PADT or reach out to me directly at manoj@padtinc.com for more information.

AMUG 2016 Recap

AMUG LogoThis was my first year attending AMUG (Additive Manufactures User Group) and after attending RAPID last year in Long Beach, California, it exceeded my expectations.  Everyone I ran into last year at RAPID said that I HAD to attend AMUG since I am a user of both Stratasys Polyjet and FDM technologies.  Once I found out the dates I immediately asked my supervisor if I could attend this years AMUG that was held in good old St. Louis, Missouri!  I am so glad I was able to make it to AMUG.  Every day we had the decision to pick between 18 different presentations.  Not all of the presentations were repeated each day.  We had presentations from Universities, Aerospace, Defense, Medical, Manufactures of 3D printers and many more!  I needed a clone of myself because the decisions of choosing one presentation over another was way too difficult.  Luckily there were 5 representatives from PADT at this convention and we were able to share notes.

Stratasys J750

Stratasys unveiled a new 3D printer on the first day of AMUG and it is phenomenal! It is called the Stratasys J750.  The user has the ability to print with 6 different materials at the same time choosing between 360,000 different colors!  What other 3D printer is there that you can load Digital ABS, Tango (rubber), and different colors and build with them?  NONE!  Stratasys also revamped their print heads by doubling the amount of nozzles per material which results in better layer resolution!  All print modes have finer layers resulting in better aesthetics than any other printer previous with High Quality layers at 14 microns!  By teaming up with Adobe, the user can import a CAD file into Adobe Photoshop to assign a color pattern, picture, or even a texture to their CAD file.  To say I am excited about this printer is an understatement!  I need one now!Hean J750SSYS Display

STRATASYS WORKSHOPS:

Carbon fiber soluble core workshop

In this workshop we learned how to setup a soluble core, that was printed on a Stratasys Fortus 450 MC using the SR-30 support, for a carbon fiber application.  This is a great application for the soluble support material. Turns out there are many customers using this application so that they don’t have to inventory expensive tools and can print on demand cores for their customers.

Soulable Core 2Soluable Core 1

During this presentation we learned that you will need to sand the part and then apply some sealing agent to the core/mandrel.  As for what type of sealing agent works best?  The answer is all.  They haven’t had any issues with different sealing agents from different vendors.  Several coats are needed.  When the part is building, you have the ability to setup pauses in the build so that you can add inserts or bushings to the part.  Because Aluminum dissolves in Sodium Hydroxide, you will want to use a different metal.

If this is a application that you are interested in, please email me at James.barker@padtinc.com and I will respond ASAP to you inquiries.

Injection Mold 3D Printed Inserts 

This application is a huge money and time saver as well!  In this picture the inserts were 3D printed using a Digital ABS-Like material from a Polyjet printer.  The brackets and ejector plate were printed using the FDM technology and built out of Ultem 1010.    These builds took under 3 hours to build and allow the customer to quickly inject material to prove the design using the actual material required!  A few months ago we held a seminar in Utah at 2 different locations and taught this application with a Stratasys expert.  Here is a neat video Professor Jonathan George did showing this application in use: YouTube.

Here is a video that Stratasys put out that shows their printers in use and the whole process as well.  YouTube

IM Molds

ADDITIVE MANUFACTURING at GE AVIATION

LEAP Engine Fuel Nozzle

GE’s biggest success story is their LEAP Engine Fuel Nozzles.  For each LEAP engine manufactured there are 19 fuel nozzles needed.  Instead of assembling them by hand they are now all 3D printed.  10,000 engines have been sold to date since the engine was introduced in 2012.  By 2018, GE needs to 3D print 35,000 fuel nozzles and by 2020, they have estimated that they will need a total of 100,000 nozzles.  There is a 25% weight reduction and these parts are 5 times more durable than conventional manufacturing methods.

LEAP Enginh Fuel Nozzle

T25 Temperature Sensor

This housing is an inlet temperature sensor that was the 1st 3D printed part certified by the FAA to fly inside a GE commercial jet engine! GE Aviation is retrofitting 400 GE90-94B engines that power Boeing 777’s.  These sensors are subjected to all elements so there was rigorous testing done to ensure safety.

T25 Temp Sensor

The Center for Additive Technology Advancement CATA

This facility is already open and running.  The goal is to advance Additive Manufacturing across all divisions of GE.  More information can be found here.

CATA

  XJET – NEW METAL TECHNOLOGY

XJET LogoI have been operating 3D printers going on 7 years.  I am a huge fan of Stratasys/Objet 3D Printers so I made sure to attend the presentation by XJET.

AMUG was XJET’s unveiling of their new metal technology.  XJET was formed in 2005 by the inventors of Objet/Polyjet technology.  Since 2005 they have been able to raise $170 million to help spur their new idea.  They call it Nano Particle Jetting™.  The way it works is they take a nano particle of metal and suspend it in a liquid material that is then jetted from the print heads very similar to how Polyjet printers work.  Since the metal is infused in a liquid material there isn’t any harm dealing with powdered metals which eliminates the fear of dealing with a combustible powder metal!  The parts are built in a heated chamber which evaporates the liquid material that was holding the nano particle.  Another key part to their technology is the support material which is NOT the same material as the metal!  During the presentation, Dror Danai mentioned that there is no need to remove the support material with a mechanical process.  The parts will need to be annealed to remove stresses that occur during the printing process.  While the part is being annealed the support material will be removed.  I am not sure how this is done, but it was hinted that the support dissolves or evaporates away.

XJET Machine

The print heads have 512 nozzles on each of them that can jet 18,000 droplets per second which helps achieve a layer thickness as fine as 2 Microns!!  Currently XJET has 7 machines that they are operating.  6 are in R&D and 1 is being used to print benchmarks for customers to help prove the technology.  Here is a link to their website showing how their technology works: XJET

If you would like to see this printer in person you can at RAPID which is in Orlando, Florida from May 16-19.  Here is a link to RAPID.

CONCLUSION

SSYS Ice SculptureThere are many other presentations and workshops that aren’t covered in this synopsis.  I focused on things that really excited me about the future of where this technology is headed.  If XJET technology is scalable, it can be revolutionary.  GE continues to be at the forefront of this technology and is continually pushing the limits of Additive Manufacturing.  The workshops I attended were mainly Stratasys driven because I was curious how you can make end-use production parts with their 3D printers.  Also the unveiling of the Stratasys J750 helps confirm that innovation is still taking part by one of the leaders in Additive Manufacturing in showcasing their new 3D printer that can print with 6 different materials!

All in all I had a phenomenal time at AMUG and met some very interesting people that share my same passion for 3D printing.  If you have the opportunity to go to RAPID this  year in Florida, please let me know your thoughts of it.  I have heard there are some new materials coming out from Stratasys along with new 3D printers that will be showcased.  It is amazing where 3D printers have come from, and I am anxious to see where we are headed!

If you would like to contact me with any questions then please email me at this email address:

James.Barker@padtinc.comJames

James Barker, Application Engineer

Phoenix Analysis & Design Technologies

Phoenix Business Journal: ​6 things that make the Arizona technology startup community unique

pbj-phoenix-business-journal-logoIn those documentaries on the animals of the desert, at some point they always say something like “the harsh environment shapes desert dwellers into uniquely strong and beautiful creatures.” The same is true for our tech startups. “6 things that make the Arizona technology startup community unique” takes a look at this environment and what we need to do to take advantage of it.