Talking About 3D Printing on Talk Radio

radio-microphone-on-the-airWith the increase of interest in 3D Printing from the general public, PADT has been asked to speak about the technology over several different forms of media. The local Phoenix TV stations were kind enough to come in and learn about the technology, including a great interview on the local PBS station.  We have been asked to give presentations to schools, inventor groups, and even a conference on traditional digital printing. Last week we crossed over into a new area for us, talk radio.

Don’t worry, this was not political talk radio… we are still waiting for Rush Limbaugh’s call.  A local financial station, Money Radio, wanted to talk about 3D Printing. Renee Palacios and your truly were interviewed by John Barnabas, host  for “Happiness, Opportunity and Technology.”

You can listen to the full broadcast here:

You can always learn more about 3D Printing on our Rapid Prototyping Page  or contact us.

If you need someone to talk about 3D Printing to your organization or if you are in the media and need recognized experts who can explain the technology, contact us and we would be happy to work with you.

Build the “Right” Product

Successful product commercialization is achieved when the product development process is integrated with customer development and is executed by an experienced team and organized by an effective process. At PADT we have spent the last 20 years building our team, establishing our infrastructure, and honing our processes. One of the key processes that strongly affect the outcome of a product development effort is the process of establishing product/market requirements. The idealized product development process that we use is shown below and the establishment of requirements is shown as the first development activity box.

product-development-process

Establishing requirements insures that we develop the “Right” product. Building the “Right” product means working closely with clients to understand what the end customers want and are willing to pay for. It also means testing the market by building prototypes early and validating design choices with end customers.

At PADT we have found it very effective to get with customers from the very first meeting to establish these market and product requirements. Even if you are part of a large organization and do not work directly with external customers, we recommend that you adopt a methodology that captures and documents market and product requirements as early as possible, and that you evaluate your design against these requirements through the development process. 

 One way we do this is by asking questions about the product from many perspectives as illustrated by the wheel below. By looking at the product from each of these perspectives, we capture important requirements, avoid late stage product revision, and end up with the “Right” product.

product-development-questions

A question based approach is effective because it opens up everyone involved to looking beyond their initial assumption. The more traditional method of making a list of requirements, often results in requirements from the point of view of the person making the list. By questioning the customer, or proxy customer, from these different points of view, the team looks at things in new and different way and this captures more realistic and comprehensive requirements.

product-development-examples-PADTVisit our case studies page to see examples of how our approach has been used across a wide variety of industries.

The best way to understand the benefits of properly building the right process by establishing product/market requirements is to partner with PADT on your next product development project.

Throwback Thursday: 3D Printing on “Good Morning America” in 1989

3dprinting-1989

Note: This post is not displaying correctly, here is a link to the video:
http://youtu.be/NpRDuJ5YgoQ

Take a look at this science segment that Jeff Strain found on Stereolithography from 1989.  If you ignore the hair styles (Joan Lunden rocked that helmet hair) the report isn’t that much different from news coverage that 3D Printing is getting today. But the technology has sure progressed.

To add some additional perspective, according to the 2014 Wohlers Report, 104 systems were sold in 1989. 94 SLA machines from 3D Systems and 10 systems from now defunct Japanese SLA providers. 

The same report estimates that for 2013 9,823 commercial systems were sold by over 33 different suppliers.  This does not include the personal printer (low cost desktop) systems, which was estimated at over 72,000 units!.  That is 9,345% growth over 24 years for commercial systems.. 66,702 systems have been tracked as old.  

Take a look at the video. It is truly fascinating how the message still resonates and how predictions for replacing traditional manufacturing were maybe a bit optimistic.  But even in the early days, this report captured the promise of the technology. 

It has been an incredible ride, and it is not over yet.

Flownex and PADT Sponsor University of Houston’s Rankin Rollers Team

rankin-rollers-logoA group of enthusiastic students at the University of Houston are doing their part at solving that age old academia problem: not enough hand’s on experience.  They are designing and building a working steam turbine for the schools Thermodynamics lab so students can experiment with a Rankin cycle, learn how to take meaningful measurements, and study how to control a real thermodynamic system.

rankin-rollers-facebook
Look! Flownex and PADT on Social Media! Thanks for the plug guys.
After meeting a team member at the 2014 Houston ANSYS User conference, PADT saw a great opportunity to help the team by providing them with access to a full seat of Flownex SE so that they can create a virtual prototype of their steam turbine and the control system they are developing. 

The four team members have the following goals for their project:

    1. Create a fully automated system control
    2. Create system with rolling frame for ease of transport
    3. Create system with dimensions of 4x2x3.5 ft
    4. Deliver pre-made lab experiments
    5.  Produce an aesthetically pleasing product

    Flownex should be a great tool for them, allowing the team to simulate the thermodynamics and flow in the system as well as the system controls before committing to hardware. 

    You can learn more about the team on their Facebook page here, or on their website here

    We hope to share their models and what they have learned when their project is complete. If you are interested in using Flownex for your work or school project, contact PADT.

    steam-turbine-table-setup
    This is the Team’s proposed configuration for the final test bench.
    flow-schematic
    We can’t wait to see this flow diagram translated into Flownex.

    A 3D Mouse Testimonial

    The following is from an email that I received from Johnathon Wright.  I think he likes his brand new 3DConnexion Space Pilot Pro.
    -David Mastel
      IT Manager
      PADT, Inc.

    ——————-

    top-panel-deviceRecently PADT became a certified reseller for 3Dconnexion. Shortly following the agreement a sleek and elegant SpacePilot PRO landed on my desk. Immediately the ergonomic design, LCD display, and blue LED under the space ball appealed to the techie inside of me. As a new 3D mouse user I was a little skeptical about the effectiveness of this little machine, yet it quickly has gained my trust as an invaluable tool to any Designer or Engineer. On a daily basis it allows me to seamlessly transition from CAD to 3D printing software and then to Geomagic Scanning software, allowing dynamic control of my models, screen views, hotkeys and shortcuts.

    Outside of its consistency as an exceptional 3D modeling aid, the SpacePilot PRO also has a configurable home screen that allows quick navigation of email, calendar or tasks. This ensures that I can keep in touch with my team without having to ever leave my engineering programs, which is invaluable to my production on a daily basis. Whether you are a first time user who is looking to tryout a 3D Mouse for the first time or an experienced 3D mouse user who is looking to upgrade, you need to check out the SpacePilot Pro. I can’t imagine returning to producing CAD models or manipulating scan data without one. Combine the SpacePilot PRO cross-compatibility with its programmability and ease of use and you have a quality computer tool that applies to a wide range of users who are looking at new ways to increase productivity.

    Link to You Tube video – watch it do its thing along with a look at my 3D scanning workstation, the GEOCUBE: http://youtu.be/fsfkLPaZJe4

    Johnathon Wright
    Applications Engineer,
    Hardware Solutions
    PADT, Inc.

    ———————————————————————————————-
    Editors Note:

    Not familiar with what a 3D Mouse is?  It is a device that lets a use control 3D objects on their computer in an intuitive manner. Just as you move a 2D mouse on the plane of your desk, you spin a 3D Mouse in all three dimensions.  Learn more here

    spacepilot-pro-cad-professional-2-209-p

    Integrating ANSYS Fluent and Mechanical with Flownex

    Component boundaries generated in Flownex are useful in CFD simulation (inlet velocities, pressures, temperatures, mass flow). Generation of fluid and surface temperature distribution results from Flownex can also be useful in many FEA simulations. For this reason the latest release of Flownex SE was enhance to include several levels of integration with ANSYS.  

    ANF Import

    By simply clicking on an Import ANF icon on the Flownex Ribbon bar users can select the file that they want to import. The user will be requested to select whether the file must be imported as 3D Geometry which conserves the coordinates system or as an isometric drawing.

    The user can also select the type of component which should be imported in the Flownex library. Since the import only supports lines and line related items this will typically be a pipe component.

    Following a similar procedure, a DXF importer allows users to import files from AutoCAD.

    This rapid model construction gives Flownex users the ability to create and simulate networks quicker. With faster model construction, users can easily get to results and spend less time constructing models.

    p1

    ANSYS Flow Solver Coupling and Generic Interface

    The Flownex library was extended to include components for co-simulation with ANSYS Fluent and ANSYS Mechanical.
    p2

    These include a flow solver coupling checks, combined convergence and exchanges data on each iteration, and a generic coupling that can be used for cases when convergence between the two software programs is not necessary.

    The general procedure for both the Fluent and Mechanical co-simulation is the same:

    1. By identifying specified named selections, Flownex will replace values in a Fluent journal file or ds.dat file in the case of Mechanical.
    2. From Flownex, Fluent/Mechanical will then be run in batch mode
    3. The ANSYS results are then written into text files that are used inputs into Flownex.
    4. When applicable, specified convergence criteria will be checked and the procedure repeated if necessary.

    p3

    Learn More

    To learn more about Flownex or how Flownex and ANSYS Mechanical contact PADT at 480.813.4884 or roy.haynie@padtinc.com.  You can also learn more about Flownex at www.flownex.com.

    Additive Manufacturing Motor Trends

    Additive manufacturing (AM) has been used in the motor sports world for years.  Now more than ever, race teams have found that additive manufactured parts have the quality and durability to meet their demands. From NASCAR to the World Rally Championship, race teams around the world are excited about the possibilities that AM brings to the table. For an interesting webinar on-demand and a great whitepaper, click the image below. 68905-Motor-Trends-Webinar_960x350

    FDA Opening to Simulation Supported Verification and Validation for Medical Devices

    FDA-CDRH-Medical-Devices-SimulationBringing new medical device products to market requires verification and validation (V&V) of the product’s safety and efficacy. V&V is required by the FDA as part of their submission/approval process. The overall product development process is illustrated in the chart below and phases 4 and 5 show where verification is used to prove the device meets the design inputs (requirements) and where validation is used to prove the device’s efficacy. Historically, the V&V processes have required extensive and expensive testing. However, recently, the FDA’s Center for Devices and Radiological Health (CDRH) has issued a guidance document that helps companies uses computational modeling (e.g FEA and CFD) to support the medical device submission/approval process.

    FDA-Medical-Device-Design-Process-Verification-Validation
    Phases and Controls of Medical Device Development Process, Including Verification and Validation
     The document called, “Reporting of Computational Modeling Studies in Medical Device Submissions”, is a draft guidance document that was issued on January 17th, 2014. The guidance document specifically addresses the use of computation in the following areas for verification and/or validation:

    1. Computational Fluid Dynamics and Mass Transport
    2. Computation Solid Mechanics
    3. Computational Electromagnetics and Optics
    4. Computational Ultrasound
    5. Computational Heat Transfer

    The guidance specifically outlines what form reports need to take if a device developer is going to use simulation for V&V.  By following the guidance, a device sponsor can be assured that all the information required by the FDA is included. The FDA can also work with a consistent set of input from various applicants. 

    drug-delivery-1-large
    CFD Simulation of a Drug Delivery System. Used to Verify Uniform Distribution of Drug

    Computational Modeling & Simulation, or what we usually call simulation, has always been an ideal tool for reducing the cost of V&V by allowing virtual testing on the computer before physical testing. This reduces the number of iterations on physical testing and avoids the discovery of design problems during testing, which is usually late in the development process and when making changes is the most expensive. But in the past, you had to still conduct the physical testing. With these new guidelines, you may now be able to submit simulation results to reduce the amount of required testing.
    mm_model_stresses
    Simulation to Identify Stresses and Loads on Critical Components While Manipulating a Surgical Device

    Validation and verification using simulation has been part of the product development process in the aerospace industry for decades and has been very successful in increasing product performance and safety while reducing development costs.  It has proven to be a very effective tool, when applied properly.  Just as with physical testing, it is important that the virtual test be designed to verify and validate specific items in the design, and that the simulation makes the right assumptions and that the results are meaningful and accurate.

    PADT is somewhat unique because we have broad experience with product development, various types of computational modeling and simulation, and the process of submission/approval with the FDA. In addition, we are ISO 13485 certified. We can provide the testing that is needed for the V&V process and employ simulation to accelerate and support that testing to help our medical device customers get their products to market faster and with less testing cost.  We can also work with customers to help them understand the proper application of simulation in their product development process while operating within their quality system.

    Flownex 2014 Released and Webinars Announced

    987786-flownex_simulation_environment-11_12_13The June release of Flownex SE software includes numerous updates for companies that model thermal fluid systems; videos and webinars are available to showcase the impact of these enhancements.

    Flownex SE has increased the ability of engineers to accurately model their fluid-thermal with the release of version of Flownex 2014 on June 19th, 2014. The program is known for its in ease of use, breadth of capability, and depth of functionality.  With enhancements in turbomachinery modeling, support for 3D networks, GIS data import, heat transfer and a myriad of additional new features impacting efficiency, integration, and automation, this release expands the industries that can take advantage of it, and will help current users model their systems more accurately with greater ease.

    7271351-Flownex2014-GIS

    To help the user community understand the impact of these significant enhancements, PADT is offering two webinars. Both webinars will include a brief introduction to the tool, so if you are new to Flownex SE you will have a good foundation to get started.

    Webinar Sign-Up:

    Overview webinar: July 24, 2014, 1:00-2:00 PM MST

    This webinar will focus all of the new features in Flownex SE 8.3.6.  
    Register here

    7271351-Flownex2014-Rotating_ComponentsTurbomachinery webinar: August 7, 2014, 1:00-2:00 PM MST

    This webinar will be a deep dive into the extensive turbomachinery capabilities added in this release, and will be of interest to anyone simulating turbine engines, pumps, blowers, or other rotating machinery that involves fluids.
    Register here

    All registrants will be sent links to recordings so they can view the presentation even if they cannot attend them live.

    Video Resources:

    A video is also available that hits the important new capabilities: 

    If you are new to Flownex SE, visit PADT’s Flownex page to learn more:  

    Key Features:

    The key features introduced in Flownex 2014 (Flownex SE 8.3.6) are:  

    1. Rotating components, Swirl Boundary, and General Turbine and Compressor Models
    2. Importing and Geometries
    3. GIS File Support
    4. Connections to ANSYS Products
    5. Link to Mathcad
    6. Graphical Script Generation Tool
    7. New Designer Tools to Quickly Model Common Systems.
    8. Five Additional Convection Models
    9. Exit Thrust Nozzle Added
    10. Additional Enhancements ranging from 3D Graphs to Support for Miter Bends in Piping

    7271351-Flownex2014-Pipe-Results

    Visit here to see a detailed list of these key features, or download the complete release notes here.

    These additional features reflect the growing diversity of industries that are using Flownex SE to model their systems.  Users in oil and gas, mining, chemical processing, and turbomachinery will all see additional accuracy, functionality, and efficiency from this release. Built on an existing strong foundation that offers un-paralleled capability with  intuitive ease of use, a short look at Flownex SE will show you why so many users around the world are choosing it as their thermo-fluid modeling tool.

    PADT is the distributor of Flownex SE in the United States.  Our experienced staff is eager to discuss your system modeling needs and is ready to show you how Flownex SE can start delivering value almost immediately. Contact us today to meet with our experts.

    Video Tips: Workflow for Designing Electric Motors in ANSYS

    A quick video showing you a great workflow for designing electric motors. It shows going from a quick template based design tool to a full 3D analysis tool

    3D Printing and PADT hit the Airwaves

    money_radioLocal station Money Radio – 1510AM  99.3FM – is broadcasting a show on 3D Printing from PADT.  Technology, Opportunity and Happiness, hosted by John Barnabas, will be broadcasting live from PADT on July 29th from 12 noon till 1:00 pm.  The show includes a studio audience and will focus on how 3D printing is impacting business and the markets.  

    There is room in the audience for about 30 people, so register now to reserve your seat.  We will cover the basics of the technology, but the real discussion will be about how this technology has and is transforming the way people innovate, and the way companies manufacture products. Lunch will be served and we will keep the discussion going and giving tours after the broadcast for anyone that wants to learn more.

    If you can’t attend, you can listen live in Arizona on 1510 AM or 99.3 FM.  And you can always listen from anywhere over the web hereStratasy-Mojo-3D-Printer-in-Shopping-Cart_thumb.jpg

    Top 10 New Thermal Fluid Modeling Capabilities in Flownex 2014

    3D graphWe are pleased to announce the release of Flownex SE 2014.  This is a very exciting release for all of us involved in Flownex because it introduces a mix of advanced features and usability enhancements – we love better and easier.  We will be publishing more information about this release, as well as videos and webinars. While we set all of that up, we wanted to whet everyone’s appetite and give you a list of what we feel are the 10 most important enhancements.

    1. Rotating components, Swirl Boundary, and General Turbine and Compressor Models 
      A new library has been added which models rotating flow on a system level. Focusing on secondary flow and heat transfer in turbine engines, it includes all the components needed including compressors, turbines, seals, gaps, nozzles, and cavities. A complete library for Steam Turbine modeling was also added. 
    2. Importing and Geometries
      Users can read in 2D and 3D layout files in common formats and directly create Flownex models from the geometry. The model and results can then be visualized with the 3D geometry.
    3. GIS File Support
      When modeling systems that cover a large area, such as water or gas pipelines, the geographical data can be imported for display and to automatically include altitude into the model. 
    4. Connections to ANSYS Products
      Users can import 3D Pipe geometry as an ANF file, and connect to ANSYS Mechanical and ANSYS Fluent for co-simulation.
    5. Link to Mathcad
      Users can transfer parametric data to and from Mathcad worksheets
    6. Graphical Script Generation Tool
      Users can use Quick Script to create complex scripts to customize their processes or models without having to learn the full scripting language
    7. New Designer Tools to Quickly Model Common Systems.
      Designer tools atomically iterate on a user’s model to calculate unknown values for them. This release includes tools for calculating mass flow when only pressure is known at a boundary, automatically calculating steady state conditions in a two-phase tank, and a component designer that calculates input parameters for common components so that those components deliver the users requested mass flow.
    8. Five Additional Convection Models 
      Based on user input, five new models were added to the Dittus-Boelter correlation for calculating heat transfer coefficients: tube, shell-side single phase, shell-side horizontal tube condensation, ribbed wall channel, and channel with pedestals. 
    9. Exit Thrust Nozzle Added
      New model in subsonic and supersonic flow at the outlet of a flow network with gasses and superheated fluids
    10. Additional Enhancements:
      Support for miter bends in piping
      3D graphs
      Radiation supports multiple surface enclosures
      The range of methane two phase fluid was increased
      Support for 64 bit 
      Several more values can be changed during a transient solution

    The best way to learn more about these additions, or anything about Flownex, is to contact Roy Haynie at roy.haynie@padtinc.com or 480-813-4884.  
    There is also some more detailed material here:

     

    3D Color Printing the 2014 Arizona SciTech Festival Awards

    photo 2The best way to promote and celebrate science and technology is with science and technology.  And this year PADT was able to do just that by using 3D Color Printing to make the recognition awards for the 2014 sponsors of the Arizona SciTech Festival.

    The Arizona SciTech Festival is a new but growing player in the Arizona STEM landscape.  After three short years it has become the preferred way for science and technology companies and educators to engage with the public.  This year’s festival, held in February and March, was a huge success.  And none of it would be possible without the support of sponsors. PADT was honored to once again the awards that are given to these sponsors in recognition of their contributions. 

    In the past we mixed traditional manufacturing and 3D Printing to make the awards. But this year we were able to use our new Stratasys Objet500 Connex3 to make the bulk of this years awards, and our Stratasys FORTUS 400 to make the stands.  The resulting awards are better than we had hoped for. 

    The Process

    The way the color printer works is you have to create a separate STL file for each color you want to print. So I needed to take a 2D vector art file and convert it into a collection of 3D STL files that represent the part I want printed.

    I started by taking an Adobe Illustrator file of the AZ SciTech Festival logo, cleaning it up, and exporting it as a *.DWG file.
    azstf-award-illustrator
    I then imported it into my CAD tool. I happen to use SolidEdge, but the process should work with any modern CAD tool. I had to clean up the lines a lot.  In a graphic art image you can have small gaps, little line segments, and even polygons that self intersect. But in CAD you have to clean that all up. Plus some features were just too small to see in the 3D Printed object, so I simplified those. This was the most difficult part of the process.
    azstf-award-solidedge-sketch

    Once everything is clean you simply go through and extrude each polygon that you want printed, using the cleaned up sketch as your geometry.  Here is the first solid, and the simplest, the tail:
    azstf-award-solidedge-extrude1

    Once all the polygons are extruded, I assigned colors so I could visualize what the final part would look like. I also put a round on all the top edges, knowing from experience that even putting a small round on a part like this will increase the final parts attractiveness.
    azstf-award-solidedge-extruded

    The base needed to be a separate solid, because I needed it to be a different color. So I just made a new part for that and made an assembly. This keeps all of the solids separate. The letters were made just like the lizard logo, I went in to Adobe Illustrator and created the text outline, following the circle that defines the award. I exported that as DWG, imported it into SolidEdge, then extruded each letter.  
    azstf-award-solidedge-medalian

    The next step was to export the assembly as an STL file.  This file contained all the solids.  This was read in to the software that comes with the Objet500 Connex3. The operator then had to click on each object and assign a color from the chosen pallet.  It turns out that the official ScitTech Festival colors match one of the pallets closely, so we were able to get all the colors in the print. 

    Once this was done, we simply printed 28 at a 3″ diameter, and 9 at 2″. Here is a video showing the printing process.

    The resolution and brightness of the colors was very nice. Here are some images. Color parts just look better.
    p7

    For the base, I just came up with something that was thin and easy to build in using FDM because I wanted a strong part that was inexpensive that would also take a decal with the recipients name on the front, and information about the award on the back.  
    azstf-award-solidedge-base

    Here is a stack of the printed bases.
    photo 1

    And the final awards, ready to go to all those sponsors.
    p12

    Why Does it Matter

    This effort is great example of the power of 3D Printing to a create a smaller number of custom objects. Standard awards form an awards shop are cheaper, but they are generic.  Using traditional methods to make custom awards is expensive and often labor intensive.  By making the whole award using a 3D Printer we were able to reduce the cost and the time for these unique objects, and were able to use advanced technology to highlight the sponsorship of an event that celebrates just that.  Kind of cool.

    It is also a great example of the long term power of 3D Printing.  As was covered in a recent blog post, the real power of this technology is that it lets people without manufacturing or craftsman skills to create real objects, without a collection of equipment they don’t need or don’t know how to use. The applications of this power are endless. 

    If you want to learn more about how you can do your own 3D Printing or how PADT can provide it to you as a service, contact us today.

    3D Thursday – 4th of July Style

    I was in search of something Independence Day/3D printing related to celebrate the 4th of July.  It seems like a lot of people had the same idea.  Thomas Jefferson……yup, he was 3D printed at RedEye on Demand.  President Obama was 3D printed at the first ever White House Maker Faire last month.   So, after sifting through replicas of the Statue of Liberty or American Flags, I came across something really cool.  

    3D-printed-Ellis-Island-3D-Model-Don-Foley-via-3D-Printing-IndustryDesigner Don Foley  has created a very detailed model of the Ellis Island Customs House which you can download for free for the next 2 weeks.   

    instructions-for-3D-printed-Ellis-Island-Customs-House-by-Don-Foley-via-3D-Printing-Industry
    His design is in 4 separate sections that can be taken apart to see the beautiful and intricate detail on each of the floors.  It’s a beautiful design of a very important part of American history.

    And just for fun, here is an interesting article about the creation of an exact replica of the Liberty Bell using 3D scanning.

    Happy 4th of July!

    A look inside the Objet500 Connex3 Multi-material 3D printer

    This week our we printed some beautiful multi-colored sponsor awards for the 2014 Arizona SciTech Festival which officially launches in August.  Intern extraordinaire, Diserae Saunders, placed a GoPro inside our Objet500 Connex3 to record the magic.  Enjoy the video and check out the Arizona SciTech Festival for information on this great program that promotes science, technology and innovation in Arizona!