Join us in Colorado for a 3D printing Demo

happyhour563dprinting

PADT Colorado is excited to be partnering again with Alignex for a 3D printer demo/happy hour at their upcoming networking event.  

The event is from 10 am to 6pm and will feature guest speakers discussing the latest in engineering and design productivity.  PADT will be on site to discuss 3D printing during their happy hour from 5 to 6pm. 

For more details and to register for the event please click here.

Posted in Fun, News, The RP Resource | Tagged , | Leave a comment

Four Events to Help Celebrate Manufacturing in Arizona

logo_revaz

The month of October in Arizona is Manufacturer’s Month. Part of the Arizona Commerce Authoritie’s RevAZ program, this month of celebrations is an opportunity for those of us who make stuff, or support people to make stuff, to spread the word that the manufacturing community is robust, diverse, and has a major impact on the local economy.

Learn more on the RevAZ site: www.manufacturingrevolution.com 

PADT is attending three events, and hosting the closing event for the month. We hope to run in to you at the first three, and consider this the first of many invitations to join us for an open house and celebration on October 30th.

The three events open to the public are:

October 3rd, 2014 – 10:00 to 2:00
National Manufacturing Day Open House at AzAMI

The Arizona Advanced Manufacturing Institute (AzAMI) at Mesa Community College (MCC) is celebrating National Manufacturing Day by opening its doors to the community. Guided Tours of its enhanced machining, processing and additive manufacturing labs will be offered between 10am and 2pm.

1833 W. Southern Ave
Mesa, AZ 85202

Check out the event details here.

October 15th, 2014 – 12:30 to 6:30

AZTC Southern Arizona Tech + Business Expo: Where Technology and Manufacturing Connect

The Southern Arizona Tech + Business Expo is the regions premier showcase event for Manufacturing Month. Working in collaboration with the Southern Arizona Manufacturing Partners (SAMP), The Arizona Manufacturing Council (AMC), the RevAZ Program of the Arizona Commerce Authority, and the University of Arizona’s Tech Launch Arizona; the Expo will host informative panel discussions on strategies to grow your business faster.

The Westin La Paloma Resort
3800 E. Sunrise Drive
Tucson, AZ 85718

Check out the event details and register here.

October 30th, 2014 – 4:00 to 7:00pm

Celebrating Arizona Manufacturing

PADT is proud to host the closing celebration for Arizona Manufacturer’s Month. A variety of companies and organizations will be exhibiting their activities in the future of manufacturing. Visitors will get a chance to see some of the more advanced applications of manufacturing in the state as well as tours of the PADT facility.

Food and drinks will be provided along with great opportunities to network and get to know the community a little better.

PADT
7755 S. Research Drive
Suite 110
Tempe, AZ 85284

Register for the event here.

Posted in Fun, News | Tagged , , | Leave a comment

ANSYS SpaceClaim and Mechanical, Plus 3D Printing to the Rescue!

p0One of the great things about working at a company like PADT is that we have the ability to solve problems from start to finish.  By start to finish, I mean: 

  1. Recognize a need
  2. Design a solution
  3. Verify the solution
  4. Manufacture the solution
  5. Deploy the solution

There are other steps that could be added such as optimization and field verification, but in simple terms those steps outline the product development process.  We do this very often at PADT, helping a wide variety of customers develop products to meet needs in the marketplace.  Most of the time, we can’t share the work we do publicly, for obvious reasons involving customer confidentiality. 

So, when we can share, it’s a good opportunity to show what our tools can do, as well as how we can utilize these tools to help our customers with the steps listed above.  We’ll look at a simple example, knowing that the same tools can help with much more complex problems.

In my case, I was faced with a problem.  We recently had our back yard pool deck resurfaced.  The problem at hand was the contractors accidently lost a plastic lid that covered a 5.5 in. hold on the deck of the pool.  This hole was for something like a basketball hoop that could be dropped into this trumpet shaped hole.  Figure 1 shows the work in progress, when the original lid was still in place.

p1Figure 1 – Original lid circled in red.

After the cleanup was done, that lid was nowhere to be found.  You would think it would be simple to find a replacement, especially in metro Phoenix where pool supply stores are abundant.  However, after visiting several supply stores as well as scouring the internet, we could not find a replacement 5.5 in. lid.  All the available lids were too big and would not work in covering this hole.  The hole without a lid is a safety concern.  In fact, our 4 year old niece managed drop a foot into the hole and ended up with a scrape.  Fortunately it wasn’t any worse than that.

Unable to find a suitable lid for purchase, I decided to pursue a 3D printed solution here at PADT.  As I’m sure you are aware, 3D printing has been portrayed all over the media in the last couple of years.  For us here at PADT, though, it has been a significant component of our business since the company’s founding in 1994.  Knowing that I could have this part printed in plastic here at PADT, I decided to go through the product development process as listed above.

So, let’s look at the various steps I followed in our product development process:

  1. Recognize a need.

In this case, it was simple.  We had a hole in the pool deck that was a safety issue.  No replacement part could be found.  A new lid was needed, one that would fit properly but also could support the weight of someone walking over it.  I decided to design a replacement part that could be 3D printed by one of the rapid prototyping technologies we have available here at PADT.

  1. Design a solution

Besides providing 3D printing services and selling 3D printers, we at PADT are a Channel Partner for ANSYS engineering simulation tools here in the Southwest.  I leveraged ANSYS, Inc.’s latest acquisition, the SpaceClaim Direct Modeler as my design tool.  SpaceClaim has been available as part of the ANSYS software suite for several years, but now SpaceClaim is officially part of the ANSYS corporate umbrella.  SpaceClaim runs within the ANSYS Workbench platform, like the ‘older’ ANSYS geometry tool, DesignModeler.  A main different between the two geometry toolsets is that DesignModeler is a history-based modeler, meaning it has a history tree that is followed to create and modify the geometry as we go along.  This works well in many circumstances but it lacks the ability to quickly and easily modify existing geometry.  SpaceClaim, on the other hand, is a direct modeler in the sense that we work on the geometry interactively, allowing us to rapidly modify geometry by ‘pulling’ on surfaces to grow, shrink, fillet, etc.  SpaceClaim is incredibly fast once we get familiar with it.

Knowing that the diameter of the hole was 5.5 inches as measured by a ruler, along with a memory of what the prior cover looked like, I turned to ANSYS SpaceClaim to come up with the geometry model.  I sketched a 2D axisymmetric cross section and swept that 360 degrees about an axis to come up with the solid model.  I very easily moved the 5.5 in diameter face inward by a small amount to allow for some clearance between the plastic part and the hole into which it needs to fit.  The geometry definition literally took just a few minutes, even though I am not yet an expert in SpaceClaim.

p2Image 2 – ANSYS SpaceClaim solid model

p3Image 3 – Cross section shown in SpaceClaim

  1. Verify the solution

I mentioned optimization as a step that could be followed.  In this simple case, I didn’t do any optimization but did perform verification that my design would meet an acceptability requirement.  I wanted to make sure that my plastic lid could support the weight of an adult standing on it.  The tool I used to perform this verification was the ANSYS Mechanical software tool.  Like SpaceClaim can, ANSYS Mechanical runs within the ANSYS Workbench environment, meaning that the geometry and subsequent stress and deflection analyses are linked.  This allows any needed changes to the geometry to quickly and easily pass from the geometry tool to the stress/deflection model, often with as little as one click of the mouse.

Getting the geometry into the Mechanical model for a finite element simulation was therefore quite simple.  Defining loads and constraints on my system was also quite simple.  What remained was to define material properties to characterize the plastic being used.  PADT’s Rapid Prototyping team informed me that the material to be used is one called Veroclear.  This material is used in one of PADT’s 3D printers, called an Objet from Statasys. 

Basic material properties for Veroclear are available on the internet, including Young’s Modulus and Yield Strength.  Poisson’s Ratio was not available so it was assumed to be 0.3.  These properties were entered into ANSYS Workbench.  For those not familiar, Young’s Modulus is a quantification of the stiffness of a material.  The Yield Strength is a measure of the how much stress a material can experience before permanent deformation occurs.  Stress, simply put, is the amount of force being carried per area in a structure.  Poisson’s Ratio relates how much a material squishes in one direction when it’s pulled in another dimension.

The loading consisted of a 210 lb. downward load on a portion of the upper surface, representing someone standing on the middle of the lid.  The constraints were frictionless supports on the outer cylindrical face as well as the bottom lip.  These constraints simulate where these two surfaces touch the hard surface of the pool deck.

p4Figure 4 – Applied Loads and Constraints

Once the model was fully setup in ANSYS Mechanical, the solution was obtained.  Lots of matrix algebra behind the scenes takes care of solving the equations needed to obtain the solution.  The resulting deflections and stresses looked to be acceptable.  I also calculated a factor of safety, relating the calculated stress in the model to the Yield Strength as described above.  A factor of safety of 2, for example, means that the predicted stress in the model is half of the Yield Strength.  The calculated factor of safety for the plastic lid is 3.17. 

p5Figure 5 – Calculated Deflections, showing maximum of 0.044 in. in center of lid.

p6Figure 6 – Equivalent Stress Distribution

p7Figure 7 – Factor of Safety Distribution

From these results we can conclude that, for the loading condition we considered:

  1. The deflections are fairly minimal
  2. The stresses are below the Yield Stress
  3. The minimum factor of safety value of 3.17 gives us confidence that under reasonable loadings, the part will not fail.

Note that this is a simplistic look at the feasibility of our design.  We didn’t consider what happens to the plastic in the hot sun, what happens if something heavy falls on the lid, etc.  Many other factors could be considered, but in this case I chose to keep it simple.

  1. Manufacture the solution

The part was printed over a weekend in an Objet printer here at PADT.  The geometry was saved as a Parasolid file in ANSYS SpaceClaim, and the Parasolid file was then provided to PADT’s Rapid Prototyping team, via the rp@padtinc.com email.  While the cost of making this particular plastic part using 3D printing is likely too high for a production run, the technology is perfect for making test articles, prototypes, molds, etc. 

p8Figure 8 – The part as printed by the Objet 3D printer (with a few water spots)

  1. Deploy the solution

In this case I only needed one lid, so I took care to make sure that the geometry was accurate before the CAD definition was sent to the 3D printer.  The proof is always in the pudding, so to speak, so it was a great comfort to see that the new plastic lid fit perfectly in the hole in the pool deck.  If this were a production part, we would probably need a vendor to mold the plastic lids in large batches to make them cost effective.

p9Figure 9 – Plastic lid in place

So, we ended up with a part the met the need, each step done very quickly using the appropriate tools in conjunction with the knowledge of how to use them.  We hope you have enjoyed this tour of the product design process, for this simple example.  Please keep PADT in mind for your product development needs.

Posted in Uncategorized | Leave a comment

Congratulations to 2014 AZBioAwards Winners

BioAwards-2014-PADT- awards1 - CopyLast week, on September 17th, the Arizona Bio Technology community gathered for the 20144 AZBioAwards.  This year PADT was once again privileged to not only attend, but to again 3D Print the awards themselves.   PADT also had a both, which gave us an opportunity to talk with many of our customers who were attending.

This event honors some of the leaders in industry and is a chance for everyone involved to get together and celebrate all the progress that is made each year in this area.

PADT was also pleased to receive recognition for our 20th Anniversary from AZBIO.

You can view a press release about the whole AZBio Week, including the awards, here.

You can see pictures from the event on Facebook, here.

Here is a picture of the awards we made:

BioAwards-2014-PADT- awards2 - Copy

And here is our both with Ward Rand, Josh Heaps, and Andrew Miller interacting with a customer:

BioAwards-2014-PADT- booth5

Posted in News, PADT Medical | Tagged , , , | Leave a comment

Default Contact Stiffness Behavior for Bonded Contact

p7It recently came to my attention that the default contact stiffness factor for bonded contact can change based on other contact regions in a model. This applies both to Mechanical as well as Mechanical APDL. If all contacts are bonded, the default contact stiffness factor is 10.0. This means that in our bonded region, the stiffness tending to hold the two sides of contact together is 10 times the underlying stiffness of the underlying solid or shell elements.

However, if there is at least one other contact region that has a type set to anything other than bonded, then the default contact stiffness for ALL contact pairs becomes 1.0. This is the default behavior as documented in the ANSYS Mechanical APDL Help, in section 3.9 of the Contact Technology Guide in the notes for Table 3.1:

“FKN = 10 for bonded. For all other, FKN = 1.0, but if bonded and other contact behavior exists, FKN = 1 for all.”

So, why should we care about this? It’s possible that if you are relying on bonded contact to simulate a connection between one part and another, the resulting stress in those parts could be different in a run with all bonded contact vs. a run with all bonded and one or more contact pairs set to a type other than bonded. The default contact stiffness is now less than it would be if all the contact regions were set to bonded.

This can occur even if the non-bonded contact is in a region of the model that is in no way connected to the bonded region of interest. Simply the presence of any non-bonded contact region results in the contact stiffness factor for all contact pairs to have a default value of 1.0 rather than the 10.0 value you might expect.

Here is an example, consisting of a simple static structural model. In this model, we have an inner column with a disk on top. There are also two blocks supporting a ring. The inner column and disk are completely separate from the blocks and ring, sharing no load path or other interaction. Initially all contact pairs are set to bonded for the contact type. All default settings are used for contact.
p1

Loading consists of a uniform temperature differential as well as a bearing load on the disk at the top. Both blocks as well as the column have their bases constrained in all degrees of freedom.
p2

After solving, this is the calculated maximum principal stress distribution in the ring. The max value is 41,382.
p3

Next, to demonstrate the behavior described above, we changed the contact type for the connection between the column and the disk from bonded to rough, all else remaining the same.
p4

After solving, we check the stresses in the ring again. The max stress in the ring has dropped from 41,283 to 15,277 as you can see in the figure below. Again, the only change that was made was in a part of the model that was in no way connected to the ring for which we are checking stresses. The change in stress is due solely to a change in contact type setting in a different part of the model. The reason the stress has decreased is that the stiffness of the bonded connection is less by a factor of 10, so the bonded region is a softer connection than it was in the original run.

p5

So, what do we as analysts need to do in light of this information? A good practice would be to manually specify the contact stiffness factor for all contact pairs. This behavior only crops up when the default values for contact stiffness factor are utilized. We can define these stiffness factors easily in ANSYS Mechanical in the details view for each contact region. Further, we need to always remember that ANSYS as well as other analytical tools are just that – tools. It’s up to us to ensure that the results of interest we are getting are not sensitive to factors we can adjust, such as mesh density, contact stiffness, weak spring stiffness, stabilization factors, etc.

Posted in The Focus | Tagged , , , | Leave a comment

geoCUBE: Computers for Scanning

PADT just released a line of computer workstations  specifically designed for use with a variety of optical scanners: geoCUBE Scanning Workstations.

Scanning technology has come a long way.  It is relatively easy to scan a real physical part with a variety of different scanning technologies and capture the geometry for use in inspection, design, reverse engineering, or to directly replicate a part with 3D Printing.  The problem is that a good scanner produces a huge  number of data points and a standard office computer, laptop, or even most CAD workstations bog down and perhaps even crash when you try to view or manipulate that much data.  

geocube-hardware-picsWhen we ran into that exact problem here at PADT when we were doing scanning services for customers.  On a nice CAD workstation it was taking almost a whole day to clean up and process a full scan or a large part.  Our manufacturing team asked if they could power one of the CUBE Simulation Computers we use for CFD.  If you know CFD people you know they said “No, but can I also run on your box if you are not using it?”  So they went to our IT staff, the people who design CUBE systems and asked for a custom built machine for scanning.

The result was a breakthrough.  That 20 hour job was finishing in about two hours and we were able to spin the points and the resulting triangle file around on the screen in real time. We liked it so much we decided to come up with four systems spanning the needs of scanning users, and offer them along with the scanner we sell, or to anyone that might need one.

Below is a screen shot of the table showing the four systems, from a basic small box that you can use to drive your scanner, to the power system that we use.  You can download the brochure here, or visit the web page here

geoCUBE-Spec-Table-Screen-Shot

As always, feel free to contact us to get more information and see how we can help you find the right scanner and the perfect computer to go with it.

Posted in News, PADT Medical, Product Development, The RP Resource | Tagged , , , , , , | Leave a comment

PADT Opens Utah Office

PADT-UtahIt is now official: PADT has an office in the Salt Lake City area.  Last week we signed a lease for a space at 5282 S Commerce Dr in Murray, Utah.  We have been looking for a while and when this location opened up we felt it was located in a great spot and was the size we needed.  It is 17 minutes from downtown Salt Lake City, less than 30 minutes to most of our SLC customers, and not a bad drive to those who are north and south, right up or down I-15.

This office will focus on providing sales and technical support to our Utah Stratasys and ANSYS customers.  It will provide enough space for a few demo 3D Printers and also has a great meeting room for training and mentoring sessions.

You can read more in the official press release here.  

To get a feel for where it is located, here is a screen grab.

        PADT-Utah-Office-Map

Proximity to some of the best skiing in the country was not much of a factor in the decision process… but it helped.

Here is a shot of Anthony, Doug, Patrick, and Mario modeling in the hallway. 

PADT-Utah-Team-Halway

It will take us a month or so to get everything up and running, but once done we will set up a time for an open house. Watch this space for more about our continued growth and success in Utah.

Posted in News | Tagged , , , , | Leave a comment

Spreading the Word on 3D Printing at 3 Events in 3 States this Month

PADT-Logo-Stained-Glass-Rendering1PADT has been asked to share our expertise in 3D Printing at three different events in the month of September.  We look forward to the opportunity to talk about how additive manufacturing is being used today, and how it can be used in the future.  

September 11, 2014 – Salt Lake City, Utah
Utah Manufacturers Association Summit
We will have a booth and will be participating in the summit, representing the application of additive manufacturing. This informative all-day seminar will teach you about the revolutionary UtahCAN Database and how it can benefit your company, how to utilize social media to your advantage, better handle impacts on your business and leadership strategies to change your workplace.

September 12, 2014 – Albuquerque, New Mexico
TechFiestaABQ2014 TechRev: State of the art and Digital Fabrication
PADT’s very own Jeff Strain will be on the “State of the art and digital fabrication” panel from 9:00 to 10:00. TechRev is a full day conference featuring tracks for technologists, entrepreneurs and the business community produced by the NM Technology Council.

September 18, 2014 – Phoenix, Arizona
SAE Arizona Section September Meeting
PADT co-owner Eric Miller will be giving a presentation on Additive Manufacturing technologies.

We hope to see you at one of these events.  If you would would like PADT to participate as a speaker, panel member, or an exhibitor, please contact us and we will check our schedule. We truly do love talking about this stuff.
Look for even more chances to interact with PADT on 3D Printing in October, during the Arizona Manufacturing Month.

Posted in News | Tagged , , | Leave a comment

Learn Linux on edX

edx_linuxThe balance of Linux vs. Windows for simulation users is always in flux. For some time it was predicted that Windows would win the battle but in recent years Linux has made a resurgence, especially on clusters and in the cloud.  We strongly recommend that ANSYS users who want to be power users gain a good understanding of Linux from a user and sysadmin perspective. Especially CFD users since they are most likely to be solving on a Linux devices.  Too many of the people we interface with are left at the mercy of an IT support team that doesn’t know, or even fears Linux.

The best way to solve this problem is to learn Linux yourself. To help people get there, recommended a few books and “learn by doing.” Now we have a better option.

edX offers an Introduction to Linux class that looks outstanding, and you can audit it for free or take the course for real for a $250 minimum contribution.  The quality of these courses is fantastic. The material is thorough and practical.

If you do take the class, give us some feedback when you finish in the comments below.

Here is the video describing the course.  

Posted in The Focus | Tagged , , | Leave a comment

AZ Commerce Authority and Tech Council Announce Innovation Award Finalists

Governor's Celebration of Innovation (GCOI)The  Arizona Commerce Authority and Arizona Technology Council  named the winners and finalists today for the 11th annual Governor’s Celebration of Innovation (GCOI) awards.  You can read about it at the Phoenix Business Journal

As always, a great list of finalists and winners. We were once again pleased to see a tow PADT customers in the list:

  • SynCardia Systems in Tucson is a finalist for the Innovator of the Year Award – Small Company
  • Securaplane Technologies, in Oro Valley, is a finalist for the Innovator of the Year Award – Large Business


These two outstanding companies, along with the other finalists, show the breadth and depth of technology companies in Arizona. From industry leading small business software providers to a start-up built around a better shovel, tech companies across the state are growing and making people around the world stand up and take notice. 

The educational Award winners and finalists were also great to see, showing the future of technology is also strong.  The Future Innovators of the Year are always our favorite, their projects making me feel like I really slacked in High School. 

As usual, PADT will be at this years Celebration where the awards, 3D Printed by PADT, will be handed out.  We hope to see many of you there.

Posted in News | Tagged , , , , | Leave a comment

Using Probes to Obtain Contact Forces in ANSYS Mechanical

Recently we have had a few questions on obtaining contact results in ANSYS Mechanical. A lot of contact results can be accessed using the Contact Tool, but to obtain contact forces we use Probes. Since not everyone is familiar with how it’s done, we’ll explain the basics here.

Below is a screen shot of a Mechanical model involving two parts. One part has a load that causes it to be deflected into the other part.

p1

We are interested in obtaining the total force that is being transmitted across the contact elements as the analysis progresses. Fortunately this is easy to do using Probes in Mechanical.

The first thing we do is click on the Solution branch in the tree so we can see the Probes button in the context toolbar. We then click on the Probe drop down button and select Force Reaction, as shown here:

p2

Next, we click on the resulting Force Reaction result item under the Solution branch to continue with the configuration. We first change the Location Method from Boundary Condition to Contact Region:

p3

We then specify the desired contact region for the force calculation from the Contact Region dropdown:

p4

Note that the coordinate system for force calculation can either be Cartesian or Cylindrical. You can setup a coordinate system wherever you need it, selectable via the Orientation dropdown.

There is also an Extraction dropdown with various options for using the contact elements themselves, the elements underlying the contact elements, or the elements underlying the target elements (target elements themselves have no reaction forces or other results calculated). Care must be taken when using underlying elements to make sure we’re not also calculating forces from other contact regions that are part of the same elements, or from applied loads or constraints. In most cases you will want to use either Contact (Underlying Element) or Target (Underlying Element). If contact is non-symmetric, only one of these will have non zero values.

In this case, the setting Contact (Contact Element) was a choice that gave us appropriate results, based on our contact behavior method of Asymmetric:

p5

Here are the details including the contact force results:

p6

This is a close up of the force vs. ‘time’ graphs and table (this was a static structural analysis with a varying pressure load):

p7
p8


***** SUMMATION OF TOTAL FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM *****

FX = -0.4640219E-04
FY = -251.1265
FZ = -0.1995618E-06
MX = 62.78195
MY = -0.1096794E-04
MZ = -688.9742
SUMMATION POINT= 0.0000 0.0000 0.0000

We hope this information is useful to you in being able to quickly and easily obtain your contact forces.

Posted in The Focus | Tagged , , , , | 2 Comments

Video Tips: Using ACT to change Default Settings in ANSYS Mechanical

A short video showing how ACT (ANSYS Customization Toolkit) can be used to change Default Settings for analyses done in ANSYS Mechanical.  This is a very small subset of the capabilities that ACT can provide.  Stay tuned for other videos showing further customization examples.

The example .xml and python file is located below.  Please bear in mind that to use these “scripted” ACT extension files you will need to have an ACT license.  Compiled versions of extensions don’t require any licenses to use.  Please send me an email (manoj@padtinc.com) if you are wondering how to translate this example into your own needs.

NLdefaults

Posted in The Focus | Tagged , , , , , , | Leave a comment

3D Printing Stained Glass: A Flower Grows One Layer at a Time

3D-Printed-Stained-Glass-Rose-squareI never thought I would be making my own decorative stained glass object d’art.- I’m not a craft person.  Fortunately I do have access to great software and some awesome 3D Printers. That is why I should challenge myself when our team let me know that our Stratasys Object500 Connex3 system had been loaded with a new color pallet that included transparent material. We are filling our new demo room with industrial examples as well as more artistic examples of what the technology can do. So I thought this would be a great chance to explore making a stained glass window.  It turned out to be fairly easy, and the result was better than I expected.

Making a Digital Model

Stained glass consists of pieces of colored glass cut to shape, held together by lead. The lead is called the came. So to make my 3D Printed part, I needed a solid model assembly where each pain of glass was a solid, and the lead, or cane, was one or more separate solids I could assign a dark color to.

Like most tasks these days, I started with a Google search for “simple stained glass window.” The search brought up of nice examples, but I wanted something simple for my first try.  This simple flower stood out:

Rose-stained-glass

It is from a tutorial that shows how to make your own real stained glass.

I took the image and imported it in to my CAD tool, SolidEdge, as a background in the drafting package. Then I used the sketcher to place splines on top of the image sort of representing the shape. If I had an artistic bone in my body, I probably could have started with a blank page and done something, but my lack of talent is well documented and I opted for tracing. It worked in 3rd grade, and it still works today.  The resulting sketch looked like this, shown next to the original image:

Rose-Stained-Glass-sketch-1

It is kind of hard to see in the image, but the “lead” in the image consists of boundaries, not a single line, forming a continuous area for all of the “lead” geometry. Each empty areas in the sketch was extruded up in the solid modeler to form the glass pieces.   Here is what the solid looked like when I was done:

Rose-Stained-Glass-1

I assigned transparent colors in the CAD system to visualize it, show my preferred colors to the person setting up the 3D print, and because I figured it would look cool when I rendered it. Which it did:

Rose-Stained-Glass-rendered-1

The next step was to simply save the assembly as an STL file.  Our prototyping department took that file, massaged it a bit, and assigned colors from the available pallet. 

If you remember earlier articles on the Connex3, it uses four print heads: one for support material, and two for color, and one for a base material. In this case we used Veroclear as the base, magenta, and blue.  Here is a 3D Print of the pallet we were working with (I used my computer monitor as a poor man’s light table, which looks bad on the picture but works well with your eyes):

3D-Printed-Color-Pallet

The team assigned the colors we chose to the solids I created and next time the machine was not printing parts that actually generate income, the ran it.

Here are some images of the results:

3D-Printed-Stained-Glass-Rose-1

3D-Printed-Stained-Glass-Rose-2

Here the final product is shown in front of the machine that it was made on:

3D-Printed-Stained-Glass-Rose-Connex3

When I find some fishing line, I’ll hang it in front of the window, but here you can see it near where it will end up in front of the window to our Demo room.

3D-Printed-Stained-Glass-Rose-Demo-room

Practical Applications

I have to say I’m pretty proud of my little side trip in to the artistic world, even if I did just trace someone’s design.  And I am a big backer of Art for Art’s sake.  However, that does not change the fact that we are an engineering company and I did do this to learn more about the technology so that we could apply it for customers.

Many parts that our customers make involve injection molding of different colored plastics, including transparent materials.  This project illustrated who easy it is to replicate those components for prototyping, as an assembly.  In addition to the clear material, we can run white, black, or even a soft rubber like material to replicate overmolding. 

The simple 3D printed stained glass window shows the power of Stratasys’ PolyJet technology for creating robust and accurate prototypes of a huge range of parts, reducing development time, and giving engineers and creatives both a better tool to produce a better final product. 

If you would like to learn more about this technology or to have PADT print parts for you, please feel free to contact us today.

Posted in Uncategorized | 2 Comments

Scanning Helps Pediatric Heart Surgeon Make Implant Choices

heart-assist-deviceThe week we had the opportunity to help a surgeon make better decisions for their pediatric heart patient.  Dr Stephen Paphal from the Phoenix Children’s Heart Center had a young patient that needed a ventricular assist device. He could implant a device that they knew would fit in the patient, but they also had an alternative, larger device that performs better. The question they needed to answer was: will the larger device fit in the patient?

This surgeon’s team has previously done work using mechanical engineering technology to help them make better decisions, you may have read about their use of 3D Printing to evaluate different treatment options.  They often work with computer models of patients and devices, so they had almost all the tools they needed to help this patient.

For this case, they had a computer model of the smaller assist device, and a computer model of the patient’s heart area that they extracted from a CAT scan. Using those two models and visualization software they were able to insert the device model into the body model to verify that the smaller device would fit.  

The issue they faced was that they had no computer model for the larger device.  Creating a model the traditional way would take to long. So they called PADT and asked if we could scan the actual object and give them a computer model that they could use.  

Just in Time Scanning

One of PADT’s engineer, Johnathon Wright, took the device to our Geomagic Capture blue light scanner to extract a surface model from the real part.  In this image you can see the device being scanned:

heart-assist-scan-on-tableBecause the device is reflective, we covered it with a white powder to get a better scan. That is all the preparation needed.  The part was placed on a very sophisticated rotational displacement device (a $10 Lazy Susan from WalMart) and the scanner is turned on.  The  little reflective dots you can see on the Lazy Susan are used by the scanning software to determine the position of the objects relative to the scanner.

In this image you can see what the part looks like to the scanner:heart-assist-blue-light-scan-1A rectangular pattern of blue light is projected on to the part being scanned, and the included software measures the distortion in the grid to calculate the shape of the object. As you rotate the object (or the scanner) more data is gathered and an accurate point cloud of the external surface is created. 

Here is what the point cloud looks like when the scan is completed:

heart-assist-scan-data

In about an hour, Johnathon was able to go from “can you do this” to a water-tight solid that the Doctor could use with his computer model of the patient to see if this larger, better part fit in the patient’s chest.

Here is what the whole setup looks like:

heart-assist-scan-2

Johnathon used Geomagic’s scanning tools running on a PADT CUBE computer that is specifically optimized for scanning to make the process faster and more accurate. In the past, a task like this would have required an expensive and temperamental laser scanner, a dedicated lab, and probably four to eight hours of engineering time to clean up the resulting scan data. As you can see, the device sits on a desktop and requires very little infrastructure or special equipment.

Disruptive Technology

Any day we can help a physician strive for a better surgical outcome is a good day. Beyond that this is also a great example of how three important aspects of the technology enabled us to deliver useful information quickly, making desktop scanning a disruptive technology.

The first key technology is the blue-light scanning itself.  A form of structure-light 3D scanning, this approach uses a blue light because it contrasts the object better. The breakthrough with this technology is that it does not require expensive lasers or complex optics.  Faster computing allows for the complex algorithms used to be quickly and accurately applied.  The approach does not require any special equipment beyond the scanner itself. This results in an affordable device that is easily deployed and operated.  How easy, the 3D motion capture device on the Microsoft Xbox Kinect is a structure-light 3D scanner – using infrared light instead of blue.

Modern software used to convert the scan data into useful information is the second technology deployed for this solution.  In the past the process of calculating the points on a scanned surface, cleaning up spurious data, and converting it to a form that could be easily used was tedious and difficult.  The Geomagic software suite has a modern, intuitive user interface that sits on top of very sophisticated tools that automate many of the steps that used to take us hours to carry out.  

The final key technology that makes desktop scanning so disruptive is one that we take for grated today: standards. We were able to produce an STL file from the scan data and the Doctor’s team was able to read that directly in to their visualization software. It is a simple thing, but without standard file formats, transferring so much data would also involve translators which introduce errors and time.

Engineering Better Outcomes

Here at PADT we truly enjoy applying technology developed in the Aerospace or electronics space to other industries, especially medical applications.  This is another great example of how useful engineering tools can be, improving someones life directly.

Posted in PADT Medical, The RP Resource | Tagged , , , , , | Leave a comment

PADT Presents 3DPAZ Contest and FIRST Robotics Grant

3DPAZ
PADT has always been a proud supporter of STEM education in our community.  This summer we have been busy planning some new activities to help support local schools.  Today we are busy attending the Innovation Arizona Summit which is a joint collaborative of the Arizona SciTech Festival, the MIT Enterprise Forum Phoenix and the Arizona Commerce Authority.

 As part of our attendance, we will be promoting our first ever 3D printing contest, 3DPAZ  which will challenge high school students in Arizona with the task of creating or improving an existing engineering product.  We are very excited to be launching this contest and cannot wait to see what students come up with. Please visit our website for more information on how to take part in this contest by clicking here.

We are also very excited to be extending our support to the FIRST Robotics Competition by way of a new grant program for Arizona schools or organizations that are competing in the in the 2014/2015 FRC season.  If you are interested in either the 3DPAZ contest or the FRC Grant program, please email Kathryn Pesta at kathryn.pesta@padtinc.com.

Posted in Education, Fun, News, The RP Resource | Tagged , , , | Leave a comment