Making Thermal Contact Conductance a Parameter in ANSYS Mechanical 18.0 and Earlier with an APDL Command Object

A support request from one of our customers recently was for the ability to make Thermal Contact Conductance, which is sort of a reciprocal of thermal resistance at the contact interface, a parameter so it can be varied in a parametric study.  Unfortunately, this property of contact regions is not exposed as a parameter in the ANSYS Mechanical window like many other quantities are.

Fortunately, with ANSYS there is almost always a way……in this case we use the capability of an APDL (ANSYS Parametric Design Language) command object within ANSYS Mechanical.  This allows us to access additional functionality that isn’t exposed in the Mechanical menus.  This is a rare occurrence in the recent versions of ANSYS, but I thought this was a good example to explain how it is done including verifying that it works.

A key capability is that user-defined parameters within a command object have a ‘magic’ set of parameter names.  These names are ARG1, ARG2, ARG3, etc.  Eric Miller of PADT explained their use in a good PADT Focus blog posting back in 2013

In this application, we want to be able to vary the value of thermal contact conductance.  A low value means less heat will flow across the boundary between parts, while a high value means more heat will flow.  The default value is a calculated high value of conductance, meaning there is little to no resistance to heat flow across the contact boundary.

In order to make this work, we need to know how the thermal contact conductance is applied.  In fact, it is a property of the contact elements.  A quick look at the ANSYS Help for the CONTA174 or similar contact elements shows that the 14th field in the Real Constants is the defined value of TCC, the thermal contact conductance.  Real Constants are properties of elements that may need to be defined or may be optional values that can be defined.  Knowing that TCC is the 14th field in the real constant set, we can now build our APDL command object.

This is what the command object looks like, including some explanatory comments.  Everything after a “!” is a comment:

! Command object to parameterize thermal contact conductance
! by Ted Harris, PADT, Inc., 3/31/2017
! Note: This is just an example. It is up to the user to create and verify
! the concept for their own application.

! From the ANSYS help, we can see that real constant TCC is the 14th real constant for
! the 17X contact elements. Therefore, we can define an APDL parameter with the desired
! TCC value and then assign that parameter to the 14th real constant value.
!
! We use ARG1 in the Details view for this command snippet to define and enable the
! parameter to be used for TCC.

r,cid ! tells ANSYS we are defining real constants for this contact pair
! any values left blank will not be overwritten from defaults or those
! assigned by Mechanical. R command is used for values 1-6 of the real constants
rmore,,,,,, ! values 7-12 for this real constant set
rmore,,arg1 ! This assigned value of arg1 to 14th field of real constant

! Now repeat for target side to cover symmetric contact case
r,tid ! tells ANSYS we are defining real constants for this contact pair
! any values left blank will not be overwritten from defaults or those
! assigned by Mechanical. R command is used for values 1-6 of the real constants
rmore,,,,,, ! values 7-12 for this real constant set
rmore,,arg1 ! This assigned value of arg1 to 14th field of real constant

You may have noticed the ‘cid’ and ‘tid’ labels in the command object.  These identify the integer ‘pointers’ for the contact and target element types, respectively.  They also identify the contact and target real constant set number and material property number.  So how do we know what values of integers are used by ‘cid’ and ‘tid’ for a given contact region?  That’s part of the beauty of the command object: you don’t know the values of the cid and tid variables, but you alsp don’t need to know them.  ANSYS automatically plugs in the correct integer values for each contact pair simply by us putting the magic ‘cid’ and ‘tid’ labels in the command snippet.  The top of a command object within the contact branch will automatically contain these comments at the top, which explain it:

!   Commands inserted into this file will be executed just after the contact region definition.
!   The type number for the contact type is equal to the parameter “cid”.
!   The type number for the target type is equal to the parameter “tid”.
!   The real and mat number for the asymmetric contact pair is equal to the parameter “cid”.
!   The real and mat number for the symmetric contact pair(if it exists)
! is equal to the parameter “tid”.

Next, we need to know how to implement this in ANSYS Mechanical.  We start with a model of a ball valve assembly, using some simple geometry from one of our training classes.  The idea is that hot water passes through the valve represented by a constant temperature of 125 F.  There is a heat sink represented at the OD of the ends of the valve at a constant 74 degrees.  There is also some convection on most of the outer surfaces carrying some heat away.

The ball valve and the valve housing are separate parts and contact is used to allow heat to flow from the hotter ball valve into the cooler valve assembly:

Here is the command snippet associated with that contact region.  The ‘magic’ is the ARG1 parameter which is given an initial value in the Details view, BEFORE the P box is checked to make it a parameter.  Wherever we need to define the value of TCC in the command object, we use the ARG1 parameter name, as shown here:

Next, we verify that it actually works as expected.  Here I have setup a table of design points, with increasing values of TCC (ARG1).  The output parameter that is tracked is the minimum temperature on the inner surface of the valve housing, where it makes contact with the ball.  If conductance is low, little heat should flow so the housing remains cool.  If the conductance is high, more heat should flow into the housing making it hotter.  After solving all the design points in the Workbench window, we see that indeed that’s what happens:

And here is a log scale plot showing temperature rise with increasing TCC:

So, excluding the comments our command object is 6 lines long.  With those six lines of text as well as knowledge of how to use the ARG1 parameter, we now have thermal contact conductance which varies as a parameter.  This is a simple case and you will certainly want to test and verify for your own use.  Hopefully this helps with explaining the process and how it is done, including verification.

 

 

 

Phoenix Business Journal: How universities can be a needed catalyst and safe place for cooperation


How do competitors work together in a mutually beneficial way?  In “How universities can be a needed catalyst and safe place for cooperation” I take a look at the important role Universities can play in enabling this type of cooperation.  Based on our own experience in such partnerships, I talk about what Universities can do to take a leadership role in this area.

Phoenix Business Journal: The future of artificial intelligence – The machines are taking over

Artificial Intelligence is one of those technologies that you hear about a lot, but may not notice. In “The future of artificial intelligence: The machines are taking over” I look at what AI is an how it is impacting businesses today and what to look for in the near future for this important technolgy.

PADT Welcomes John Williams to Business Development Role

Please join Phoenix Analysis and Design Technologies in welcoming our new engineering services business development manager, John Williams. John will be an integral part of our growth in helping customers turn their innovations into real products through our advanced engineering capabilities, flexible project management skills and careful vendor selection process.

“With John joining our team, we’ll be able to take our engineering services business to the next level and expand on our offerings,” said Eric Miller, co-founder and principal at PADT. “His sales and business development experience at the national and international level makes him ideal to handle our diverse client portfolio and position us as a major player in this category.”

To help PADT improve its market position in engineering services and product development, Williams will help define long-term organizational goals, build customer relationships, identify new business opportunities, and maintain extensive knowledge of market conditions.

“PADT is a diverse and innovative company that presents a number of exciting opportunities,” said Williams. “I look forward to using my experience and reach to raise awareness of the great engineering expertise the company can provide. Once companies realize how PADT can help them solve tough problems and implement their designs, the word will spread that PADT really does make innovation work.”

Williams brings more than 16 years of sales experience to the position. He joins PADT from Bell Helicopter Textron Inc. in South Asia where he was the director of business development. Prior to working at Bell Helicopter, John was Regional Sales Director for Textron Aviation for South Asia.  Prior to this, he was President of Williams Consulting Group (WCG) in Phoenix, AZ.

Before starting WCG, Williams spent 12 years with The Boeing Company where he was last responsible for implementing Boeing’s offset programs in India. He also played a key role in successfully winning several large orders for Boeing. Prior to this assignment, Williams was in International Contracts at Boeing Defense Systems where he successfully negotiated and closed several major Commercial and US FMS contracts with foreign governments.

Williams holds a Bachelor’s Degree in Economics from Northwestern College. He has numerous professional certifications including a Master’s Certificate in Global Leadership from Thunderbird, the American Graduate School of International Management; as well as certifications in various U.S. Federal Acquisition Programs.

Introducing: The PADT Startup Spotlight

In support of the ANSYS Startup Program, PADT is proud to introduce the PADT Startup Spotlight.

We here at PADT are firm believers in the opinion that today’s startup companies are tomorrow’s industry leaders and thus should be give every possible opportunity to thrive and succeed.

As a result we are offering full access to our promotional capabilities in order to help startup companies developing physical prototypes to grow and develop in a competitive environment.

We will look through those startups that have purchased the ANSYS Startup Package through PADT, and select one to feature and promote, that we believe clearly represents the drive and entrepreneurial spirit that is key in order to succeed in today’s day and age.

Presenting the first Startup Spotlight:

Since their inception in 2014, Velox Motorsports has always been focused on speed; whether that be the speed of the NASCAR teams they have worked with or the desire their customers have for speed, which drives their competitiveness and fuels the demand for their products.

They even show a passion for speed in the company’s name (Velox), which translates from Latin to “swift or speed”.

Visit www.padtinc.com/startupspotlight for more information on Velox Motorsports and The PADT Startup Spotlight.

Active Solution Monitoring during a solve in ANSYS CFX

One of the cool new features in CFX 18 is the ability to actively review results while the calculation is running. It is supported for steady state and transient calculations, and now includes support for rotating reference frames as well.

What follows are some tutorial-esque steps to get you started.

crm_10275-active-solution-monitoring-CFDPostR18

On the Functions of Cellular Structures in Nature

WHY did nature evolve cellular structures?

In a previous post, I laid out a structural classification of cellular structures in nature, proposing that they fall into 6 categories. I argued that it is not always apparent to a designer what the best unit cell choice for a given application is. While most mechanical engineers have a feel for what structure to use for high stiffness or energy absorption, we cannot easily address multi-objective problems or apply these to complex geometries with spatially varying requirements (and therefore locally optimum cellular designs). However, nature is full of examples where cellular structures possess multi-objective functionality: bone is one such well-known example. To be able to assign structure to a specific function requires us to connect the two, and to do that, we must identify all the functions in play. In this post, I attempt to do just that and develop a classification of the functions of cellular structures.

Any discussion of structure in nature has to contend with a range of drivers and constraints that are typically not part of an engineer’s concern. In my discussions with biologists (including my biochemist wife), I quickly run into justified skepticism about whether generalized models associating structure and function can address the diversity and nuance in nature – and I (tend to) agree. However, my attempt here is not to be biologically accurate – it is merely to construct something that is useful and relevant enough for an engineer to use in design. But we must begin with a few caveats to ensure our assessments consider the correct biological context.

1. Uniquely Biological Considerations

Before I attempt to propose a structure-function model, there are some legitimate concerns many have made in the literature that I wish to recap in the context of cellular structures. Three of these in particular are relevant to this discussion and I list them below.

1.1 Design for Growth

Engineers are familiar with “design for manufacturing” where design considers not just the final product but also aspects of its manufacturing, which often place constraints on said design. Nature’s “manufacturing” method involves (at the global level of structure), highly complex growth – these natural growth mechanisms have no parallel in most manufacturing processes. Take for example the flower stalk in Fig 1, which is from a Yucca tree that I found in a parking lot in Arizona.

Figure 1. The flower stalk (before bloom) of a Yucca plant in Arizona with overlapping surface cellular structure (Author’s image)

At first glance, this looks like a good example of overlapping surfaces, one of the 6 categories of cellular structures I covered before. But when you pause for a moment and query the function of this packing of cells (WHY this shape, size, packing?), you realize there is a powerful growth motive for this design. A few weeks later when I returned to the parking lot, I found many of the Yucca stems simultaneously in various stages of bloom – and captured them in a collage shown in Fig 2. This is a staggering level of structural complexity, including integration with the environment (sunlight, temperature, pollinators) that is both wondrous and for an engineer, very humbling.

Figure 2. From flower stalk to seed pods, with some help from pollinators. Form in nature is often driven by demands of growth. (Author’s images)

The lesson here is to recognize growth as a strong driver in every natural structure – the tricky part is determining when the design is constrained by growth as the primary force and when can growth be treated as incidental to achieving an optimum functional objective.

1.2 Multi-functionality

Even setting aside the growth driver mentioned previously, structure in nature is often serving multiple functions at once – and this is true of cellular structures as well. Consider the tessellation of “scutes” on the alligator. If you were tasked with designing armor for a structure, you may be tempted to mimic the alligator skin as shown in Fig. 3.

Figure 3. The cellular scutes on the alligator serve more than just one function: thermal regulation, bio-protection, mobility, fluid loss mitigation are some of the multiple underlying objectives that have been proposed (CCO public domain, Attr. Republica)

As you begin to study the skin, you see it is comprised of multiple scutes that have varying shape, size and cross-sections – see Fig 4 for a close-up.

Figure 4. Close-up of alligator scutes (Attr: Hans Hillewaert, Flickr, Creative Commons)

The pattern varies spatially, but you notice some trends: there exists a pattern on the top but it is different from the sides and the bottom (not pictured here). The only way to make sense of this variation is to ask what functions do these scutes serve? Luckily for us, biologists have given this a great deal of thought and it turns out there are several: bio-protection, thermoregulation, fluid loss mitigation and unrestricted mobility are some of the functions discussed in the literature [1, 2]. So whereas you were initially concerned only with protection (armor), the alligator seeks to accomplish much more – this means the designer either needs to de-confound the various functional aspects spatially and/or expand the search to other examples of natural armor to develop a common principle that emerges independent of multi-functionality specific to each species.

1.3 Sub-Optimal Design

This is an aspect for which I have not found an example in the field of cellular structures (yet), so I will borrow a well-known (and somewhat controversial) example [3] to make this point, and that has to do with the giraffe’s Recurrent Laryngeal Nerve (RLN), which connects the Vagus Nerve to the larynx as shown in Figure 5, which it is argued, takes an unnecessarily long circuitous route to connect these two points.

Figure 5. Observe how the RLN in the giraffe emerges from the Vagus Nerve far away from the thorax: a sub-optimal design that was likely carried along through the generations in aid of prioritizing neck growth (Attr: Vladimir V. Medeyko)

We know that from a design standpoint, this is sub-optimal because we have an axiom that states the shortest distance between two points is a straight line. And therefore, the long detour the RLN makes in the giraffe’s neck must have some other evolutionary and/or developmental basis (fish do not have this detour) [3]. However, in the case of other entities such as the cellular structures we are focusing on, the complexity of the underlying design principles makes it hard to identify cases where nature has found a sub-optimal design space for the function of interest to us, in favor of other pressing needs determined by selection. What is sufficient for the present moment is to appreciate that such cases may exist and to bear them in mind when studying structure in nature.

2. Classifying Functions

Given the above challenges, the engineer may well ask: why even consider natural form in making determinations involving the design of engineering structures? The biomimic responds by reminding us that nature has had 3.8 billion years to develop a “design guide” and we would be wise to learn from it. Importantly, natural and engineering structures both exist in the same environment and are subject to identical physics and further, are both often tasked with performing similar functions. In the context of cellular structures, we may thus ask: what are the functions of interest to engineers and designers that nature has addressed through cellular design? Through my reading [1-4], I have compiled the classification of functions in Figure 6, though this is likely to grow over time.

Figure 6. A proposed classification of functions of cellular structures in nature (subject to constant change!)

This broad classification into structural and transport may seem a little contrived, but it emerges from an analyst’s view of the world. There are two reasons why I propose this separation:

  1. Structural functions involve the spatial allocation of materials in the construction of the cellular structures, while transport functions involve the structure AND some other entity and their interactions (fluid or light for example) – thus additional physics needs to be comprehended for transport functions
  2. Secondly, structural performance needs to be comprehended independent of any transport function: a cellular structure must retain its integrity over the intended lifetime in addition to performing any additional function

Each of these functions is a fascinating case study in its own right and I highly recommend the site AskNature.org [1] as a way to learn more on a specific application, but this is beyond the scope of the current post. More relevant to our high-level discussion is that having listed the various reasons WHY cellular structures are found in nature, the next question is can we connect the structures described in the previous post to the functions tabulated above? This will be the attempt of my next post. Until then, as always, I welcome all inputs and comments, which you can send by messaging me on LinkedIn.

Thank you for reading!

References

  1. AskNature.org
  2. Foy (1983), The grand design: Form and colour in animals, Prentice-Hall, 1st edition
  3. Dawkins (2010), The greatest show on earth: the evidence for evolution, Free Press, Reprint of 1st edition
  4. Gibson, Ashby, Harley (2010), Cellular Materials in Nature and Medicine, Cambridge University Press; 1st edition
  5. Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (2000), Metal Foams: A Design Guide, Butterworth-Heinemann, 1st edition

ANSYS 18 – Mechanical Ease of Use Webinar

We here at PADT are proud to present the ease of use and productivity enhancements that have been added to ANSYS Mechanical in release 18.

With this new release, ANSYS Mechanical focuses on the introduction of a variety of improvements that help save the users time, such as smarter data organization and new hotkeys, along with additions that can help you to better visualize specific intricacies in your models.

Join PADT’s Simulation Support & Application Engineer Doug Oatis for an overview of the current user friendly interfaces within ANSYS Mechanical, along with the numerous additions in this new release that help to improve efficiency tenfold, such as:

  • Hotkey Additions
  • Box Geometry Creation Within Mechanical
  • Free Standing Remote Points
  • Improved Status Bar Information
  • Pretension Beam Connection
  • Solver Scratch Directory Specification
  • Improved Probe Annotations

Register today to find out how you can use these enhancements to improve your throughput and stay ahead of the curve!

We look forward to seeing you there.

Making Solids Water Tight in ANSYS Spaceclaim for ANSYS Workbench Meshing

Occasionally when solid geometry is imported from CAD into ANSYS SpaceClaim the geometry will come in as solids, but when a mesh is generated on the solids the mesh will appear to “leak” into the surrounding space. Below is an assembly that was imported from CAD into SpaceClaim. In the SpaceClaim Structure Window all of the parts can be seen to be solid components.

When the mesh is generated in ANSYS Mechanical it appears like the assembly has been successfully meshed.

However, when you look at the mesh a little closer, the mesh can be missing from some of the surfaces and not displayed correctly on others.

Additionally, if you create a cross-section through the mesh, the mesh on some of the parts will “leak” outside of the part boundaries and will look like the image below.

Based on the mesh color, the mesh of the part in the center of the assembly has grown outside of the surfaces of the part.
To repair the part you need to go back to SpaceClaim and rebuild it. First you need to hide the rest of the parts.

Next, create a sketch plane that passes through the problem part.

In the sketch mode create a rectangle that surrounds the part. When you return to 3D mode in SpaceClaim, that rectangle will become a surface that passes through the part.

Now use the Pull tool in SpaceClaim to turn that surface into a part that completely surrounds the part to be repaired, making sure to turn on the “No Merge” option for the pull before you begin.

After you have pulled the surface into a solid, it should like the image below where the original part is completely buried inside the new part.

Now you will use the Combine tool to divide the box with the original part. Select Combine from the Tool Bar, then select the box that you created in the previous step. The cutter will be activated and you will move the cursor around until the original part is highlighted inside the box. Select it with the left mouse button. The Combine tool will then give you the option to select the part of the box that you want to remove. Select the part that surrounds the original part. After it is finished, close the combine tool and the Structure Tree and 3D window will now look like the following:

Now move the new solid that was created with the Combine tool into the location of the original part and turn off the original one and re-activate the other parts of the assembly. The assembly and Structure Tree should now look like the pictures below.

Now save the project, re-open the meshing tool, and re-generate the mesh. The mesh should now be correct and not “leaking” beyond the part boundaries.

Cellular Design Strategies in Nature: A Classification

What types of cellular designs do we find in nature?

Cellular structures are an important area of research in Additive Manufacturing (AM), including work we are doing here at PADT. As I described in a previous blog post, the research landscape can be broadly classified into four categories: application, design, modeling and manufacturing. In the context of design, most of the work today is primarily driven by software that represent complex cellular structures efficiently as well as analysis tools that enable optimization of these structures in response to environmental conditions and some desired objective. In most of these software, the designer is given a choice of selecting a specific unit cell to construct the entity being designed. However, it is not always apparent what the best unit cell choice is, and this is where I think a biomimetic approach can add much value. As with most biomimetic approaches, the first step is to frame a question and observe nature as a student. And the first question I asked is the one described at the start of this post: what types of cellular designs do we find in the natural world around us? In this post, I summarize my findings.

Design Strategies

In a previous post, I classified cellular structures into 4 categories. However, this only addressed “volumetric” structures where the objective of the cellular structure is to fill three-dimensional space. Since then, I have decided to frame things a bit differently based on my studies of cellular structures in nature and the mechanics around these structures. First is the need to allow for the discretization of surfaces as well: nature does this often (animal armor or the wings of a dragonfly, for example). Secondly, a simple but important distinction from a modeling standpoint is whether the cellular structure in question uses beam- or shell-type elements in its construction (or a combination of the two). This has led me to expand my 4 categories into 6, which I now present in Figure 1 below.

Figure 1. Classification of cellular structures in nature: Volumetric – Beam: Honeycomb in bee construction (Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring), Lattice structure in the Venus flower basket sea sponge (Neon); Volumetric – Shell: Foam structure in douglas fir wood (U.S. National Archives and Records Administration), Periodic Surface similar to what is seen in sea urchin skeletal plates (Anders Sandberg); Surface: Tessellation on glypotodon shell (Author’s image), Scales on a pangolin (Red Rocket Photography for The Children’s Museum of Indianapolis)

Setting aside the “why” of these structures for a future post, here I wish to only present these 6 strategies from a structural design standpoint.

  1. Volumetric – Beam: These are cellular structures that fill space predominantly with beam-like elements. Two sub-categories may be further defined:
    • Honeycomb: Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Fig 1. All cross-sections through the 3rd dimension are thus identical. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs.
    • Lattice and Open Cell Foam: Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional lattice or open-cell foam. Lattice designs tend to embody higher stiffness levels while open cell foams enable energy absorption, which is why these may be further separated, as I have argued before. Nature tends to employ both strategies at different levels. One example of a predominantly lattice based strategy is the Venus flower basket sea sponge shown in Fig 1, trabecular bone is another example.
  2. Volumetric – Shell:
    • Closed Cell Foam: Closed cell foams are open-cell foams with enclosed cells. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures. Plant sections often reveal a closed cell foam, such as the douglas fir wood structure shown in Fig 1.
    • Periodic Surface: Periodic surfaces are fascinating mathematical structures that often have multiple orders of symmetry similar to crystalline groups (but on a macro-scale) that make them strong candidates for design of stiff engineering structures and for packing high surface areas in a given volume while promoting flow or exchange. In nature, these are less commonly observed, but seen for example in sea urchin skeletal plates.
  3. Surface:
    • Tessellation: Tessellation describes covering a surface with non-overlapping cells (as we do with tiles on a floor). Examples of tessellation in nature include the armored shells of several animals including the extinct glyptodon shown in Fig 1 and the pineapple and turtle shell shown in Fig 2 below.
    • Overlapping Surface: Overlapping surfaces are a variation on tessellation where the cells are allowed to overlap (as we do with tiles on a roof). The most obvious example of this in nature is scales – including those of the pangolin shown in Fig 1.
Figure 2. Tessellation design strategies on a pineapple and the map Turtle shell [Scans conducted at PADT by Ademola Falade]

What about Function then?

This separation into 6 categories is driven from a designer’s and an analyst’s perspective – designers tend to think in volumes and surfaces and the analyst investigates how these are modeled (beam- and shell-elements are at the first level of classification used here). However, this is not sufficient since it ignores the function of the cellular design, which both designer and analyst need to also consider. In the case of tessellation on the skin of an alligator for example as shown in Fig 3, was it selected for protection, easy of motion or for controlling temperature and fluid loss?

Figure 3. Varied tessellation on an alligator conceals a range of possible functions (CCO public domain)

In a future post, I will attempt to develop an approach to classifying cellular structures that derives not from its structure or mechanics as I have here, but from its function, with the ultimate goal of attempting to reconcile the two approaches. This is not a trivial undertaking since it involves de-confounding multiple functional requirements, accounting for growth (nature’s “design for manufacturing”) and unwrapping what is often termed as “evolutionary baggage,” where the optimum solution may have been sidestepped by natural selection in favor of other, more pressing needs. Despite these challenges, I believe some first-order themes can be discerned that can in turn be of use to the designer in selecting a particular design strategy for a specific application.

References

This is by no means the first attempt at a classification of cellular structures in nature and while the specific 6 part separation proposed in this post was developed by me, it combines ideas from a lot of previous work, and three of the best that I strongly recommend as further reading on this subject are listed below.

  1. Gibson, Ashby, Harley (2010), Cellular Materials in Nature and Medicine, Cambridge University Press; 1st edition
  2. Naleway, Porter, McKittrick, Meyers (2015), Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 27(37), 5455-5476
  3. Pearce (1980), Structure in Nature is a Strategy for Design, The MIT Press; Reprint edition

As always, I welcome all inputs and comments – if you have an example that does not fit into any of the 6 categories mentioned above, please let me know by messaging me on LinkedIn and I shall include it in the discussion with due credit. Thanks!

New: PADT’s Medical Device Capabilities and Portfolio Presentation

We recently updated our slide presentation on PADT’s Medical Device product development capabilities that includes some examples of past work.  Our ISO 13485 certified team applies proven processes and deep industry experience across a wide spectrum of products.  Please take a look to learn more about how we help companies engineer their medical devices.

PADT-Medical-Overview-Portfolio-2017_03_22-2

 

You can learn more here and if you have any questins, simply email info@padtinc.com or call 480.813.4884.

Phoenix Business Journal: Instant messaging and business communication

hey  you didn’t read my email

you comming to the meeting?

 sorry

dialing in

Instant messaging has moved from a personal communication tool to an important part of business communication. But if we use it like email, it will loose its impact. “Intant messaging and business communication” looks at the topic.

Phoenix Business Journal: How can technology further art?

Technology is an awesomely creative endeavor – innovation and inspiration is combined with science to create new products and tools for people and businesses. It is creative, but it’s not art. In “How can technology further art” I look at what technology can do to open new ways for people to express themselves and to make art more accesable.

Phoenix Business Journal: ​What the heck is happening? There is too much going on in Arizona tech

We have a problem now in the Arizona Tech community – there is just too much going on.  In “What the heck is happening? There is too much going on in Arizona tech” we look at how why this is a good thing and what we can to make it even better.

ANSYS 18 – AIM Enhancements Webinar

We here at PADT are excited to share with you the updates that ANSYS 18 brings to the table for AIM: The easy-to-use, upfront simulation tool for all design engineers.

ANSYS AIM is a single GUI, multiple physics tool with advanced ANSYS technology under the hood. It requires minimal training and is interoperable with a wide range of ANSYS simulation products.

Join PADT’s application engineer Tyler Smith as he covers the new features and capabilities available in this new release, including:

  • Magnetic frequency response
  • One-way FSI for shell structures
  • Model transfer to Fluent
  • One-way magnetic-thermal coupling
  • and many more!

ANSYS AIM is a perfect tool for companies performing simulation with a CAD embedded tool, design engineers at companies using high end simulation, and even companies who have yet to take the plunge into the world of simulation.

Register for this webinar today and learn how you can take advantage of the easy-to-use, yet highly beneficial capabilities of ANSYS AIM.