Introducing ANSYS 2019 R1

PADT is excited to announce the release of ANSYS 2019 R1, the first group of updates for the suite of ANSYS simulation software this year. The release features updates for a wide variety of applications, including simulation for fluids, structures, electronics, 3D design, and much more.

We will be hosting a series of live webinars over the course of 2019 that will allow you to learn about what’s new in this release, from PADT’s team of expert support engineers.

Take a look at the following upcoming product update webinars for 2019 R1 and register by clicking the links below.

There is more to come, so stay tuned


Fluent Updates in ANSYS 2019 R1
Wednesday, February 13th – 11:00 am – 12:00 pm MST AZ

Computational Fluid Dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. Serious CFD, the kind that provides insights to help you optimize your designs, could be out of reach unless you choose your software carefully. Experienced engineers need to go further and faster with well-validated CFD results across a wide range of applications, and with ANSYS Fluent users are able to do just that; delivering reliable and accurate results.

Join Padt’s CFD Team Lead Engineer, Clinton Smith for a look at what new capabilities are available for the latest version of Fluent, in ANSYS 2019 R1.

Register Here


Mechanical Updates in ANSYS 2019 R1
Wednesday, March 13th – 11:00 am – 12:00 pm MST AZ

From designers and occasional users looking for quick, easy, and accurate results, to experts looking to model complex materials, large assemblies, and nonlinear behavior, ANSYS Mechanical enables engineers of all levels to get answers fast and with confidence. With applications for everything form strength analysis to topology optimization, it’s no wonder this comprehensive suite of tools continues to serve as the flagship mechanical engineering software solution.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what new capabilities are available for ANSYS Mechanical, in the latest version; 2019 R1.

Register Here


High Frequency Electromagnetics Updates in ANSYS 2019 R1
Wednesday, April 10th – 11:00 am – 12:00 pm MST AZ

In today’s world of high performance electronics and advanced electrification systems, the effects of electromagnetic fields on circuits and systems cannot be ignored. ANSYS software can uniquely simulate electromagnetic performance across component, circuit and system design, evaluating temperature, vibration and other critical mechanical effects.

Join PADT’s Electrical Engineer, Michael Griesi for a look at what new capabilities are available with regards to High Frequency Electromagnetics, in the latest version of ANSYS; 2019 R1

Register Here


Discovery Updates in ANSYS 2019 R1
Wednesday, May 8th – 11:00 am – 12:00 pm MST AZ

The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1.

Register Here


If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!


Evaluating Stresses and Forces in Threaded Fasteners with ANSYS Mechanical, Part 2

Fasteners are one of the most common and fundamental engineering components we encounter.

Proper design of fasteners is so fundamental, every Mechanical Engineer takes a University course in which the proper design of these components is covered (or at least a course in which the required textbook does so).

With recent increases in computational power and ease in creating and solving finite element models, engineers are increasingly tempted to simulate their fasteners or fastened joints in order to gain better insights into such concerns as thread stresses

In what follows, PADT’s Alex Grishin digs deeper into how to leverage ANSYS Mechanical to better model fasteners and obtain accurate results. If you did not review Part 1, do so here.

PADT-ANSYS-fastener_simulation_part2

Press Release: Grant to ASU, PADT, and Others for Advancement of 3D Printing Post-Processing Techniques

We are very pleased to announce that PADT is part of another successful Federal grant with ASU in the area of Additive Manufacturing.  This is the second funded research effort we have been part of in the past twelve months and also our second America Makes funded project.

It is another great example of PADT’s cooperation with ASU and other local businesses and also shows how Arizona is becoming a hub for innovation around this important and growing technology.

Please find the official press release on this new partnership below and here in PDF and HTML.

You can find links to our other recent research grants here:

If you have any questions about, additive manufacturing or this project, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

$800,000 in Matching Funds Appointed to ASU, PADT and Other Partners by America Makes for the Advancement of 3D Printing Post-Processing Techniques

This Grant Marks PADT’s Second Federally Funded Project in the Past Year, and its Second America Makes Funded Project in the Past Two Years

TEMPE, Ariz., January 24, 2019 ─ PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, has announced it has joined ASU in a Directed Project Opportunity to advance post-processing techniques used in additive manufacturing (AM). The project is being funded by the Air Force Research Laboratory (AFRL) and the Materials and Manufacturing Directorate, Manufacturing and Industrial Base Technology Division and driven by the National Center for Defense Manufacturing and Machining (NCDMM).

ASU was one of two awardees that received a combined $1.6M with at least $800K in matching funds from the awarded project teams for total funding worth roughly $2.4M. ASU will lead the project, while PADT, Quintus Technologies, and Phoenix Heat Treating, Inc. have joined to support the project.

“Our ongoing partnership with ASU has allowed us to perform critical research into the advancement of 3D printing,” said Rey Chu, principal and co-founder, PADT. “We are honored to be involved with this project and look forward to applying our many years of technical expertise in 3D printing post-processing.”

The goal of this research is to yield essential gains in process control, certified processes, and the qualification of materials and parts to drive post-processing costs down and make 3D printing more accessible. PADT will be responsible for providing geometry scanning capabilities, as well as technical expertise.

PADT has deep experience in 3D printing post-processing techniques due to the development of its proprietary Support Cleaning Apparatus (SCA), the best-selling post-processing hardware on the market. Initially released in November 2008, more than 12,500 SCA systems have sold to-date. The SCA system was awarded a U.S. patent in October 2018.

This grant will be the second federally funded research project in 2018 which teams PADT and ASU to advance 3D printing innovation and adoption. The first project received a $127,000 NASA STTR grant and is aimed at accelerating biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs.

For more information on PADT and its background in 3D printing post-processing, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

All Things ANSYS 029 – Thoughts on The 2019 ANSYS Sales Kickoff & Exciting Applications for IcePak

 

Published on: January 23rd, 2019
With: Eric Miller
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by some very special guests, to discuss how their company makes use of ANSYS IcePak, followed by PADT’s thoughts on the information delivered at this year’s ANSYS Sales Kickoff.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Discussing Tools for AM with Softwareconnect.com

With the substantial growth of more advanced manufacturing technologies over the past decade, the engineering world has seen additive manufacturing lead the way towards the future of innovation.


While the process of additive manufacturing, has proven to yield valuable results that can drastically reduce lead time and overall cost, without an effective design and an in-depth understanding of the process behind it end users of the tool will struggle to achieve the high-quality results they initially envisioned.

PADT’s Principle and Co-Owner Eric Miller sat down with David Budiac of Software Connect to discuss the use of software when it comes to Additive Manufacturing, including integrating MES & QMS into your process, specific steps for ensuring success with AM software.

Check out the blog post featuring notes from their discussion here.

You can also view a recording of PADT’s webinar discussing design for Additive Manufacturing below:

 

Webinar Replay – Drop Test Simulation: Analyze Stress & Deformation without Breaking Your Device

Wouldn’t it be useful to be able to determine BEFORE the drop, whether the component would survive?

Drop tests have become a key part of the product development process of various companies, and are commonly used to assess the integrity of parts and assemblies when it comes to commercial consumer goods, and electronic components. Physical drop tests are time consuming and, due to their nature, result in often substantial material costs.

This is where simulation comes in handy.

Don’s miss a replay of our webinar covering the importance of drop testing and how ANSYS simulation have help you to achieve similar results quicker, cheaper, and more efficiently.

Introducing the 2019 Tucson ANSYS User Conference

PADT is excited to announce the agenda for our 2019 Tucson ANSYS User Conference. This single day event brings together ANSYS users, partners, and industry experts for networking, learning, and sharing of innovative ideas.

Join us after work at Brother John’s BBQ from 5:00 pm – 8:00 pm to explore the role ANSYS simulation plays right here in Tucson Arizona.

This free event will feature PADT’s Simulation Support Manager discussing ANSYS offerings in the realm of additive manufacturing, as well as talks from the founders of Tucson based companies, such as:

Food and drink will be provided.

Check out the full agenda below for more information on the presenters & their talks:

Don’t miss this unique opportunity to connect with other ANSYS users who call the city of Tucson Arizona their home. Secure your spot today.

We look forward to seeing you there!

All Things ANSYS 028 – A Year in Review: Predictions for ANSYS in 2019

 

Published on: January 7th, 2019
With: Eric Miller, Joe Woodward, & Ted Harris
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and Specialist Mechanical Engineer Joe Woodward, for a discussion on their predictions for ANSYS in 2019, and a look back at our predictions from 2018.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

2018, What a Great Year for PADT

Just a few more days before PADT’s Holiday break between Christmas and New Year’s Day. As much as we try to finish things up, 2018 is not going to bed without a fight. Everyone is busy. And that is what the entire year was like.

Some years you remember more than most, and I think 2018 will be one of the more memorable years.

We had a lot of new activities and made a lot of noise in the community. If you scroll through the list of milestones below you will see that we opened offices, won research grants, received awards, and added partners. And much more. We could have never achieved so much without our outstanding employees, supportive partners, and fantastic customers.

Three of those events stand out to me and are worth mentioning here in this final blog entry of the year.

The first happened at the start of the year when we launched ANSYS sales in Austin, Texas. We have been selling and supporting customers in Arizona, Colorado, Utah, and New Mexico for decades. We have also been doing business in California for some time.  The addition of Texas was special because it was our first major growth east of the Rocky Mountains. Texas is culturally very much a part of the Southwestern US, and it felt right to add branch out there. And it has gone great.  We are reconnecting with people we knew through consulting, meeting new customers, and adding long-term ANSYS customers to our user family. It has been great.  And the Bar-B-Que is as good as everyone promised.

Texas was all about moving east.  The next important milestone was about moving up. Up into space.  We have been in the Additive Manufacturing business since we started PADT, and many of our customers have been Aerospace companies.  They have worked with us to make prototypes and tooling that helped them get better solutions into orbit faster. But never have they tried to fly structural 3D Printed parts. Until this year.

The Orion spacecraft leverages a variant of new Stratasys Antero 800NA to build an intricately-connected 3D printed docking hatch door

NASA, Lockheed Martin, Stratasys, and PADT worked together to put the right processes, materials, and Additive Manufacturing systems in place to allow Lockheed Martin to deliver next-generation 3D printed parts for NASA’s Orion deep-space spacecraft.  They manufactured a docking hatch door using Stratasys Antero 800NA material that is approved for flight. In fact, the plan is to take the spacecraft beyond the orbit of the moon as a test.  We are very proud to have played a role in making this happen.

The last achievement worth emphasizing is one of the awards we received. The ANSYS Technical Support Team from PADT was a Silver Winner of the 2018 Customer Service Department of the Year Award. A Silver Stevie.  Not only is this remarkable because it is national recognition for what our team does, it comes during the busiest technical support year we have ever faced. As ANSYS adds products and customers, the team’s job gets harder. And they step up to the plate (well, phone or email client) every day and satisfy customers. The reviewers at the American Business Awards stated: “PADT defines what premium customer service looks like.”   Great recognition for all of their hard work.

Some further highlights from the year are listed below.

As we rush to get things done and eat more holiday treats off the table in the hallway, we want to thank everyone who helped make this a memorable year.  All of us at PADT look forward to creating even more memories and establishing greater milestones in 2019.

PADT 2018 Highlights (with links for more details!):

February:

March:

April:

May:

June:

July:

August:

October:

November:

All Things ANSYS 027 – 2018 Wrap-up – Our Favorite ANSYS Features From This Year

 

Published on: December 17th, 2018
With: Eric Miller, Tom Chadwick, Joe Woodward, & Ahmed Fayad
Description:  

 

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Team, including Tom Chadwick, Joe Woodward, and Ahmed Fayad for a round-table discussion of their favorite ANSYS features released in 2018, along with news regarding the PADT and ANSYS worlds.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

How to Use Lattice Optimization in ANSYS Mechanical and ANSYS SpaceClaim 19.2

One of the great new features in ANSYS Mechanical 19.2 is the ability to perform a lattice optimization.  Accomplished as an option within Topology Optimization, lattice optimization allows us to generate a lattice structure within our region of interest.  It includes varying thickness of the lattice members as part of the optimization.

Lattice structures can be very beneficial because weight can be substantially reduced compared to solid parts made using traditional manufacturing methods.  Further, recent advances in additive manufacturing enable the creation of lattice structures in ways that weren’t possible with traditional manufacturing.

Here I’ll explain how to perform a lattice optimization in ANSYS 19.2 step by step.

The procedure starts the same as a normal topology optimization in ANSYS Mechanical, with an initial static structural analysis on our original part or assembly.  If you’re not familiar with the process, this earlier PADT Focus blog should be helpful:  http://www.padtinc.com/blog/the-focus/topological-optimization-in-ansys-18-1-motorcycle-component-example

For the lattice optimization, I’m starting with a part I created that acts as a corner brace:

At this early point in the simulation, the Project Schematic looks like this:

I used the Multizone mesh method to get a hex mesh on the part:

Simple loads and constraints are recommended especially if you’ll be doing a downstream validation study.  That is because the downstream simulation on the resulting lattice geometry will most likely need to operate on the FE entities rather than geometric entities for load and constraint application. The boundary conditions in this simple model consisted of a fixed support on one side of the brace and a force load on the other side:

After solving, I reviewed the displacement as well as the stress results:

Satisfied with the results, the next step is to add a Topology Optimization block in the Project Schematic. The easiest way to do this is to right click on the Solution cell, then select Transfer Data to New > Topology Optimization:

You may need to re-solve the static structural simulation at this point.  You’ll know if you have yellow thunderbolts in the Project Schematic instead of green checkmarks for the Static Structural analysis. 

At this point, the Project Schematic now looks like this:

The Mechanical window now has the Topology Optimization branch added:

The change to make to enable a lattice optimization is accomplished in the details view of the Optimization Region branch:

We then need to specify some settings for the lattice.  The first of these is the Lattice Type.  The various types are documented in the ANSYS 19.2 Help.  In my example I selected the Crossed option.

The other properties to define are:

  • Minimum Density (to avoid lattice structures that are toothin.  Allowed bounds are 0 and 1)
  • Maximum Density (elements are considered full/solid fordensities higher than this value, allowed bounds are 0 and 1)
  • Lattice Cell Size (used in downstream geometry steps andadditive manufacturing)

Values I used in my example are shown here:

Assuming no other options need to be set, we solve the lattice optimization and review the results.  The results are displayed as a contour plot with values between zero and one, with values corresponding to the density settings as specified above.

Note that at this stage we don’t actually visualize the lattice structure – just a contour plot of where the lattice can be in the structure.  Where density values are higher than the maximum density specified, the geometry will end up being solid.  The lattice structure can exist where the results are between the minimum and maximum density values specified, with a varying thickness of lattice members corresponding to higher and lower densities.

The next step is to bring the lattice density information into SpaceClaim and generate actual lattice geometry.  This is done by adding a free standing Geometry block in the Workbench Project Schematic.

The next step is to drag and drop the Results cell from the Topology Optimization block onto the Geometry cell of the new free standing Geometry block:

The Project Schematic will now look like this:

Notice the Results cell in the Topology Optimization branch now has a yellow lightning bolt.  The next step is to right click on that Results cell and Update.  The Project Schematic will now look like this:

Before we can open SpaceClaim, we next need to right click on the Geometry cell in the downstream Geometry block and Update that as well:

After both Updates, the Project Schematic will now look like this:

The next step is to double click or right click on the now-updated Geometry cell to open SpaceClaim.  Note that both the original geometry and a faceted version of the geometry will exist in SpaceClaim:

It may seem counter intuitive, but we actually suppress the faceted geometry and only work with the original, solid geometry for the faceted process.  The faceted geometry should be automatically suppressed, as shown by the null symbol, ø, in the SpaceClaim tree.  At this point it will be helpful to hide the faceted geometry by unchecking its box in the tree:

Next we’ll utilize some capability in the Facets menu in SpaceClaim to create the lattice geometry, using the lattice distribution calculated by the lattice optimization.  Click on the Facets tab, then click on the Shell button:

Set the Infill option to be Basic:

At this point there should be a check box for “Use Density Attributes” below the word Shape.  This check box doesn’t always appear.  If it’s not there, first try clicking on the actual geometry object in the tree:

In one instance I had to go to %appdata%\Ansys and rename the v192 folder to v192.old to reset Workbench preferences and launch Workbench again.  That may have been ‘pilot error’ on my part as I was learning the process.

The next step is to check the Use density attributes box.  The Shape dropdown should be set to Lattices.  Once the Use density attributes box is checked, we can then one of the predefined lattice shapes, which will be used for downstream simulation and 3D printing.  The shape picked needs to match the lattice shape previously picked in the topology optimization.

In my case I selected the Cube Lattice with Side Diagonal Supports, which corresponds to the Crossed selection I made in the upsteam lattice optimization.  Note that a planar preview of this is displayed inside the geometry:

The next step is to click the green checkmark to have SpaceClaim create the lattice geometry based on the lattice distribution calculated by the lattice optimization:

When SpaceClaim is done with the lattice geometry generation, you should be able to see a ghosted image showing the lattice structure in the part’s interior:

Note that if you change views, etc., in SpaceClaim, you may then see the exterior surfaces of the part, but rest assured the lattice structure remains in the interior.

Your next step may need to be a validation.  To do this, we create a standalone Static Structural analysis block on the Project Schematic:

Next we drag and drop the Geometry cell from the faceted geometry block we just created onto the Geometry cell of the newly created Static Structural block:

We can now open Mechanical for the new Static Structural analysis.  Note that the geometry that comes into Mechanical in this manner will have a single face for the exterior, and a single face for the exterior. To verify that the lattice structure is actually in the geometry, I recommend creating a section plane so we can view the interior of the geometry:

To mesh the lattice structure, I’ve found that inserting a Mesh Method and setting it to the Tetrahedrons/Patch Independent option has worked for getting a reasonable mesh.  Care must be taken with element sizes or a very large mesh will be created.  My example mesh has about 500,000 nodes.  This is a section view, showing the mesh of the interior lattice structure (relatively coarse for the example).

For boundary condition application, I used Direct FE loads.  I used a lasso pick after aligned the view properly to select the nodes needed for the displacement and then the force loads, and created Named Selections for each of those nodal selections for easy load application.

Here are a couple of results plots showing a section view with the lattice in the interior (deflection followed by max principal stress):

Here is a variant on the lattice specifications, in which the variance in the thickness of the lattice members (a result of the optimization) is more evident:

Clearly, a lot more could be done with the geometry in SpaceClaim before a validation step or 3D printing.  However, hopefully this step by step guide is helpful with the basic process for performing a lattice optimization in ANSYS Mechanical and SpaceClaim 19.2.

All Things ANSYS 026 – Eigenvalue Buckling & Post-buckling Analysis in ANSYS Mechanical

 

Published on: December 3rd, 2018
With: Eric Miller & Joe Woodward
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Specialist Mechanical Engineer, Joe Woodward to discuss how eigenvalue buckling can effect the load factor of a structure, and what applications it has for a variety of different projects. All that, followed by an update on news and events in the respective worlds of ANSYS and PADT.

For more information on this topic and some visual representation of what is being discussed, check out the blog post that inspired this episode here:

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 025 – Elevating Post Processing with ANSYS Ensight

 

Published on: November 19th, 2018
With: Eric Miller & Clinton Smith
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s CFD Team Lead Engineer and PhD, Clinton Smith to discuss what makes ANSYS Ensight so special, including the boost it gives to both post processing speed and visualization quality by implementing ANSYS Ensight. All that, followed by an update on news and events in the respective worlds of ANSYS and PADT.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Getting it Right the First Time: Streamlining Metal 3D Printing with ANSYS Additive Solutions

Don’t miss this informative presentation – Secure your spot today!

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing TPU 92A – The latest FDM material from Stratasys

PADT is excited to announce the release of the latest FDM material from Stratasys: TPU 92A.
Thermoplastic Polyurethane (TPU) is a type of elastomer material, known for its flexibility, resilience, tear resistance, and high elongation. It’s a highly process-able material which makes it ideal for additive manufacturing.
TPU 92A is an elastomeric material that is ideal for prototyping highly functional, large, durable, complex elastomer parts. 

This material brings the benefits of an elastomer to the accurate and easy-to-use F123 3D Printer. Combined with soluble support, it lets you create simple to complex elastomer parts, and through printing on the F123 Series gives product developers more tools to expand their prototyping capabilities with reliable accuracy.
Curious to learn more about the unique properties that make TPU 92A such a great option for prototyping?Schedule a meeting to see the material for yourself.Click the link below to start a conversation with PADT’s resident material experts, in order to discuss the capabilities of this Thermoplastic Polyurethane material, and how your company can benefit from using it.

Don’t miss this unique opportunity, schedule a meeting today!