Polyjet 3D Printers Up and Running in Denver and Albuquerque Offices

PADT-Polyjet-Albuquerque PADT-Polyjet-Denver

With all the opening and moving of offices we failed to notice that our crack sales team sold all of our demonstration 3D Printing and rapid manufacturing machines out from underneath us.  This made it easier to move, but hard on customers who wanted to see these systems in action.  So we took the opportunity to not only replace the FDM systems in our offices, but to also add Objet30 Pro desktop printers in our New Mexico and Colorado offices.  In the past we only had Polyjet systems in our Tempe facility.

If you are not familiar with the advantages of Polyjet 3D Printing when compared to FDM or other technologies, contact us to arrange a visit to our Littleton, Albuquerque, or Tempe offices to not only see these machines in action, but to also see sample parts we have made on them.

 

 

 

PADT Sponsoring 2013 Desert Vista Thunder Speech, Theater & Debate Team

TSTDC-Sponsorship-DBacks

PADT is pleased to be one of the sponsors for Desert Vista’s 2013 Thunder Speech, Theater & Debate Team.  They just kicked off their new season and were invited to a Diamond Backs game as  special guests.  They showed off the new sponsorship poster and PADT was pleased to be on the board.

The TSTDC team are 10 time state champions focused on offering “intense training in acting, debate, research and rhetoric, public speaking,  as well as interpersonal communication and teamwork skills.  Our students also gain valuable skills needed for high school, college and the professional world.”

We hope to help them make to their 11th championship this year!

 

ANSYS Updates in New Mexico

Los-Alamos-Balcony-1Clinton, Bob, Patrick, and Eric on on a trip to New Mexico to do ANSYS updates in Albuquerque and Los Alamos. The groups have been great, lots of deep questions and further insight into how everyone can get greater value out of their ANSYS Mechanical, FLUENT, CFX, and Maxwell usage.

The Los Alamos session is being held at the Holiday Inn Express as you drive in to town.  The view out the meeting from window is fantastic.  Kind of hard to pay attention to the PowerPoint slide on “New compound observables for the Adjoint Solver.”  The pictures do not do the sky justice.

Los-Alamos-Balcony-panorama

Columbia: PADT’s Killer Kilo-Core CUBE Cluster is Online

iIn the back of PADT’s product development lab is a closet.  Yesterday afternoon PADT’s tireless IT team crammed themselves into the back of that closet and powered up our new cluster, bringing 1104 connected cores online.  It sounded like a jet taking off when we submitted a test FLUENT solve across all the cores.  Music to our ears.

We have recently become slammed with benchmarks for ANSYS and CUBE customers as well as our normal load of services work, so we decided it was time to pull the trigger and double the size of our cluster while adding a storage node.  And of course, we needed it yesterday.  So the IT team rolled up their sleeves, configured a design, ordered hardware, built it up, tested it all, and got it on line, in less than two weeks.  This was while they did their normal IT work and dealt with a steady stream of CUBE sales inquiries.  But it was a labor of love. We have all dreamed about breaking that thousand core barrier on one system, and this was our chance to make it happen.

If you need more horsepower and are looking for a solution that hits that sweet spot between cost and performance, visit our CUBE page at www.cube-hvpc.com and learn more about our workstations, servers, and clusters.  Our team (after they get a little rest) will be more than happy to work with you to configure the right system for your real world needs.

Now that the sales plug is done, lets take a look at the stats on this bad boy:

Name: Columbia
After the class of battlestars in Battlestar Galactica
Brand: CUBE High Value Performance Compute Cluster, by PADT
Nodes: 18
17 compute, 1 storage/control node, 4 CPU per Node
Cores: 1104
AMD Opteron: 4 x 6308 3.5 GHz, 32 x 6278 2.4 GHz, 36 x 6380 2.5 GHz
Interconnect: 18 port MELLANOX IB 4X QDR Infiniband switch
Memory: 4.864 Terabytes
Solve Disk: 43.5 TB RAID 0
Storage Disk: 64 TB RAID 50

Here are some pictures of the build and the final product:

a
A huge delivery from our supplier, Supermicro, started the process. This was the first pallet.

b
The build included installing the largest power strip any of us had ever seen.

c
Building a cluster consists of doing the same thing, over and over and over again.

f
We took over PADT’s clean room because it turns out you need a lot of space to build something this big.

g
It is fun to get the chance to build the machine you always wanted to build

h
2AM Selfie: Still going strong!

d
Almost there. After blowing a breaker, we needed to wait for some more
power to be routed to the closet.

e
Up and running!
Ratchet and Clank providing cooling air containment.

David, Sam, and Manny deserve a big shout-out for doing such a great job getting this thing up and running so fast!

When I logged on to my first computer, a TRS-80, in my high-school computer lab, I never, ever thought I would be running on a machine this powerful.  And I would have told people they were crazy if they said a machine with this much throughput would cost less than $300,000.  It is a good time to be a simulation user!

Now I just need to find a bigger closet for when we double the size again…

CUBE-HVPC-Logo-wide

Settling in at our New Colorado Office

One of the cooler features (or is it kewler?) of our new digs in Littleton is the fact that the balcony on the front of the office has flag poles.  So we went out and got a US and Colorado flag, and had a PADT flag made.  The sun came out and the wind picked up and I have to say, it looked pretty good. Then a rainbow came out.  #goodstuff.

2013-07-29 13.58.57  2013-07-29 18.07.36

2013-07-29 18.20.36

 

Utilizing a Thermal Contact Conductance Table in ANSYS ANSYS Mechanical

We recently had a tech support request from a customer, asking for the ability to define a spatially varying thermal contact conductance (TCC) on a contact region in ANSYS Mechanical. We came up with a solution for ANSYS 14.5 via an example which includes a couple of verification plots.

The test model consists of two solids, connected via a contact region. The thermal contact conductance at the contact region was defined as a table, with the rows and columns of the table corresponding to local coordinates within the plane of the contact surface. The table was defined and implemented using Mechanical APDL commands in the Mechanical tree.

image

Low values of TCC were used for testing purposes. This helped verify that the tabular values were actually being used as intended. A constant temperature was applied to the face at one end of the model, while a different constant temperature was applied to the face at the extreme other end of the model. This temperature differential caused heat to flow through the contact region, subject to the resistance defined via TCC values.

The coordinates in the plane of the contact surface were Y and Z. Thus, the table of TCC values varied in the Y and Z directions, as shown here:

            Z        
  Y |  0.0        1.0
0.0 | 0.0001    0.0005
1.0 | 0.0005    0.0002

Three ANSYS Mechanical APDL command objects were inserted into the tree in the Mechanical editor. The first command object simply added a scalar parameter to keep track of the contact element type/real constant set number for use later:

image

The second command object was placed in the analysis type branch, meaning this set of commands would be executed just prior to the Solve command. This command object does three things:

1. Defines the TCC table vs. Y and Z coordinates.

2. Reads the table in as an MAPDL real constant for the contact elements identified in the first command object.

3. Issues the command, “rstsuppress,none”. More on this later.

This is how the second command object was defined:

image

That third step mentioned above was a key to getting this technique to work in 14.5. The rstsuppress command is not documented currently, but Al Hanq of ANSYS, Inc. has told me that it will be documented in the future. The default setting turns off contact results from being written to the results file in a thermal analysis. The idea is to help keep results file sizes from getting excessively large, especially for transient thermal runs. In this case, we actually wanted the thermal contact results in the results file, so we issued “rstsuppress,none” so the thermal contact results were not suppressed.

The final command object was for verification of the applied TCC values. This set of commands generates two plots using MAPDL postprocessing commands. The first plot is of heat flux going through the contact elements. The second plot displays the TCC values for node ‘i’ of each contact element (averaged).

Here is the third command object:

image

Both of these plots show up in the tree, labeled as Post Output and Post Output 2 in the image above.

This is the resulting thermal flux at the contact surface:

image

Here is the applied thermal contact conductance, as mapped from the table defined in the second command object:

image

In summary, we took advantage of Mechanical APDL command objects to apply thermal contact conductance values that vary along the contact region. We also used MAPDL commands to create two plots that help verify that the TCC values were applied as intended. Hopefully this is a helpful example.

It’s Open House Season at PADT!

PADT-Offices
With the opening of our new office in Albuquerque, our move to a larger office in Colorado, and a whole boat load of new stuff going on at the main office in the Phoenix area, there are a lot of reasons to come visit PADT during one of our upcoming Open Houses.
Albuquerque, New Mexico
August 13, 2013, 4:00 PM – 7:00 PM
Tempe, Arizona
Sept. 10, 2013, 5:00 PM – 10:00 PM
Littleton, Colorado
October 16, 2013, 4:00 PM – 8:00 PM
All of our Open House events are a great opportunity for you to meet PADT’s staff, get to know what we do a bit better, and network with other PADT customers and vendors.  We provide food and drink as well as enough technical information to make it an enjoyable, but justifiable use of your time.
We will be giving tours of each facility including some in-depth information about 3D Printing, with demos on our Stratasys prototyping systems.
Don’t miss out on “the” technology social events of the year!
These events are crowded, so we would really appreciate it if you would help us get a head count by registering for the open house you plan on attending:

Corrupt ANSYS Mechanical Database? You Might Be Able to Recover

Most of the time ANSYS Mechanical does a great job of keeping track of all our input and output files needed for a particular simulation. Every once in a while though, a glitch can happen which could lead to a corrupt database that gives you errors, say, if you try to reopen the ANSYS Mechanical editor. If you suspect that somehow your project database for a Mechanical model (or any other model that uses the same interface as ANSYS Mechanical) has been corrupted, you just might be able to recover it using these steps:

1. Copy any .mechdb files from the project directory to a different location. Rename them to a .mechdat extension. These will be named SYS.mechdb, SYS-1.mechdb, etc. The easiest way to find these files is to click on View > Files from the Workbench window, then scroll through the list until you find the .mechdb file or files. Then right click on each one and select “Open Containing Folder.” This will open Windows Explorer in the directory in which the file resides. You can then copy the files to a new location and rename them to .mechdat extensions.

image

image

2. Copy any .agdb (DesignModeler) files or other geometry files from the project directory to a different location. These will be named SYS.agdb , SYS-1.agdb, etc. (for DesignModeler) and can be found using View > Files as I described above. No need to rename these.

image

3. Start a new Workbench session.

4. Click File > Import. Set the type of file to import to “Importable Mechanical File”. Browse to the two .mechdat files created in step 1 (by renaming the copied .mechdb files) and import each.

image

5. If needed for geometry files, in the resulting Project Schematic in the Workbench window, right click on the first block’s geometry cell and select Replace Geometry > Browse. Browse to the copied SYS.agdb file or other geometry file from step 2. Repeat any additional analysis block in similar fashion.

image

6. Then save the project with a new name and directory. 

This should allow you to recreate a Workbench project that allows you to continue working. We hope this suggestion is helpful if the need ever arises to use it.

image

(Artwork by Eric… Ted does much nicer smiley faces)

PADT Moves into Larger Colorado Office

If you visited our office in Littleton Colorado you will have noticed that we were kind of working on top of one another.  To alleviate the problem, we have moved down the street. Our new PADT Colorado office is still in historic downtown Littleton, we are actually on the main street now:

PADT-Littlteton-temp-pic

PADT Colorado
2009 W Littleton Blvd
Suite 200
Littleton CO 80120 

It is right next to the old Arapahoe County Court House. As you can see it is a “unique” building with a lot of character.  So we are looking forward to using some creativity in decorating the place to match the feeling of the building.  All staff members will be issued skinny ties and horn rimmed glasses. Engineers will be required to wear white short sleeved shirts and pocket protectors.

We are setting it up in stages, so we are still working on getting full Internet access, the company wide PADT phone system up and running, new furniture, and our demo machines.  Once all of that is done we will be announcing a “Grand Opening” open house.

But Norm, Patrick, Mike, and ManojPADT-Littleton-Satelite would be happy to have a visit anytime.  One of the nicer features is a balcony overlooking downtown and the Front Range. Stop by and enjoy the warm weather while it lasts. You can chat about Simulation, 3D Printing, or product development and we will call it work.

PADT Talks about 3D Printing on Channel 8’s Arizona Horizon

PADT-Horizon-PBS-PicOur latest journey into mass media was a real pleasure.  We were invited to come on to the local Phoenix PBS station to talk about 3D Printing.  The team of students from the Walter Cronkite School of Mass Communications at ASU that do most of the behind the scenes work were great. The host and producer were true professionals who asked some of the best questions we have ever been asked on this topic.

You can the full program here:

http://www.azpbs.org/arizonahorizon/play.php?vidId=6037

Eric’s interview is the second half.

Those of you who know 3D Printing know that they showed a CNC mill instead of one of our 3D printers.  We gave them a bunch of background video to use (from another interview) and they kind of picked the wrong one. But hey, Bob and Luis got on TV!  And all that really matters is that they spelled our name right.

A great opportunity and we look forward to evangelizing the promise of additive manufacturing in the future. You can learn more about the whole world of 3D Printing on our website by starting on our prototyping support page.

Watch PADT on Chanel 8’s Horizon Arizona this Wednesday at 5:30

arizona_horizon

 

PADT will be on the local Phoenix PBS station this Wednesday, July 10th at 5:30 PM talking about 3D Printing and PADT.  Here is the teaser from their website:

3D printing has been around for a while, but it is just starting to make a big impact on mainstream society. Tempe-based Phoenix Analysis and Design Technologies is a 3D printing company that was started in 1994 and offers a variety of services, including product simulation, design prototyping and medical devices. The company is also the largest distributor of 3D printing and manufacturing systems in the Southwest. Eric Miller of PADT will talk about his company and 3D printing.

Set your DVR or check watch our news feed to a link for the interview when it hits the web.

Arizona Horizon is the local news show where they talk about local events and activities, and also focus on community news. One recurring segment is their discussion of AZ Technology & Innovation, and PADT has been asked to contribute.  It is in HD… better comb my hair and iron my shirt.

Linearized Stress – Using Nodal Locations for Path Results in Workbench Mechanical 14.5

Postprocessing results along a path has been part of the Workbench Mechanical capability for several rev’s now. We need to define a path as construction geometry on which to map the results unless we happen to have an edge in the model exactly where we want the path to be or can use an X axis intersection with our model. You have the option to ‘snap’ the path results to nodal locations, but what if you want to use nodal locations to define the path in the first place? We’ll see how to do this below.

For more information on “picking your nodes”, see the Focus blog entry written by Jeff Strain last year: http://www.padtinc.com/blog/the-focus/node-interaction-in-mechanical-part-1-picking-your-nodes

The top level process for postprocessing result along a path is:

  • Define a Path as construction geometry
  • Insert a Linearized Stress result
  • Calculate the desired results along the path using the Linearized Stress item

The key here is to define the path using existing nodes. Why do that? Sometimes it’s easier to figure out where the path should start and stop using nodal locations rather than figure out the coordinates some other way. So, let’s see how we might do that.

  • First, turn on the mesh via the “Show Mesh” button so that it’s visible for the path creation

image

  • From the Model branch in Mechanical, insert Construction Geometry
  • From the new Construction Geometry branch, insert a Path

image

  • Note that the Path must be totally contained by the finite element model, unlike in MAPDL.
  • If you know the starting and ending points of the path, enter them in the Start and End fields in the Details view for the Path.
  • Otherwise, click on the “Hit Point Coordinate” button:

image

  • Pick the node location for the start point, click apply

image

  • Pick the node location for the end point, click apply

image

  • In the Solution branch, insert Linearized Stress (Normal Stress in this case); set the details:
  • Scoping method=Path
  • Select the Path just created
  • Set the Orientation and Coordinate System values as needed
  • Define Time value for results if needed

image

Results are displayed graphically along the path…

image

…as well is in an X-Y plot and a table

image

Besides normal stresses, membrane and bending, etc. results can be accessed using these techniques. So, the next time you need to list or plot results along a path, remember that it can be done in Mechanical, and you can use nodal locations to define the starting and ending points of the path.

PADT Welcomed to Sandia Science & Technology Park

Sandia-Science-and-Technology-park-newsletter-PADT

The folks at the Sandia Science and Technology Park welcomed PADT to the Neighborhood with a nice writeup in their monthly newsletter.  We are very excited about growing our New Mexico business from this location.

Duh! Three ANSYS Mechanical Features I Should Know But Didn’t

Selection Information, Manage Views, and Changing Settings on Multiple Load Steps

There is no way to hide the embarrassing reality. I am supposed to be an expert. I am introduced to people as such. People all over the world read stuff I write about how to use ANSYS products more effectively.  But last week and this week, humility has struck a devastating blow on my ego.  I found three very useful things in ANSYS Mechanical that I either didn’t know, or forgot about. I even mentioned one of them (Manage Views) in an update presentation as “cool and very important feature” then promptly forgot it was there.

As payment for my sins, I will share a brief description of each with all of you, in the hopes that I will: 1) make you feel better about yourself because you already knew this stuff, or 2) give you the knowledge you need to avoid the embarrassment, and lost productivity, that my ignorance has brought me. 

Selection Information

I mention this one first because it was pointed out to me by no less than the ANSYS Mechanical product manager at ANSYS, Inc. Yikes.  I believe he actually did a face palm when I asked him “What is Selection Information? There is an Icon with an i on the toolbar? Really?”

image

There it is, right next to the Worksheet icon, an icon I use all the time.  What it does is give you information about geometry, CAD and nodes, in your model.  There are three ways to get it, not just the icon on the toolbar:

  1. Click the Icon
  2. In the menu go to View>Windows>Selection Information
  3. Double-click on the Selection details at the bottom of the ANSYS Mechanical Window

image

However you use it, you will get a new window, embedded with the existing windows, that shows you information about the geometry entity of entities that you select. Normal selection options apply. You can pick vertices, edges, surfaces, or bodies. I like to drag it out as it’s own window so I can see it all.  (Notice how I talk like I do this all the time… yea, whatever.  I just figured out that it is a lot better if I drag it out and look at it by itself.) 

My sample model is just a cylinder, so If I pick the end and the cylinder I get:

image

See how it lists the two faces, and a summary. There is some internal info in there as well like ID’s that ANSYS mechanical uses to do stuff. The toolbar across the top lets you select a coordinate system to do the calculations in, set options (the green checkbox) or  control if you want individual info, summary info, or both. 

The options are useful because by default, everything is on. Turning some stuff off can reduce the clutter.

image

For nodes, I can get location, node number, and body information:

image

When you are in the window there are some useful things you can do with the list. The first is sort by clicking on the column headers.  What node is at your max X position in your cylindrical coordinate system?  Just set the Coordinate System and click on X(in) twice to sort from max o min:

image

If you select any of the cells, you can right mouse click and get a context menu that lets you reselect the entities being listed, export to a text or Excel file, Refresh, or copy to the clipboard:

image

Give it a shot next time your in a model and want to know some stuff.

Manage Views

One of the more useful capabilities in ANSYS Mechanical APDL is the ability to define views in a macro and call them back up again, getting the same standard views every time. Well you have been able to do that in Workbench when the introduced the “Scary Eye” icon at I think 14.5 (maybe 14):

image

Although it looks like a secret Masonic symbol, the icon actually represents a handy tool for saving views not only in your model but to files.  It is also available in View->Windows->Manage Views.

Not only that, it lets you save the view commands to an external file that you can use with other models or even go in and edit to create a very specific view.

When you start it up, it brings up its own little window as well, that has eye themed icons to control your view saving/recall experience.

image

  • “Spooky Eye Box with a Plus Sign” creates a view from the current view you are seeing
  • “X” deletes the currently selected view or views
  • “Guy with 80’s hair looking at a box” applies the currently selected view. Double-clicking on the view does the same thing.
  • “A-bar-B” is used to rename the selected view
  • “Spooky Eye Box with Green Blob” redefines the currently selected view with whatever the current view settings are in the graphics window. Think of it as an overwrite.
  • “Disk with arrow out” reads in a saved view file from disk.
  • “Disk with arrow in” saves the currently selected view to disk.

So, get your model positioned the way you want it using the mouse to control the view, then click the first icon to save it.  The program puts the window into “rename” mode so you can give it a descriptive name here. Just keep doing that till you have all your views defined.

If at some point you want to change view, no need to delete and recreate it. Simply Click on the view you want to redefine and then click on “Spooky Eye Box with Green Blob.”

Note: You can only select more than one view and delete it.  None of the other commands work for more than one view. But the save views command saves all the views, regardless of how many you have selected.

Here are some views I created:

image

image

image

image

Now it gets cool.  Click on a view and then click on the “Save” (last) icon.  It will save the views as an XML file.  Pop that into your handy-dandy XML editor and you can check out the view definitions:

image

This is where I get excited. Now you can go into this file and create your own view, or modify a view to be very specific.  I didn’t have enough time to figure out what all the options did, but if you get a view that is close to what you want, you should be able to modify it from there.

The last thing to talk about is what happens if you right mouse click on a view?  You get:

image

Yes, copy as MAPDL!  Not only is this useful for us old guys that just like to look at MAPDL, it lets you use the same view for any plots you may make with a code snippet as you used for the plots in ANSYS Mechanical.  So your views are consistent for all your plots!

image

Modifying Multiple Load Steps

This was one of those “there has to be a way to do this” moments. We were talking about different ways to speed up the solution of a transient thermal model and I suggested that instead of using automatic time step controls they put in some values. But for the life of me I couldn’t figure out how to change a bunch of load step settings at the same time, so I was changing them one at a time. For every step, change the step number, then change the value:

image

Yawn!  This started off a “well in ANSYS classic, I could write a script that would… blah… blah… blah…”

There has got to be a better way.  There is.  In the Graph window the load steps are shown on the X-axis. Simply multi-select the steps you want to change there:

image

In the example above I CTRL-Clicked steps 3, 5, and 7. Now my Analysis Settings details view looks like:

image

See how Current Step Number and Step End Time are “Multi Step”.  Any change I make to settings will now be applied to the selected steps.  A huge time savings.  And a big “Duh, I should have known that!”

PADT Expands Local 3D Printing, Support, and Simulation Services with New Albuquerque Office

Web-PADT-Front-Door-New-Mexico

We are very pleased to announce that PADT is opening new local office in Albuquerque, New Mexico in the Sandia Science and Technology Park. The office will focus on providing sales, technical support, 3D Printer maintenance, and a meeting space to better serve customers in New Mexico.

Some of PADT’s earliest customers came from the state of New Mexico, and the company provides products, support, and services to many organizations in the area, including all of the major universities, the National Labs, and dozens of commercial companies. The new office will allow the local team, and employees visiting from PADT’s Colorado or Arizona locations, the opportunity to work in a familiar location, have direct access to PADT’s infrastructure, and provide customers a location to view the 3D Printing, simulation, and product development technologies that PADT offers. The location at the Eubank entrance to Kirtland AFB and Sandia National Labs give direct access to the highest concentration of PADT customers in the state.

The sales team in the  PADT New Mexico office will focus on distributing three  products lines:  The first is the complete suite of simulation software from ANSYS, Inc. (ANSS) (www.ANSYS.com). These tools are used by companies around the world to simulate products before testing, resulting in better performance for less cost and in less time.  The second line of products are the 3D Printer and Direct Digital Manufacturing systems from Stratasys (SSYS) (www.STRATASYS.com).  Both ANSYS, Inc. and Stratasys are the world leaders in their respective markets, and PADT is proud to be one of their reselling partners for Colorado, Utah, Nevada, Arizona and New Mexico.  The third product line is PADT’s CUBE Systems, (www.padtinc.com/cube-hvpc) their own brand of High Value Performance Computers specifically designed and configured for the advanced simulation user.

Additionally, the office will serve as a place for PADT’s technical staff to work together at a single location, providing simulation consulting, training and technical support.  As the company grows, the area has sufficient expansion opportunities to allow for more employees and equipment.

You can read the official announcement on the press release:

Press_release

http://www.prlog.org/12158073.pdf

Here are some images of the new office:

PADT-New-Mexico-Building

The office is literally on the corner of Research and Innovation at:

PADT New Mexico
1451 Innovation Parkway
Suite 402
Albuquerque, NM  87123

2013-06-14 17.43.36

Still working on signage, but we used a large monitor to add a little touch to the entrance

Prarie_Dog_SSTP_Welcome(Note the little welcome creature in the lower right of the image)

The office is located at the Sandia Science and Technology Park on the east side of Albuquerque, just south of I-40 near the Eubank gate to Kirtland AFB and Sandia National Labs:

PADT-New-Mexico-Map