PADT’s 2018 AZ SciTech Festival Open House

Scientifically fun for the whole family
February 22nd, 5:00 PM – 8:00 PM MST
Once again, PADT Inc. is proud to partner with AZ SCITECH to promote and celebrate Arizona’s STEAM (Science, Technology, Engineering, Arts, and Math) programs!

As part of this event, we will be hosting an open house that will give you an inside look at what our engineers do all day, as well as a first hand display of the capabilities of innovative technology such as 3D Printing and Simulation.

This is a family friendly event, so don’t hesitate to bring the kids along.

Come see how we make innovation work!

Join us at 7755 S. Research Drive, Tempe AZ, 85284 from 5:00 pm – 8:00 pm. Food and drinks will be provided.

 
This event will be divided up into three main areas:

Come and see what additive manufacturing is capable of. Learn how 3D Printing continues to revolutionize the industry, and brings ideas to life, from concept to a functional part!

PADT prides ourselves in being on the forefront of innovation. Visit the Manufacturing Lab to learn about the latest cutting-edge technology that PADT has invested in, including 3D Scanning, Metal Printing from Concept Laser, and on-demand manufacturing from Carbon. 

Walk from booth to booth and check out a plethora of fun and exciting projects that our engineers here at PADT have been working on, Each showing the unique ways that PADT makes innovation work!

Stratasys Partner Kickoff 2018 in Miami

My first time to Miami was a success! Last year, Stratasys held the partner kickoff in New Orleans and that was when they launched the F1, 2, and 3 series. Since then they have sold over 800 units of these types of FDM 3D printers in the USA. This year in Miami, they did announce something new but it still has a few quarters to go until there is an official release. To say I am excited about what is coming is an understatement! In fact, Stratasys is going to be releasing one new printer here in a few weeks. I am excited for the direction they are going. During this partner kickoff, they mentioned a huge price drop on all of their Polyjet printers! Send us a message for the latest pricing at sales@padtinc.com.

As for PADT employees that were in attendance, we had quite the representation this year. Rey Chu (Co-Owner of PADT), Mario Vargas (Manager of Hardware Sales), Norman Stucker (Colorado Territory Manager), Anthony Wagoner (Utah Territory Manager), Kathryn Pesta (Sales Operations Manager), and me (James Barker, Sr. Application Engineer).

Pictured above from left to right is Mario Vargas, Kathryn Pesta, James Barker, and Anthony Wagoner.

Above is a picture of the Stratasys Panel that was open to some Q&A. 2nd from the right is S. Scott Crump who is the inventor of FDM (fused deposition modeling) printers 30 years ago. Below is a picture of the anniversary info for Stratasys along with Objet (Polyjet technology 20 years) and the merger between the two companies is now 5 years old!

My introduction to 3D printers started 8 years ago with an Objet Eden 500 printer at L-3 Communications where I ran their 3D print lab. 6 months later we got an additional Polyjet printer which was a Connex 500. Amazing that we were able to justify purchasing another high quality machine after a few months of operating the Objet Eden 500! A few years later we got our first Uprint FDM printer from a sister company that no longer had a need for it. After using the Uprint for a few months, I was made aware of some of these thermoplastic materials that could only be printed on the production grade FDM machines. I created a business case to get the Fortus 450 and had every material option available at that time to print with (ABS family of materials, ASA, PC, Nylon 12, Ultem 9085, and Ultem 1010). I love both of these technologies and am confident that they provide the best solution for either rapid prototyping or tooling applications. We even have many customers that are printing production parts with these very precise 3D printers.

One customer that is printing production quality parts is Laika Studios, who has produced these movies: Kubo and the Two Strings, The Boxtrolls, ParaNorman, and Coraline. The presentation they made for us on their stop motion animation was so much fun! 10 years ago for Nightmare before Christmas there were 800+ hand sculpted faces made. For Kubo and the Two Strings, there were 64,000 facial expressions that were all 3d printed with a Stratasys J750. Another fun fact about the movie is that it took 60 hours of 3D printing for one second of film time to be created which is why it takes 2-3 years to complete a film. Moonbeast is a 3ft long puppet that is entirely comprised of 3d printed parts which is the largest character they have done to date. If you have watched Kubo and the Two Strings, it appears to be computer animated but in reality it is stop animation with 3D printed parts! Here is a fun short video (13 seconds) of what the Stratasys printer looks like as it is printing and then support material being removed from the head with different facial expressions.

Matt Gimble, who works for Penske as a Production Manager, shared with us many of the different applications that have helped them save a lot of money since they’ve incorporated 3D printing. Racing is rapidly evolving and is very technical nowadays with a huge emphasis on engineering. 3D printing gives them the tools to meet the new challenges. There are many different great uses they’ve had for 3D printing – from a redesigned rear gear pump design, to a new exhaust tailpipe. Even production parts are made with Stratasys’ newest material, Nylon 12CF. This is a high strength chopped carbon fiber filled Nylon 12. Many that use this material are awe-inspired with its performance! The Superspeedway side view mirror is made out of this material and saved Team Penske 4-6 weeks – which is how long it takes for the mold to be made. Then what if the mold needs altering? Crew Helmet Light/Camera mount is also made in this great thermoplastic/composite material called Nylon 12CF.

The above Fuel Probe was re-engineered and is lighter than its predecessor, plus more ergonomical to help with delivering fuel in a timely manner. Pre-preg carbon fiber sleeves when wrapped around a soluble support material and after the autoclave heating process, the soluble core is dissolved in a sodium hydroxide cleaning tank leaving only the carbon fiber. PADT is a manufacturer for the cleaning tanks that are sold with any Stratasys FDM 3d printer. The core is made out of ST-130 material which is perfect for this application or sacrificial tooling. Ultem 1010 was used as well to create carbon fiber layup tools in a fraction of the time it would have taken for the steel molds to be made. Typical turnaround is 1-3 days, as compared to 4-6 weeks. These are all great applications by Team Penske! Well done!!

We learned a lot at the partner kickoff. Luckily I was able to get this great picture with S. Scott Crump and Mario Vargas! To this day Scott is still inventing and is a major contributor to innovating at Stratasys. While talking with him and Mario, he started talking about these many adventures that he goes on. Scuba diving off the island of Tortuga and having many sharks swimming above isn’t for the faint of heart, yet it is where Scott seems to find his happy place. 

My wife flew out Thursday night to come see Miami with me. It was my first time visiting Florida and we had a phenomenal time there. We put 800 miles on the rental car driving all around. Driving down the Florida Keys all the way to Key West was a blast and if you ever go to Key West, make sure to get a Cuban sandwich from the restaurant Bien! It is MUY MUY BIEN! The islands are so beautiful! We also went to the Everglades where we got an airboat tour and where I even held a 4 year old Alligator and gave it a kiss on the back of its head. My little girls shriek every time they see the picture!

We had a great time in Florida! As we now look to the future, watch out for some exciting updates about new products that are coming! Stratasys, in my opinion, is going to continue being a leader in the Additive Manufacturing realm and I can’t wait to help announce some of the new equipment once it is available!
Any questions you have, you can direct them to me at James.barker@padtinc.com. Thanks!

Discover the advantages of on-demand Manufacturing with Carbon – Interview pt. 1

The long-term promise of 3D Printing has always been using the technology to replace traditional manufacturing as a way to make production parts.

Carbon is turning the 3D printing world upside down by introducing real production capabilities with their systems, and now that PADT has joined Carbon’s Production Partner Program, on-demand manufacturing using 3D Printing is now a reality in the Southwestern US.

Check out part one of our three part interview series with Carbon’s Production Engineer, Johnathon Wright and PADT’s Additive Manufacturing Solutions Account Manager Renee Palacios, as they answer some of the most frequently asked questions about Carbon’s manufacturing capabilities, and explore what benefits PADT can provide as a Carbon Production Partner.

Keep an eye our for part 2, coming soon.

You can also view a recording of our recent webinar covering Carbon here: https://www.brighttalk.com/webcast/15747/293721

Ready to start a conversation on what Carbon can do for your company?

Click the link and fill out the form to get in touch with a PADT representative and further discuss this opportunity.

Exploring On-Demand Manufacturing with Carbon 3D – Webinar

Join Carbon’s Production Engineer, Johnathon Wright and PADT’s Additive Manufacturing Solutions Account Manager Renee Palacios for a discussion on the various capabilities and applications of Carbon 3D’s exciting new technology.

Attend this free webinar in order to learn about:

  • What PADT’s capabilities are as a production partner
  • How using Carbon is cheaper and faster than other methods
  • Carbon’s unique end product material properties
  • And so much more!
Don’t miss this informative presentation – Secure your spot today!



If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 010 – What the future holds for ANSYS & simulation

 

Published on: December 19, 2017
With: Ted Harris, Joe Woodward, Alex Grishin, Jim Peters, Tom Chadwick, Ahmed Fayed, Eric Miller
Description: In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Alex Grishin, Jim Peters, Joe Woodword, Tom Chadwick, Ahmed Fayed, and Ted Harris, for a discussion on predictions of what the future holds for ANSYS and simulation in general, covering topics such as 3D Printing, Acquisitions, The Cloud, IOT, and Artificial Intelligence.
Listen:
Subscribe:

 

All Things ANSYS 009 – How to get your Models to run Faster & Modeling 3D Printing with ANSYS

 

Published on: December 4, 2017
With: Ted Harris, Joe Woodward, Eric Miller
Description: In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Mechanical Engineer Joe Woodward, and Simulation Support Manager Ted Harris for a look into recent announcements regarding simulating 3D Printing with ANSYS and 3DSIM as well as a discussion about what users can do when their models are taking too long to solve.
Listen:
Subscribe:

 

Getting to Know PADT: 3D Printing Services

This post is the sixth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

If there is one service that most people connect PADT with it is our 3D Printing Services.  We have been making prototypes for companies using this ever-advancing technology since we started the company in 1994. As 3D Printing has become more popular and entered the mainstream even beyond engineering, what 3D Printing means to people has changed as well. Along with that, people’s understanding of exactly what it is we do in this area has drifted a little from what goes on. In this month’s installment of our “Getting to Know PADT” series, we will work to provide insight into what 3D Printing Services are and how they can benefit your company.

What is “3D Printing” and “3D Printing Services?”

To start, it should be called “Additive and Advanced Manufacturing and Prototyping Services, ” but people search for “3D Printing” so that is what we call it.  3D Printing is the common name for what is technically referred to as Additive Manufacturing, or AM.  Most physical parts are made (manufactured) by casting or shaping material into a shape you want, removing material from stock to get the shapes you want, and/or combining physical parts you get by the other two methods. Instead of these well-proven methods, AM creates a part by building up material one layer at a time.  That is why it is called additive – it adds layers of material to get a shape. Here is an older blog article showing the most common technologies used in AM.

The advantage of this approach is that you just need one machine to make a part, you can go straight from a computer model to that part, and you are not held back by the physical constraints of traditional processes. These features allow anyone to make a part and to make shapes we just could not create before.  At first, we only used it for prototypes before parts were made. Then we started to make tools to make final products, and now 3D Printing is employed to manufacturing end-use parts.

In the world of mechanical engineering, where 3D Printing is heavily used, we call companies that use additive manufacturing to make parts for others 3D Printing Service Bureaus or 3D Printing Service Providers. Therefore, the full process of doing manufacturing using the technology is called: 3D Printing Services.

The critical word in that last sentence is “full.”  Sending a computer model to a 3D Printer is just one of many steps involved in Additive Manufacturing.  When the service is employed correctly, it includes identifying the right type of additive manufacturing to use, preparing the geometry, setting parameters on the machine, printing the parts, removing supports, cleaning the parts, sanding, applying a surface finish treatment, and then inspection and shipping.  Anyone can send a part to a printer; the other steps are what make the difference between simply printing a part, and producing a great part.

What Services does PADT Offer?

Additive Manufacturing covers a wide range of technologies that create parts one layer at a time, using a variety of approaches. Some extrude, some harden, some use an inkjet print head, and still others melt material.  What they have in common is creating solid geometry one layer at a time. Each technology has its own unique set of advantages, and that is why PADT offers so many different 3D Printing technologies for our customers.  Each of these approaches has unique part preparations, machine parameters, and post-printing processes. Each with a unique set of advantages.  The key to success is knowing which technology is best for each part and then executing it correctly.

Currently, PADT’s 3D Printing Services Group makes parts for customers using the following technologies.  Each one listed has a brief description of its advantages.  See our website for more details.

Technology

Abbrv.

Advantages

Fused
Deposition Modeling

FDM

Strong parts

Easy operation

Reliability of systems

Broad material choice

Water soluble supports

Fast

Cost

Polyjet

PolyJet

Multiple materials in a single build

Broad material choices

Custom material choices

Multiple colors in single build

Water soluble supports

Accuracy

Stereolithography

SLA

Part quality

Material options

Speed

Speed

Material properties

Self supporting

Selective
Laser Sintering

SLS

Digital
Light Synthesis

DLS

Speed

Production capable

Surface Finish

Material Choices

Material properties

Orthotropic properties

Direct
Laser Melting (Metal)

DLM

Fully dense metal parts

Accuracy

Speed

Part strength

As a proud reseller for Stratasys systems, we feel strongly that the two primary technologies from Stratasys, FDM and Polyjet, are the best for customers who want to do Additive Manufacturing in-house or as a service provider. When customers need something different, they can come to PADT to take advantage of the unique capabilities found in each technology.

How is 3D Printing with PADT Better?

The difference is in what we know and how to execute the complete process.  As a provider of 3D Printing services for over 23 years, very few people in the industry even come close to the amount of experience that we bring to the table.  We also know product development and traditional manufacturing, so when a customer comes to us with a need, we understand what they are asking to do and why. That helps us make the right recommendation on process, material, and post-processing.

A few differentiators are:

  • We know our machines
  • We know our materials
  • We offer a wide range of plastic and metal materials
  • We understand post-processing
  • We understand support removal (we manufacture the leading support removal system)
  • We understand design and manufacturing
  • In-house machining, painting, and part finishing
  • In-house inspection and quality
  • Employees who are enthusiastic and dedicated to providing the right solution.

In addition to all of these things, PADT also offers On-Demand Manufacturing as a Carbon Production Partner. We combine Carbon’s DLS technology with our existing and proven manufacturing processes to provide low volume manufacturing solutions for plastic components.

We are also always looking at the latest technologies and adding what our customers need.  You can see this with the recent addition of systems from ConceptLaser, Carbon and Desktop Metal systems.

 

Next Steps and Where to Learn More

The very best way to learn more about PADT’s 3D Printing services is to have us print a part. The full experience and the final product will explain why, with so many choices, so many companies large and small count on us for their Additive Manufacturing. If you need to learn more, you can also contact us at 480.813.4884 or rp@padtinc.com.

Here are some links that you may find useful:

 

This slideshow requires JavaScript.

PADT Triples 3D Printing Capacity with New Large Stereolithography System

The addition of a new UnionTech RSPro 450 further establishes PADT as the leader in Additive Manufacturing technology in the Southwestern US. With a build volume of 17.7 x 17.7 x 15.75 inches, this state of the art Stereolithography(SLA) machine will triple the company’s capacity to 3D Print with SLA technology at this Las Vegas print shop. It not only allows the printing of larger parts, it can also create multiple smaller parts in less time.  It will join PADT’s two existing SLA machines along with the Fused Deposition Modeling (FDM), PolyJet, and Selective Laser Sintering (SLS) solutions currently producing parts daily for their customers across the country.

“When we started the company in 1994, one of our first purchases was an SLA machine.  It started our 3D Printing services business, and the technology is still heavily used today.” Said Rey Chu, a co-owner of PADT and the leader for PADT’s Advanced Manufacturing efforts.  “This new system gives us added capacity in size, speed, and material choices. We looked at a wide range of SLA systems and felt that UnionTech provided the quality and robustness we need to keep our customers happy.”

The new system was delivered the second week of October and will be calibrated and producing customer parts by the end of the month.  One of the advantages of the machine is the easy setup and strong calibration capabilities.  The team will be able to produce parts that are about 75% larger than they can currently.  The additional volume and speed will allow for three times as many parts to be printed in a given week than is possible with the current two smaller and older machines.  Initially, a new rigid ABS-like material will be used that produces very strong and precise parts with white plastic.  PADT’s existing pre- and post-processing tools will be applied to this process with little change.

The UnionTech RSPRO 450 SLA System

UnionTech systems are the most popular machines for SLA Additive Manufacturing outside of the United States. They have proven to be reliable, easy-to-use, accurate, and fast.  They are also an open system, allowing users to use any SLA compatible resin that can usually be acquired at a more affordable price than proprietary material solutions.

Stereolithography is the oldest commercial 3D Printing process. It uses photo-curable liquid resins to build parts one layer at a time.  A vat in the machine is filled with liquid material, and a plate is placed just under the surface. Then an ultraviolet laser draws on the very top layer of the liquid, and all of wherever the laser traces, the liquid turns to a solid.  The plate is lowered, a new layer of liquid is spread on top, and the laser creates a new layer. The process repeats until the part or parts are made.

The UnionTech machine is a refined and proven application of this technology that was a perfect match for PADT’s current needs.  Also, the company itself was great to work with, and the local sales and support team have been outstanding.  As the team learns the system, they are finding it to be easy to use as well as simple to maintain and calibrate.  The initial quality of parts has been outstanding.

PADT’s 3D Printing Services

PADT has been the Southwest’s leading provider of 3D Printing services since the company was started over 23 years ago.  The company has survived industry consolidation and a vastly changing landscape by focusing on providing high-quality 3D Printed parts to customers using Fused Deposition Modeling, Polyjet Printing, Selective Laser Sintering, and Stereolithography systems combined with one of the most experienced and knowledgeable teams in the Additive Manufacturing space.

Located in the ASU Research Park in Tempe, Arizona, PADT’s advanced manufacturing facility currently features ten machines dedicated to printing parts for customers.  The lab includes a full machine shop, part finishing facilities, and an advanced scanning and inspection capability.

This added capability is yet another reason why so many companies large and small count on PADT for their 3D Printing needs.

Contact us today to learn more about our 3D Printing Services or:

 

PADT Partners with 3D Printing Disruptor Carbon to Offer Production Part Manufacturing to the Southwest

The long-term promise of 3D Printing has always been using the technology to replace traditional manufacturing as a way to make production parts.  The various technologies that are considered Additive Manufacturing have been fantastic for prototyping and making tools that are used to manufacturing end-use parts, but rarely work well for production.  Carbon is literally turning the 3D printing world upside down by introducing real production capabilities with their systems. And now that PADT has joined Carbon’s Production Partner Program, on-demand manufacturing using 3D Printing is now a reality in the Southwestern US.

The Production Partner program establishes vetted service providers with 3D Printing and manufacturing experience as manufacturing centers. This allows customers who are early adopters of CARBON’s exciting technology, to find a trusted source for their production parts.  PADT was chosen to participate because of our twenty-plus years of experience as a 3D Printing service provider and more than $5,000,000 in injection molding projects, along with in-house product development, scanning, simulation, and inspection.

PADT will be adding three Carbon M2 printers to our existing 3D Printing facility at our main office in the ASU Research Park in Tempe, Arizona. The first two machines will be available for production in early 2018, and the third machine will be online by early summer.  Customers will then be able to order production quality parts in volume and receive them within a week. PADT’s investment and this partnership make the dream of On Demand manufacturing of complex plastic components a reality.

“We have been looking for a low volume plastic manufacturing solution that uses 3D Printing for some time.” Said Rey Chu, co-owner of PADT “Since we started the company we have been providing soft tooling and rapid injection molding.  Once we saw the Carbon DLS technology in action, we knew we found our solution.  The part quality and material properties are as close to injection molded as we have ever seen.”

About Carbon’s Disruptive Technology

Carbon has introduced a revolutionary way to 3D Print plastic components called Digital Light Synthesis, or DLS.  It combines their proprietary continuous printing technology with programmable liquid resins to create parts with the same strength and surface finish of injection molded parts.  The part creation is fast because it is a continuous process, whereas most 3D Printing machines build up one layer at a time with pauses in-between.  This continuous process is not only fast, but it also avoids the stair-steps created with layered methods. This results in textured surfaces and a surface finish that no other process can approach.

Programmable materials are the other technology that enables production quality parts.  This unique approach joins two liquid resins as the build material; one that hardens with light and the other with heat. The 3D Printer creates the desired geometry of the part by using light to shape the first material. Then a second step uses an oven to harden the heat activated resin, resulting in engineering-grade mechanical properties.  Moreover, since the strength comes from a heat cured resin, the properties are the same in every direction. Most 3D Printed parts that use a layered approach are weaker in the build direction.  The other significant advantage of including heat activated resins is that they offer a much broader material selection than light activated resins.

PADT’s On-Demand Manufacturing Service

In the past, when PADT’s customers needed parts manufactured with production quality, surface finish, and strength we had to use soft tooling or low-volume injection molding. Both are expensive and take time to make tools.  3D printing is leveraged to make those tools faster, but it still takes time and labor. Production manufacturing could benefit from going directly from a computer model to a finished part, as we do with prototyping.  When we first saw an early Carbon sample part we knew that this was a technology we needed to watch.  As the technology matured further, it became obvious that this was the process PADT was looking for – this was the type of end-use part our customers were requesting.  Then, when the Production Partner program was introduced, we knew we needed to take part.

Our On-Demand Manufacturing service will be built around the Carbon Digital Light Synthesis process. Initially, we will use three Carbon M2 systems, a cleaning station, and a curing oven.  This will be placed in the middle of our existing advanced manufacturing facility, allowing us to add machining, hand finishing, painting, and other post-processing steps into each production process as needed.

What sets PADT’s offering apart from other providers of production manufacturing with 3D Printing is that we also provide full product development, simulation, and part scanning services to help customers make sure their designs are correct. Before parts are made, we can use our simulation and design knowledge to make sure everything is correct before production begins. And when the parts are completed, we can use our advanced scanning to inspect and our product development testing to verify performance.  By adapting our proven quality to this new technology, we can ensure that every step is done correctly and traceability exists.

Next Steps

You do not have to wait till our production line is up and running.  We can start working with customers now on getting their parts ready for manufacturing with Carbon’s breakthrough Digital Light Synthesis. Our experienced staff can evaluate your components and find the best fit, recommend design changes, and work with Carbon to produce samples. And when our line is up, you can hit the ground running and obtain your parts on-demand, when you need them.

Take part in the transition of manufacturing to faster, better, and on demand by contacting PADT today to learn more.

This slideshow requires JavaScript.

Nerdtoberfest is coming up soon!

Nerdtoberfest, PADT’s annual fall open house is coming up soon!

Join us – Thursday, October 26th, 2017 from 5:00 pm – 8:00 pm MST at 7755 S. Research Drive Tempe AZ, 85281

This year our fall open house will offer attendees a glimpse at some of our core offerings, introductions to a few new additions, and free food and drinks! Come experience this innovative technology first-hand, including:

  • CUBE High Performance Computing (HPC) Systems
  • 3D Scanning
  • FDM Services
  • Stratasys 3D Printers
  • Carbon 3D Printing CLIP Technology *New! 
  • ANSYS Discovery Live *New! 
Join PADT as we open our doors to the public for a celebration of all things engineering and manufacturing in Arizona.

Announcing Nerdtoberfest 2017 – Save the Date!

We are excited to announce the return of our annual fall open house, Nerdtoberfest! PADT will be opening it’s doors to the public for a celebration of all things engineering and manufacturing in Arizona.

More information, along with a full event agenda will be made available soon, however in the meantime you can secure your spot now by clicking the link below.

Join us:
Where:  7755 S Research Dr, Tempe, AZ 85284

When: Thursday, October 26th 2017

What Time: 5:00 PM – 8:00 PM MST

Standard Roof Rack Fairing Mount Getting In Your Way?! Engineer it better and 3D Print it!

It is no mystery that I love my Subaru. I bought it with the intention of using it and I have continually made modifications with a focus on functionality.

When I bought my roof crossbars in order to mount ski and/or bike racks, I quickly realized I needed to get a fairing in order to reduce drag and wind noise. The fairing functions as designed, and looks great as well. However, when I went to install my bike rack, I noticed that the fairing mount was in the way of mounting at the tower. As a result, I had to mount the rack inboard of the tower by a few inches. This mounting position had a few negative results:

  • The bike was slightly harder to load/unload
  • The additional distance from the tower resulted in additional crossbar flex and bike movement
  • Additional interference between bikes when two racks are installed

These issues could all be solved if the fairing mount was simply inboard a few more inches. If only I had access to the resources to make such a concept a reality…. oh wait, PADT has all the capabilities needed to take this from concept to reality, what a happy coincidence!

First, we used our in-house ZEISS Comet L3D scanner to get a digital version of the standard left fairing mount bracket. The original bracket is coated with Talcum powder to aid in the scanning process.

The output from the scanning software is a faceted model in *.STL format. I imported this faceted CAD into ANSYS SpaceClaim in order to use it as a template to create editable CAD geometry to use as a basis to create my revised design. The standard mounting bracket is an injection molded part and is hollow with the exception of a couple of ribs. I made sure to capture all this geometry to carry forward into my redesigned parts, which would make the move to scaled manufacturing of this design easy.

Continuing in ANSYS SpaceClaim, as it is a direct modeling software instead of traditional feature-based modeling, I was able to split the bracket’s two function ends, the crossbar end and fairing end, and offset them by 4.5 inches, in order to allow the bike rack to mount right at the crossbar tower. I used the geometry from the center section CAD to create my offset structure. A mirrored version allows both the driver and passenger side fairing mount to be moved inboard to enable mounting of two bike racks in optimal positions. The next step is to turn my CAD geometry back into faceted *.STL format for printing, which can be done directly within ANSYS SpaceClaim.

 

After the design has been completed, I spoke with our 3D printing group to discuss what technology and material would be good for these brackets, as the parts will be installed on the car during the Colorado summer and winter. For this application, we decided on our in-house Selective Laser Sintering (SLS) SINTERSTATION 2500 PLUS and glass filled nylon material. As this process uses a powder bed when building the parts, no support is needed for overhanging geometry, so the part can be built fully featured. Find out more about the 3D printing technologies available at PADT here.

Finally, it was time to see the results. The new fairing mount offset brackets installed just like the factory pieces, but allowed the installation of the bike rack right at the tower, reducing the movement that was present when mounted inboard, as well as making it easier to load and unload bikes!!

I am very happy with the end result. The new parts assembled perfectly, just as the factory pieces did, and I have increased the functionality of my vehicle yet again. Stay tuned for some additional work featuring these brackets, and I’m sure the next thing I find that can be engineered better! You can find the files on GrabCAD here.

 

How to Simplify Aircraft Certification – Stratasys Webinar

The aerospace industry’s adoption of additive manufacturing is growing and predicted to revolutionize the manufacturing process. However, to meet stringent FAA and EASA requirements, AM-developed aerospace products must be certified that they can achieve the robust performance levels provided by traditional manufacturing methods. Current certification processes are complex and variable, and thus obstruct AM adoption in aerospace.

Thanks to a newly released aerospace package released by Stratasys for their Fortus 900mc printer and ULTEM 9085 resin, Aerospace Organizations are now able to simplify the aviation certification process for their manufactured parts.

Join PADT’s 3D Printing General Manager, Norman Stucker for a live webinar that will introduce you to the new Stratasys aerospace package that removes the complexity from FAA and EASA certification.

By attending this webinar, you will learn:

  • How Stratasys can help get more parts certified for flight quicker and easier.
  • The benefits of Aerospace Organizations using the Fortus 900mc and ULTEM 9085 resin
  • And much more!

Don’t miss your chance to attend this upcoming event,
click below to secure your spot today!

 

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Quick Tips for Stratasys’ new Nylon 12CF Material

One of the newest materials available for the Stratasys Fortus 450 users (other machines could have this capability at a later date) is the Nylon 12CF. Nylon 12CF is a Carbon Fiber filled Nylon 12 filament thermoplastic. The carbon fiber is chopped fibers that are 150 microns long. This is Stratasys’ highest strength and stiffness to weight ratio for any of their materials to date as shown below. 
Often times, when Stratasys is getting close to releasing a new material, they will allow certain users to be a beta test site. One beta user was Ashley Guy who is the owner of Utah Trikes, which is located in Payson, Utah. He is having so much success with this material that he is making production parts with it. Watch this video to hear more from Ashley and to see some of his 3D printed parts.

Talking with Ashley, he has helped us with understanding some of the tips and tricks to get better results from printing with this material. One change that he highly recommends is to adjust the air gap between raster’s to -.004”. This will force more material between the raster’s so there won’t be as many noticeable air gaps. Here is a visual representation of the air gap difference using Stratasys software Insight:

The end goal at Utah Trikes is to produce production parts with this material, so by adjusting the air gap, the appearance of the parts look close to injection mold quality after the parts have been run through a tumbler. Some key things that I really like about this material is that the support material is soluble and easily removed using PADT’s own support cleaning apparatus (SCA Tank) that aid with the support removal. After the support has been removed, they are placed in a tumbling machine to smooth the surfaces of the part with different media within the tumbling machine. Any post process drilling or installing of helicoil inserts or adding bushings to the part is done manually.

Jerry Feldmiller of Orbital ATK, who also did a beta test of this material at his site in Chandler, Arizona, mentions these 3 tips:

  1. Nylon12 CF defaults to “Use model material for Support”. 90% of the time I uncheck this option.
  2. I use stabilizing walls and large thin parts to anchor the part to the build sheet and prevent peal up.
  3. Use seam control set to Align to Nearest.

Jerry also supplied his Nylon 12CF Tensile Test that he performed for this new material as shown below. He mentions that the Tensile Strength is 8-15 ksi depending on X-Y orientation.
~5 ksi in Z-axis, slightly lower than expected.

This part is used to clamp a rubber tube which replace the old ball valve design at ATK. Ball valves are easily contaminated and have to be replaced. After two design iterations, the tool is functioning.

Jerry also follows a guide that Stratasys offers for running this material. If you would like a copy of this guide, please email me your info and I will send it to you. My email is James.barker@padtinc.com

Now onto Stratasys and the pointers that they have for this material. First, make sure the orientation of the part is built in its strongest orientation. Nylon materials have the best layer-to-layer bond when comparing them against the other thermoplastics that Stratasys offers.

Whenever you print with the Nylon materials (Nylon 6, 12, and 12CF), it is advised to print the sacrificial tower so that any loose strands of material are collected in the sacrificial tower instead of being seen on the 3D printed part. You also want to make sure that these materials are all stored in a cool and dry area. Moisture is the filaments worst enemy, so by storing the material properly, this will help tremendously with quality builds.

It is also recommended for parts larger than 3 inches in height to swap the support material for model material when possible. Since the support material has a different shrink factor than the model material, it is advised to print with model material where permitted. This will also speed your build time up as the machine will not have to switch back and forth between model and support material. We have seen some customers shave 5+ hours off 20 hour builds by doing this.

This best practice paper is the quick tips and tricks for this Nylon 12CF material from our users of this material. The Stratasys guide goes into a little more detail on other recommendations when printing with this material that I would like to email to you. Please email me with your info.

Let us know if this material is of interest to you and if you would like us to print a sample part for testing purposes.

Silicon Desert Insider: How close are we to 3-D Printing human organs?

Being able to grow your own replacement organ is one of those things, like flying cars, that we have been waiting a long time for.  The combination of stem cells and 3D Printing may be what we need to get that new liver on order.  In “How close are we to 3-D Printing human organs?” I go over where we are with this technology and what is needed to take those final steps.