New Awards and Fantastic Winners: 2019 Governor’s Celebration of Innovation does not Disappoint

Way back in 2011, PADT participated in our first Governor’s Celebration of Innovation, or GCOI. We actually won the award for being a Pioneer that year, and we also started making custom awards with our 3D Printing systems. And every year we get to see friends, customers, and partners take a PADT original home. 2019 was no different.

You can read about the event in the Phoenix Business Journal here.

This year FreeFall Aerospace was won the Innovation Award for startups. They are part of the ANSYS Startup program and someone we really enjoy working with. In addition, Qwick won the Judges award. They are a local software startup that we have interacted with through our mentoring and angel investing activities.

This year’s awards came out nice, combining PolyJet and Stereolithography to make a kinetic sculpture:

We were pleased to watch these being handed out to eight winners. The Tucson winners, half of those recognized, were happy to show their’s off:

New Options for 3D Printing with Nylon Filament, Including Diran

NOTE 10/28/2019: See updated information regarding Diran extruder heads, below.

Does the idea of 3D printing parts in semi-aromatic polyamides (PA) sound intriguing? Too bad it has nothing to do with making nicely scented models – but it has everything to do with reaping the benefits of the Nylon family’s molecular ring structure. Nylon 6, Nylon 12, carbon-filled Nylon 12 and now a new, smoother Nylon material called Diran each offer material properties well-suited for additive manufacturing on industrial 3D printers.

Stratasys Nylon 12 Battery Box
3D printed Nylon 12 Battery Box. (Image courtesy Stratasys)

Quick chemistry lesson: in polyamides, amine sub-groups containing nitrogen link up with carbon, oxygen and hydrogen in a ring structure; most end up with a strongly connected, semi-crystalline layout that is key to their desirable behaviors. The number of carbon atoms per molecule is one way in which various Nylons (poly-amines) differentiate themselves, and gives rise to the naming process.

Now on to the good stuff. PA thermoplastics are known for strength, abrasion-resistance and chemical stability – useful material properties that have been exploited since Nylon’s discovery at Du Pont in 1935. The first commercial Nylon application came in 1938, when Dr. West’s Miracle Tuft Toothbrush closed the book on boar’s-hair bristle use and let humans gently brush their teeth with Nylon 6 (then called “Exton”) fibers.

Today’s Nylon characteristics translate well to filament-form for printing with Stratasys Fused Deposition Modeling (FDM) production-grade systems. Here’s a look at properties and typical applications for Nylon 6, Nylon 12, Nylon 12 CF (carbon-fiber filled) and Diran (the newest in the Stratasys Nylon material family), as we see their use here at PADT.

When Flexibility Counts

Nylon 12 became the first Stratasys PA offering, filling a need for customized parts with high fatigue resistance, strong chemical resistance, and just enough “give” to support press (friction-fit) inserts and repetitive snap-fit closures. Users in aerospace, automotive and consumer-goods industries print Nylon 12 parts for everything from tooling, jigs and fixtures to container covers, side-panels and high vibration-load components.

3D Printed Nylon 12 bending example. (Image courtesy Stratasys)
3D Printed Nylon 12 bending example. (Image courtesy Stratasys)

Nylon 12 is the workhorse of the manufacturing world, supporting distortion without breaking and demonstrating a high elongation at break. Its ultimate tensile strength in XZ part orientation (the strongest orientation) is 6,650 psi (46 MPa), while elongation at break is 30 percent. Users can load Nylon 12 filament onto a Stratasys Fortus 380mc CF, 450mc or 900mc system.

As evidenced by the toothbrush renaissance, Nylon 6 has been a popular thermoplastic for more than 80 years. Combining very high strength with toughness, Nylon 6 is great for snap-fit parts (middle range of flexing/stiffness) and for impact resistance; it is commonly used for things that need to be assembled, offering a clean surface finish for part mating.

Nylon 6 displays an XZ ultimate tensile strength of 9,800 psi (67.6 MPa) and elongation at break of 38%; it is available on the F900 printer. PADT customer MTD Southwest has recently used Nylon 6 to prototype durable containers with highly curved geometries, for testing with gasoline/ethanol blends that would destroy most other plastics.

Prototype gas-tank made of Nylon 6, printed on a Stratasys system, using soluble support. (Image courtesy MTD Southwest)
Prototype gas-tank made of Nylon 6, printed on a Stratasys system, using soluble support. (Image courtesy MTD Southwest)

Both Nylon 12 and Nylon 6 come as black filament that prints in tandem with a soluble brown support material called SR-110. Soluble supports make a huge difference in allowing parts with internal structures and complicated overhangs to be easily 3D printed and post-processed.

Getting Stronger and Smoother

As with these first two PA versions, Nylon 12CF prints as a black filament and uses SR-110 soluble material for support; unlike those PAs, Nylon 12CF is loaded at 35 percent by weight with chopped carbon fibers averaging 150 microns in length. This fiber/resin combination produces a material with the highest flexural strength of all the FDM Nylons, as well as the highest stiffness-to-weight ratio.

Nylon 12 CF (carbon-filled) 3D printed part, designed as a test brake unit. (Image courtesy Stratasys)
Nylon 12 CF (carbon-fiber filled) 3D printed part, designed as a test brake unit. (Image courtesy Stratasys)

That strength shows up in Nylon 12 CF as a high ultimate XZ tensile strength of 10,960 psi (75.6 MPa), however, similar to other fiber-reinforced materials, the elongation at break is lower than for its unfilled counterpart (1.9 percent). Since the material doesn’t yield, just snaps, the compressive strength is given as the ultimate value, at 9,670 psi (67 MPa).

Nylon 12 CF’s strength and stiffness make it a great choice for lightweight fixtures. It also offers electrostatic discharge (ESD) protection properties better than that of Stratasys’ ABS ESD7, yet is still not quite conductive, if that is important for the part’s end-use. (For more details on printing with Nylon 12 CF, see Seven Tips for 3D Printing with Nylon 12 CF.) The material runs on the Fortus 380mc CF, 450mc or 900mc systems.

Just announced this month, Stratasys’ Diran filament (officially Diran 410MF07) is another black Nylon-based material; it, too, features an infill but not of fibers – instead there is a mineral component listed at seven percent by weight. This filler produces a material whose smooth, lubricious surface offers low sliding resistance (new vocabulary word: lubricious, meaning slippery, with reduced friction; think “lube job” or lubricant).

Robot-arm end printed in Diran, a smooth Nylon-based filament. (Image courtesy Stratasys)
Robot-arm end printed in Diran, a smooth Nylon-based filament. (Image courtesy Stratasys)

This smooth surface makes Diran parts perfect for applications needing a non-marring interface between a tool and a workpiece; for example, a jig or fixture that requires a part to be slid into place rather than just set down. It resists hydrocarbon-based chemicals, displays an ultimate tensile strength of 5,860 psi (40 MPa), and has a 12 percent elongation at break.

Close-up of Diran's smooth surface finish. (Image courtesy Stratasys)
Close-up of Diran’s smooth surface finish. (Image courtesy Stratasys)

(Revised) For the first time, Diran also brings the benefits of Nylon to users of the Stratasys office-environment, plug-and-play F370 printer. The system works with the new material using the same extruder heads as for ABS, ASA and PC-ABS, with just a few material-specific requirements. 

To keep thermal expansion consistent across a model and any necessary supports, parts set up for Diran automatically use model material as support. A new, breakaway SUP4000B material comes into play as an interface layer, simplifying support removal. The higher operating temperature also requires a different build tray, but the material’s lubricious properties (just had to use that word again) make for easy part removal and allow that tray to be reused dozens of times.

Read more about this intriguing material on the Diran datasheet:

and contact PADT to request a sample part of Diran or any of these useful Nylon materials.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

All Things ANSYS 048: Topology Optimization & Simulation for Additive Manufacturing in ANSYS 2019 R3

 

Published on: October 7th, 2019
With: Eric Miller & Doug Oatis
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by PADT’s simulation support & application engineer Doug Oatis for a discussion on what is new in ANSYS 2019 R3 with regards to tools and applications for topology optimization and additive manufacturing.

If you would like to learn more about what’s new in this latest release, check out our webinar on the topic here: https://www.brighttalk.com/webcast/15747/372133?

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Mars, Hearts, Spaceships, and Universities: 2019 Colorado Additive Manufacturing Day a Success

Engineers, educators, and enthusiasts gathered on the green lawn of beside the Platte River at the Blind Faith Brewing to talk about Additive Manufacturing. Over 170 attendees (and two dogs) met each other, caught up with old colleagues, and shared their AM journey during the breaks and listened to 13 presenters and panelists. 12 antipasto platters and 30 pizzas were consumed, and 298 beers or sodas were imbibed. By the numbers and by type of interaction we saw, a successful event all around.

This was the fourth annual gathering, hosted by PADT and sponsored by our partners at this brewery. We could not have put this event on without the support of Stratasys, ANSYS, ZEISS, and Desktop Metal. We also want to thank our promotional partners, Women in 3D Printing and Space for Humanity who both brought new people to our community. Carbon, Visser and a student project with Ball Aerospace did their part as exhibitors.

Check out the Slideshow at the end of this post to get a visual snapshot of the day.

We want to thank the true stars of our event, the speakers and panelists who shared their knowledge and experience that turned a great gathering into a learning experience.

We started the morning off with an inspirational keynote from Dr. Robert Zubrin. A visionary in the space community and long term champion of going to Mars, Dr. Zubrin shared with us his observations about the new space race with his talk: “The Case for Space: How the Revolution in Spaceflight Opens Up a Future of Limitless Possibilities.” He left the packed audience energized and ready to do our part in this next step in humanities exploration of the universe. He stayed after to talk with people and sign copies of his book, which you can find here.

We then heard from user David Waller of Ball Aerospace on his experience with their Desktop Metal system. He went over the testing, lessons learned, and usage of their Studio system. It was a great in-depth look at someone implementing a new technology. There is a lot of interest around this lower-cost approach to producing metal parts, and the audience was full of questions.

Sticking with the Desktop Metal technology, PADT’s very own Pamela Waterman talked about how PADT is using our in-house Zeiss Optical Scanning hardware and software to inspect the parts we are making with our Desktop Metal System. She shared what we have learned about following the design guidelines that are developing for this technology and how scanning is a fast and accurate way to determine the final geometry created in the three-step process of building a green part, debinding, and sintering.

Next up was Christopher Robinson form ANSYS, Inc. to talk about recent additions to the ANSYS Additive products. He shared how customers are using simulation to design parts for metal powder bed fusion AM and then model the build process to predict and avoid failures as well as compensate for the distortion inherent in the process. The key takeaway was that simulation is the solution for getting parts built right the first time.

After a short break, and some AM trivia that won some PADT25 T-Shirts for people who knew the history of 3D Printing, we heard all about the new V650 Flex Stereolithography system that Stratasys recently introduced. Yes, Stratasys now makes and sells an SL system and it is literally a dream machine designed by people with decades of AM and Stereolithography experience. Learn more about this open and powerful system here.

Another AM technology was up next when Nick Jacobson spoke about Voxel Printing with PolyJet technologies. He discussed how he varies materials and colors spacially to create unique and realistic replicas for medicine and engineering. He also showed how the voxel-based geometry he creates can be used to create Virtual Reality representations of objects. Much of their work revolves around the visualization of hearts for adults and children to improve surgery planning. While we had been focused on space at the start of the afternoon, he reminded us of the immediate and life saving medical applications of AM.

And then we moved back to space with a presentation from Lockheed Martin‘s Brian Kaplun on how they are using AM to create parts that will fly on the Orion Spacecraft. Making production parts with 3D Printing has been a long-term goal for the whole industry, and Lockheed Martin has done the long and hard work of design, test, and putting processes in place to make this dream a reality. One of the biggest takeaways of his talk was how once the Astronauts saw a few AM parts in the capsule, they started asking of its use to redesign other tools and components. The ultimate end-users, they saw the value of lightweight and strong parts that could be made without the limitations of traditional manufacturing.

We finished up the day, after another break and some more trivia, with a fascinating panel on AM at Colorado’s leading Universities. We were lucky to have Ray Huff from Wohlers Associates moderate a distinguished group of deans, directors, and professors from four outstanding but different institutions:

  • Martin Dunn PhD,  Dean of Engineering, CU Denver
  • Jenifer Blacklock PHD, Mechanical Engineering Professor – Colorado School of Mines
  • David Prawel PhD, Director, Idea-2-Product 3D Printing Lab, Colorado State University 
  • Matt Gordon, PhD,  Chair, Mechanical Engineering, University of Denver 

Their wide-ranging discussion covered their education and research around AM. A common theme was industry cooperation. Each school shared how they use AM to help students not just make things, but also understand how parts are made. The discussion was fantastic and ended far too soon, which is always an indicator of a great group of experts.

And that sums up our great day, leaving out several hundred side conversations that went on. Check out this slide show to get a feel for how energetic and interesting the afternoon was.

As everyone left, some reluctantly and after one more beer, the common comment was that they can’t wait to get together again with everyone. We hope that next year we will have more speakers and participants and continue to support the growth of Additive Manufacturing in Colorado.

A quick note about the location: You are not wrong if you remember a different name for the three previous events. St. Patricks’s is now Blind Faith and the new owners could have not been more welcoming. Plus, they have more Belgian’s, which I am a big fan of.

Topology Optimization & Simulation for Additive Manufacturing in ANSYS 2019 R3 – Webinar

ANSYS offers a complete simulation workflow for additive manufacturing (AM) that allows you to transition your R&D efforts for metal additive manufacturing into a successful manufacturing operation. This best-in-class solution for additive manufacturing enables simulation at every step in your AM process. It will help you optimize material configurations and machine and parts setup before you begin to print. As a result, you’ll greatly reduce — and potentially eliminate — the physical process of trial-and- error testing.

Through the use of ANSYS tools such as Additive Prep, Print, and Science, paired with topology optimization capabilities in ANSYS Mechanical Workbench, the need for physical process of trial-and-error testing has been greatly reduced.

Join PADT’s Simulation Support and Application Engineer Doug Oatis for an exploration of the ANSYS tools that help to optimize additive manufacturing, and what new capabilities are available for them when upgrading to ANSYS 2019 R3. This presentation includes updates regarding:

  • Level-set based topology optimization
  • The export of build files directly to AM machines
  • Switching between viewing STL supports, mesh, or element densities
  • Multiple support being made in a single simulation (volume-less & solid supports)
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Video Interview: Topology Optimization versus Generative Design

While attending the 2019 RAPID + TCT conference in Detroit this year, I was honored to be interviewed by Stephanie Hendrixson, the Senior Editor of Additive Manufacturing magazine and website. We had a great chat, covering a lot of topics. I do tend to go on, so it turned into two videos.

The first video is about the use of simulation in AM. You should watch that one first, here, because we refer back to some of the basics when we zoomed in on optimization.

Generative design is the use of a variety of tools to drive the design of components and systems to directly meet requirements. One of those tools, the most commonly used, is Topological Optimization. Stephanie and I explore what it is all about, and the power of using these technologies, in this video:

You can view the full article on the Additive Manufacturing website here.

If you have any questions about how you can leverage simulation to add value to your AM processes, contact PADT or shoot me an email at eric.miller@padtinc.com.

Video Interview: 3 Roles for Simulation in Additive Manufacturing

While attending the 2019 RAPID + TCT conference in Detroit this year, I was honored to be interviewed by Stephanie Hendrixson, the Senior Editor of Additive Manufacturing magazine and website. We had a great chat, covering a lot of topics. I do tend to go on, so it turned into two videos.

In the first video, we chat about how simulation can improve the use of Additive Manufacturing for production hardware. We go over the three uses: optimizing the part geometry to take advantage of AM’s freedom, verifying that the part you are about to create will survive and perform as expected, and modeling the build process itself.

You can read the article and watch the video here on the Additive Manufacturing website. Or you can watch it here:

If you have any questions about how you can leverage simulation to add value to your AM processes, contact PADT or shoot me an email at eric.miller@padtinc.com.

For the second interview, we focus on Topological Optimization, Generative design, and the difference between the two. Check that out here.

3D Printed Parts Create a Tricked-Out Truck

PADT’s Austin Suder is a Solidworks CAD wizard, a NASA design-competition (Two for the Crew) winner and a teaching assistant for a course in additive manufacturing (AM)/3D printing. Not bad for someone who’s just started his sophomore year in mechanical engineering at Arizona State University.

PADT's Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)
PADT’s Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)

In last month’s PADT blog post about adding heat-set inserts to 3D printed parts we gave a shout-out to Austin for providing our test piece, the off-road LED light unit he had designed and printed for his 2005 Ford F-150. Now we’ve caught up with him between classes to see what other additions he’s made to his vehicle, all created with his personal 3D printers and providing great experience for his part-time work with Stratasys industrial printers in PADT’s manufacturing department.

Q: What has inspired or led you to print multiple parts for your truck?

I like cars, but I’m on a college budget so instead of complaining I found a way to fix the problem. I have five 3D printers at my house – why not put them to work! I understand the capabilities of AM so this has given me a chance to practice my CAD and manufacturing skills and push boundaries – to the point that people start to question my sanity.

Q: How did you end up making those rear-mount LED lights?

I wanted some reverse lights to match the ones on the front of my truck, so I designed housings in SolidWorks and printed them in carbon fiber PLA. Then I soldered in some high-power LED lights and wired them to my reverse lights. These parts made great use of threaded inserts! The carbon fiber PLA that I used was made by a company called Vartega that recycles carbon fiber material. (Note: PADT is an investor of this company.)

Q: In the PADT parking lot, people can’t help but notice your unusual tow-hitch. What’s the story with that?

I saw a similar looking hitch on another car that I liked and my first thought was, “I bet I could make that better.” It’s made from ABS painted chrome (not metal); I knew that I would never use it to tow anything, so this opened up my design freedom. This has been on my truck for about a year and the paint has since faded, but the printed parts are still holding strong.

An adjustable-height "topology optimized" trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it's just for fun, not function. (Image courtesy PADT)
An adjustable-height “topology optimized” trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it’s just for fun, not function. (Image courtesy PADT)

This part also gets questioned a lot! It’s both a blessing and a curse. In most cases it starts when I’m getting gas and the person behind me starts staring and then questions the thing that’s attached to the back of my truck. The conversation then progresses to me explaining what additive is, to a complete stranger in the middle of a gas station. This is the blessing part because I’m always down for a conversation about AM; the downside is I hate being late for work.

Q: What about those tow shackles on your front bumper?

Unique ABS printed tow shackles - another conversation-starter. (Image courtesy PADT)
Unique ABS printed tow shackles – another conversation-starter. (Image courtesy PADT)

Those parts were printed in ABS – they’re not meant for use, just for looks. I’ve seen towing shackles on Jeeps and other trucks but never liked the look of them, so again I designed my own in this pentagon-shape. I originally printed them in red but didn’t like the look when I installed them; the unusual shading comes because I spray-painted them black then rubbed off some of the paint while wet so the red highlights show through.

Q: Have you printed truck parts in any other materials?

Yes, I‘ve used a carbon-fiber (CF) nylon and flexible TPU (thermoplastic polyurethane) on filament printers and a nylon-like resin on a stereolithography system.

The CF nylon worked well when I realized my engine bay lacked the real estate needed for a catch can I’d bought. This was a problem for about five minutes – then I realized I have the power of additive and engineered a mount which raised the can and holds it at an angle. The mount makes great use of complex geometry because AM made it easy to manufacture a strong but custom-shaped part.     

Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)
Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)

After adding the catch can to my engine, I needed a way to keep the hoses from moving around when driving so I designed a double S-clip in TPU. The first design didn’t even come close to working – the hoses kept coming loose when driving – so I evaluated it and realized that the outer walls needed to be thicker. I made the change and printed it again, and this time it worked great. In fact, it worked so well that when I took my truck to the Ford dealership for some warranty work, they went missing. (It’s OK Ford, you can have them – I’ll just print another set.)    

Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)
Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)

Other parts I printed in TPU included clips for the brake-lines. I had seen that my original clip had snapped off, so when I had the truck up on jacks, I grabbed my calipers and started designing a new, improved version. Thirty minutes later I had them in place.

I also made replacement hood dampeners from TPU since they looked as though they’d been there for the life of the truck. I measured the old ones, used SolidWorks to recreate them (optimized for AM), printed a pair and installed them. They’ve been doing great in the Arizona heat without any deformation.      

New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)
New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)

My last little print was done on my SLA system in a material that behaves like nylon. (This was really just me showing off.) The plastic clips that hold the radiator cover had broken off, which led me to use threaded sheet-metal inserts to add machine threading to the fixture. I then purchased chrome bolts and made some 3D printed cup-washers with embossed text for added personalization and flair.  

Even the cup-washers got a 3D printed make-over on Austin's F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)
Even the cup-washers got a 3D printed make-over on Austin’s F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)

Q: What future automotive projects do you have in mind?

I’m working on a multi-section bumper and am using the project to standardize my production process – the design, material choice, sectioning and assembling. I got the idea because I saw someone with a tube frame car and thought it looked great, which led to me start thinking about how I could incorporate that onto my truck.

When I bought my F-150, it had had a dent in the rear bumper. I was never happy with this but didn’t have the money to get it fixed, so at this point the tube-frame look came full circle! I decided that I was going to 3D print a tube-frame bumper to replace the one with a dent. I started by removing the original bumper, taking measurements and locating possible mounting points for my design. Then I made some sketches and transferred them into SolidWorks.

The best part about this project is that I have additive on my side. Typical tube frame construction is limited by many things like bend allowance, assembly, and fabrication tooling. AM has allowed me to design components that could not be manufactured with traditional methods. The bumper will be constructed of PVC sections connected by 50 ABS printed parts, all glued together, smoothed with Bondo and filler primer then painted black. This is a large project!  It will take a lot of hand-finishing, but it will be perfect.

Q: If you were given the opportunity to work on any printer technology and/or material, what would you want to try working with?

Great question! If I had the opportunity to use AM for automotive components, I would redesign internal engine components and print them with direct metal laser sintering (DMLS), one of PADT’s other AM technologies. I would try printing part like piston rods, pistons, rocker arms, and cylinder valves. Additive is great for complex geometries with exotic materials.

Go Austin! Can’t wait to see what your truck looks like when you visit over semester break.

To learn more about fused deposition modeling (FDM/filament), stereolithography (SLA), selective laser sintering (SLS) and DMLS printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Press Release: PADT Adds the Faster, Larger and More Advanced Stratasys F900 Fused Deposition Modeling Additive Manufacturing System at its Tempe Headquarters

Well, the cat is now out of the bag. We are pleased to announce that we now have a Stratasys F900 FDM system up and running at PADT. Over the years we have helped dozens of customers specify and acquire their own F900 system. These are great machines. And our services customers were always asking when we would be adding one to our fleet of machines.

The answer is now. Our new F900 is up and running and making large, robust, and accurate parts right now.

A few weeks ago we published this picture on social media to announce the arrival of something big:

No alternative text description for this image

Now we can share what it was all about. Inside the truck was a big box:

And inside that box was a brand new Stratasys F900 FDM System!

It was a tight fit through PADT’s painting room, down the hallway, and into its new home:

After our team plugged it in and Stratasys came out to finish the install and calibrate everything, we ran our first part:

This is a big machine:

Here are the specs:

Build Size: 36 x 24 x 36 in
Layer thickness: 0.005 in – 0.020 in
Materials: ABS-ESD7, ABSi, ABS-M30, ABS-M30i, ABSplus, ASA, FDM Nylon 12, FDM Nylong 5, PC, PC-ABS, PC-Iso, PPSF, ST-130, ULTEM.

The machine is up and running and ready to make parts. So please contact us at rp@padtinc.com or 480.813.4884 to talk about how our new, big, fast, robust machine can 3D Print better and bigger parts for you.

We have an official press release below or here.


PADT Adds the Faster, Larger and More Advanced Stratasys F900 Fused Deposition Modeling Additive Manufacturing System at its Tempe Headquarters

The F900 is the Most Capable System on the Market for Companies Who Need Large, 3D-Printed Production Parts in Small or Large Volume

TEMPE, Ariz., August 29, 2019 ─ In an exciting development that enhances its additive manufacturing services and capabilities, PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, added a Stratasys F900 Fused Deposition Modeling (FDM) Additive Manufacturing System at its headquarters in Tempe, Arizona. With fast build speed and large build volume, the F900 significantly increased PADT’s 3D Printing capability and capacity.

“The addition of the F900 flagship FDM printer to our growing lineup of additive manufacturing systems is a major milestone in our long-term partnership with Stratasys,” said Ward Rand, co-founder and principal, PADT. “This move greatly enhances the capabilities we provide our customers based on Stratasys’ leading-edge equipment.”

The Stratasys F900 is specifically built for manufacturing and aerospace. With the largest build size of any Stratasys FDM system, it’s designed to handle the most demanding manufacturing needs. The system uses a wide range of thermoplastics with advanced mechanical properties so parts can endure high heat, caustic chemicals, sterilization and high-impact applications.

FDM is the most common additive manufacturing process because of the technology’s ability to provide robust parts quickly at low-cost. PADT has developed expertise with the FDM printing process over the past 20 years. The Stratasys F900 is the pinnacle of FDM technology because it’s designed to meet the needs of the manufacturing industry’s shift from prototyping towards production parts. The addition of the F900 comes at a critical time for PADT due to the increased demand from its customers in industries such as aviation, space and defense, to create end-use components created under ISO9001/AS9100 standards.

“When we added a large stereolithography machine in 2018, we quickly learned how significant the demand is for more materials, larger parts, and faster turnaround,” said Rey Chu, co-founder and principal, PADT. “The Stratasys F900 fulfills all three of these same requirements for companies who need the outstanding performance of parts made with the FDM process. We look forward to partnering with our customers to make innovation work with this new capability.”

This new system will augment PADT’s existing fleet of four FDM systems from Stratasys.  It will compliment Stereolithography, PolyJet, Selective Laser Sintering, and Digital Light Synthesis systems. This wide range of material and process choices is why hundreds of companies rely on PADT as their Additive Manufacturing services provider. 

To learn more about PADT and its services, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.padtinc.com.

# # #

3D Printing with Stratasys to Improve Workflow Efficiency

As advancements in R&D continue to expand hardware innovation in almost every industry, 3D printing is playing an increasingly larger role. For a long time, companies developed prototypes via fabrication in a machine shop or outsourced to a third party contractor. This process proved to be costly and slow. With innovations like the Stratasys F123 series, industrial-grade 3D printers, prototyping is becoming simpler, more cost-efficient, and faster. PADT is a reseller and support provider for the F123 series and has seen it used to great success in its customer’s hands.

“Our customers are finding the Stratasys F123 3D printers to be a great addition to their design floors,” said Rey Chu, co-founder and principal, PADT. “They have a very minimal learning curve, and a range of material options that provides flexibility for a wide variety of parts.”

As some of the most well-rounded 3D printers in the industry, the Stratasys F123 Series have won numerous awards. It’s easy to operate and maintain these machines, regardless of the user’s level of experience, and they are proficient at every stage of prototyping, from concept to validation, to functional performance.

The printers work with a range of materials – so users can produce complex parts with flexibility and accuracy. This includes advanced features like Fast Draft mode for truly rapid prototyping and soluble support to prevent design compromise and hands-on removal – All designed to shorten product development cycles and time to market.

All of these different characteristics allow for the F123 series to provide innovative solutions for manufacturers working with a wide variety of applications. This vast array of potential use is best seen in the assortment of companies that have purchased the Stratasys F370, the largest and most robust model in the F123 line of 3D printers; boasting a 14 x 10 x 14 in. build size, additional software integration, and access to a plethora of unique materials designed to help ensure prototyping success, all at an accessible price point. Companies that best represent the diversity of this machine include:

Juggernaut Design | Industrial Design Logo

Juggernaut Design

PADT client Juggernaut is an authority in rugged product design, bringing innovation and expertise to products to survive in challenging environments. Employing the latest tools and technology, this team of designers and engineers is always looking for the best way to meet their client’s ever-evolving requirements. 3D printing is one such tool a design firm like Juggernaut relies on. Covering everything from the development of prototypes and form studies, to ergonomic test rigs and even functional models, the need for quick turnaround is relevant at nearly every stage of the design process. Having physical parts to show to clients also helps to improve communication, allowing them to better visualize key design elements.

National Renewable Energy Laboratory

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) focuses on advancing the science and engineering of energy efficiency, sustainable transportation, and renewable power technologies, including marine energy. When it comes to developing the components of a wave energy device that produce power from relative motion induced by the dynamics of ocean waves for example, NREL’s research requires extensive validation before it is ready for commercialization. This process often includes generating sub-scale components for numerical model validation, prototypes for proof of concept, and other visual representations to provide clarity throughout the entire manufacturing process. It’s also important to accurately validate research projects at a more manageable and cost-effective scale before moving beyond the prototype stage.

Recently, NREL has ventured into building parts with more complex geometries, such as 3D printing hydrodynamically accurate models that are able to effectively represent the intricacies of various geometry and mass properties at scale.

Sierra Nevada Corporation

Sierra Nevada Corporation (SNC) is a privately held, advanced technology company providing customer-focused innovative solutions in the areas of aerospace, aviation, electronics, and systems integration. SNC’s diverse technologies are used in applications including telemedicine, navigation and guidance systems, threat detection and security, commercial aviation, scientific research, and infrastructure protection, among others. SNC decided to purchase an F370 Stratasys 3D printer to help the company’s engineering team iterate faster on new application designs. This machine was specifically attractive due to the reasonable purchase and operational costs of Stratasys printers, as well as the reduced manufacturing times it provided.

These use cases provide an example of how the Stratasys F123 series is helping to replace traditional manufacturing to save costs and provide a more efficient in-house, rapid design solution. The Stratasys F123 printers, and specifically the power and size of its flagship model, the F370, are revolutionizing design team’s workflow by providing more flexibility and accessibility than ever before.

To learn more about the Stratasys F123 Series, and find the machine that is right for you, please visit PADT’s Stratasys product page here. And to talk to PADT’s sales staff about a demo, please call 1-800-293-PADT.

Press Release: PADT Awarded U.S. Army Phase I SBIR Grant for Combustor Geometry Research Using 3D Printing, Simulation, and Product Development

We are pleased to announce that the US Army has awarded PADT a Phase I SBIR Grant to explore novel geometries for combustor cooling holes. This is our 15th SBIR/STTR win.

We are excited about this win because it is a project that combines Additive Manufacturing, CFD and Thermal Simulation, and Design in one project. And to make it even better, the work is being done in conjunction with our largest customer, Honeywell Aerospace.

We look forward to getting started on this first phase where we will explore options and then applying for a larger Phase II grant to conduct more thorough simulation then build and test the options we uncover in this phase.

Read more below. The official press release is here for HTML and here for PDF.

If you have any needs to explore new solutions or new geometries using Additive Manufacturing or applying advanced simulation to drive new and unique designs, please contact us at 480.813.4884 or info@padtinc.com.


PADT Awarded U.S. Army Phase I SBIR Grant for Combustor Geometry Research Using 3D Printing, Simulation, and Product Development

The Project Involves the Development of Sand-Plugging Resistant Metallic Combustor Liners

TEMPE, Ariz., August 15, 2019 ─ In recognition of its continued excellence and expertise in 3D printing, simulation, and product development, PADT announced today it has been awarded a $107,750 U.S. Army Phase I Small Business Innovation Research (SBIR) grant. With the support of Honeywell Aerospace, PADT’s research will focus on the development of gas turbine engine combustor liners that are resistant to being clogged with sand.  The purpose of this research is to reduce downtime and improve the readiness of the U.S. Army’s critical helicopters operating in remote locations where dirt and sand can enter their engines.  

“PADT has supported advanced research in a wide variety of fields which have centered around various applications of our services,” said Eric Miller, co-founder and principal, PADT. “We’re especially proud of this award because it requires the use of our three main areas of expertise, 3D printing, simulation and product development. Our team is uniquely capable of combining these three disciplines to develop a novel solution to a problem that impacts the readiness of our armed forces.”

The challenge PADT will be solving is when helicopters are exposed to environments with high concentrations of dust, they can accumulate micro-particles in the engine that clog the metal liner of the engine’s combustor. Combustors are where fuel is burned to produce heat that powers the gas turbine engine. To cool the combustor, thousands of small holes are drilled in the wall, or liner, and cooling air is forced through them. If these holes become blocked, the combustor overheats and can be damaged.  Blockage can only be remedied by taking the engine apart to replace the combustor. These repairs cause long-term downtime and significantly reduce readiness of the Army’s fleets.

PADT will design various cooling hole geometries and simulate how susceptible they are to clogging using advanced computational fluid dynamics (CFD) simulation tools. Once the most-promising designs have been identified through simulation, sample coupons will be metal 3D printed and sent to a test facility to verify their effectiveness.  Additionally, PADT will experiment with ceramic coating processes on the test coupons to determine the best way to thermally protect the 3D printed geometries.

“When we developed new shapes for holes in the past, we had no way to make them using traditional manufacturing,” said Sina Ghods, principal investigator, PADT. “The application of metal additive manufacturing gives PADT an opportunity to create shapes we could never consider to solve a complex challenge for the U.S. Army. It also gives us a chance to demonstrate the innovation and growth of the 3D printing industry and its applications for harsh, real-world environments.”

Honeywell joined PADT to support this research because it is well aligned with the company’s Gas Turbine Engine products. The outcome of this research has the potential to significantly improve the performance of the company’s engines operating in regions with high dust concentrations.

This will be PADT’s 15th SBIR/Small Business Technology Transfer (STTR) award since the company was founded in 1994. In August 2018, the company, in partnership with Arizona State University, was awarded a $127,000 STTR Phase I Grant from NASA to accelerate biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs or bamboo.

To learn more about PADT and its advanced capabilities, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Simulation for Additive Manufacturing In ANSYS 2019 R2 – Webinar

Additive manufacturing (3D Printing) has been rapidly gaining popularity as a true manufacturing process in recent years. ANSYS’ best-in-class solution for additive manufacturing enables simulation at every step in your AM process, and helps to optimize material configurations, and machine & parts setup before printing begins. 

Through the use of ANSYS tools such as Additive Suite & Additive Print, paired with topology optimization capabilities in ANSYS Mechanical Workbench, the need for physical process of trial-and-error testing has been greatly reduced. 

Join PADT’s Simulation Support and Application Engineer Doug Oatis for an exploration of the ANSYS tools that help to optimize additive manufacturing, and what new capabilities are available within them when upgrading to ANSYS 2019 R2. This presentation includes updates regarding:

  • Archiving materials no longer in use
  • Visualization of AM process
  • AM overhang angles
  • Preview part & support
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

3D Printing Polymer Parts with Electrostatic Dissipative (ESD) Properties

Getting zapped by static electricity at the personal level is merely annoying; having your sensitive electronic equipment buzzed is another, highly destructive story.

Much as you’d like to send these components out into the world wearing their own little anti-static wristbands, that’s just not practical (and actually, not good enough*). During build and use, advanced electronics applications need true charge-dissipative protection that is inherent to their design and easy to achieve. However, the typical steps of painting or coating, covering with conductive tape, or wrapping with carbon-filled/aluminum-coated films incur both time and cost.

Electrostatic dissipative (ESD) polymer materials instead provide this kind of protection on a built-in basis, offering a moderately conductive “exit path” that naturally dissipates the charge build-up that can occur during normal operations. It also prevents powders, dust or fine particles from sticking to the surface. Whether the task is protecting circuit boards during transport and testing, or ensuring that the final product works as designed throughout its lifetime, ESD materials present low electrical resistance while offering the required mechanical, and often thermal and/or chemically-resistant properties.

ESD-safe fixture for testing a printed-circuit board, produced by 3D printing with Stratasys ABS-ESD7 material. (Image courtesy of Stratasys)

Combining ESD Behavior with 3D Printing

All the features that are appealing with 3D printing carry over when printing with ESD-enabled thermoplastics. You can print trays custom-configured to hold circuit-boards for in-process testing, print conformal fixtures that speed up sorting, and produce end-use structures for projects where static build-up is simply not allowed (think mission-critical aerospace applications).

Acrylonitrile butadiene styrene (ABS), that work-horse of the plastics industry, has been available as 3D printing filament for decades. Along the way, Stratasys and other vendors started offering this filament in a version filled with carbon particles that decrease the plastic’s inherent electrical resistance. Stratasys ABS-ESD7 runs on the Fortus 380, 400, 450 and 900 industrial systems, and soon will be available on the office-friendly F370 printer.

What kind of performance does ABS-ESD7 offer? When evaluating materials for ESD performance, the most important property is usually the surface resistance, measured in ohms. (This is not the same as surface resistivity, plus there’s also volume resistivity – see Note at end). Conductive materials – typically metals – have a surface resistance generally less than 103 ohms, insulators such as most plastics are rated at greater than 1012 ohms, and ESD materials fall in the mid-range, at 106 to 109 ohms.

Compared to standard ABS filament, ABS-ESD7 offers more than five orders of magnitude lower resistance, converting it from an insulator to a material that provides an effective static-discharge path to the outside world. Due to the inherent layered structure of FDM parts, the differences in properties between flat (XY) and vertical (ZX) build orientations produces a range of resistance values, with a target of 107 ohms, reflected in the product name of ABS-ESD7. Stratasys offers an excellent, easy-to-read FAQ paper about ABS-ESD7.

Printed-circuit board production tool, custom 3D-printed in Stratasys ABS-ESD7 material for built-in protection from electrostatic discharge during test and handling. (Image courtesy of Stratasys)

When ABS isn’t strong enough or won’t hold up to temperature extremes, engineers can turn to Stratasys’ ESD-enhanced polyetherketoneketone (PEKK), termed Antero 840CN03. Developed in 2016 and slated for full release in October 2019, this new filament expands the company’s Antero line of  high-temperature, chemically resistant formulations. The PEKK base material offers a high glass transition temperature (Tg 149C, compared to 108C for ABS-ESD7) while meeting stringent outgassing and cleanroom requirements. As with ABS-ESD7, the carbon-nanotube loading lowers electrical resistance values of Antero 840CN03 parts to the desirable “ESD safe” range of 106 to 109 ohm.

Setting up Parts for Printing with ESD-Enhanced Filament                                                            

Support structures in contact with part walls/surfaces can disturb the surface resistance behavior. To counter-act this condition for filament printing with any type of ESD material, users should perform a special calibration that makes the printer lay down slightly thinner-than-usual layers of support material. In Stratasys Insight software, this is currently accomplished by setting the Support Offset Thickness to -0.003; this decreases the support layers from 0.010 inches to 0.007 inches. In addition, supports should be removed (in Insight software) from holes that are smaller in diameter than 0.25 inches (6.35mm).

As more of these materials are developed, the software will be updated to automatically create supports with this process in mind.

ESD Applications for 3D Printing

Avionics boxes, fixtures for holding and transporting circuit boards, storage containers for fuel, and production-line conveyor systems are just a few examples of end-use applications of ESD-enabled materials. Coupled with the geometric freedom offered by 3D printing, three categories of manufacturing and operations are improved:

  • Protecting electronics from ESD damage (static shock)
  • Preventing fire/explosion (static spark)
  • Preserving equipment/product performance (static cling)

If you’re exploring how 3D printing with ESD-enhanced materials can help with your industrial challenge, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed, and discover what filament is right for you.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

*Anti-static is a qualitative term and refers to something that prevents build-up of static, rather than dissipating what does occur


Surface Resistance, Surface Resistivity and Volume Resistivity

Surface resistance in ohms is a measurement to evaluate static-dissipative packaging materials.

Surface resistivity in ohms/square is used to evaluate insulative materials where high resistance characteristics are desirable. (Ref. https://www.evaluationengineering.com/home/article/13000514/the-difference-between-surface-resistance-and-surface-resistivity)

The standard for measuring surface resistance of ESD materials is EOS/ESD S11.11, released in 1993 by the ESD Association as an improvement over ASTM D-257 (the classic standard for evaluating insulators). Driving this need was the non-homogeneous structure of ESD materials (conductive material added to plastic), which had a different effect on testing parameters such as voltage or humidity,  than found with evaluating conductors.

Volume resistivity is yet a third possible measured electrical property, though again better suited for true conductors rather than ESD material. It depends on the area of the ohmeter’s electrodes and the thickness of the material sample. Units are ohm-cm or ohm-m.

             

Bring Your Most Imaginative Ideas to Life with Pantone Validation on the Stratasys J750 & J735

If seeing is believing, holding something this vivid is knowing for sure.

The Stratasys J735 and J750 deliver unrivaled aesthetics to your brightest ideas and boldest ambitions with true, full-color capability, texture mapping and color gradients.

3D print prototypes that look, feel and operate like the finished products in multiple materials and colors without sacrificing time for intricacy and complexity. Better communicate designs with vivid, realistic samples, and save on manual post-processing delays and costs.

Stratasys J735 and J750 printers are PANTONE Validated™

This validation makes the Pantone Matching System (PMS) Colors available for the first time in a 3D printing solution. It provides a universal language of color that enables color-critical decisions through every stage of the workflow for brands and manufacturers. It helps define, communicate and control color from inspiration to realization.

Color matching to Pantone Colors in a single click

GrabCAD Print software provides a quicker, more realistic expression of color in your models and prototypes, saving hours over traditional paint matching or iterative color matching processes.

  • Adding Pantone color selection increases the color gamut found within the GrabCAD Print Application and simplifies the color selection process
  • Designers can access the colors directly from GrabCAD Print, selecting Pantone within the Print Settings dialog box. From within this view the user can search for their desired Pantone color or select from the list.

Multiple material selections

This means  you can load up to six materials at once, including any combination of rigid, flexible, transparent or opaque materials and their components.

Double the number of print nozzles

More print heads means you can produce ultra-smooth surfaces and fine details with layer thickness as fine as 0.014 mm—about half the width of a human skin cell.

Discover how you can achieve stronger realism and color matching thanks to the Pantone Validation available on the Stratasys J750 & J735.

Contact the industry experts at PADT via the link below for more information:

Presentation: 3D Printing & Optics

The experts at PADT are often asked to speak at conferences around the country, even around the world. This is a great opportunity for us to present what we do and share what we know. The downside is that we only reach the people in the room. The solve this, we are going back and presenting past live seminars at our desks and recording them on BrightTalk. This is the third of those recordings. To find others go to our BrightTalk Channel

The world of optical systems is a subset of mechanical engineering with unique needs and requirements. Those unique needs also make it an ideal area to apply Additive Manufacturing, also known as 3D Printing.

This is a presentation that we gave at Photonics Days, held at the University of Arizona in Tucson Arizona from January 30th through February 1st of 2019.

You can view the presentation on BrightTALK here:
https://www.brighttalk.com/webcast/15747/360024