The Chemistry Behind Soluble Support Removal in Fused Deposition Modeling

fdm-support-chemestry-1In the Fused Deposition Modeling (FDM) process, support structures are needed for features with overhang incline angle less than 45-degree from horizontal. Stratasys developed a series of support materials for different model materials: SR-30TM for ABS, SR-100TM for polycarbonate and SR-110TM for nylon. Also, they developed the Waterworks Soluble Concentrate, P400-SC, to be used to dissolve these support materials. In this blog post, I develop a theory for the chemical reaction how P400-SC Waterworks dissolves SR-30TM, SR-100TM and SR-110TM support materials. As part of this, I explain how PADT’s Support Cleaning Apparatus (SCA) tank, with its heating and unique circulation and agitation capabilities that are important for the support dissolving process.

Materials Introduction

We begin by looking at the composition of the different materials involved in the table below.

stratasys-support-removal-chemestry-table-01Adapted from Stratasys.com

How P400-SC Works for Support Materials Removal

Polymer can swell and then dissolve into water as a consequence of abundant hydrophilic groups, like carboxyl group (-COOH), ether group (-O-), hydroxyl group (-OH) and so on in its molecular structure. Theoretically, SR-30TM and SR-100TM /SR-110TM Soluble Support Materials including a carboxyl group (-COOH) in their repeat unit are likely to be water soluble. However, they also have a hydrophobic ester group (-COO-) in their repeat unit, which counteracts the efficacy of the hydrophilic group on the long carbon chain. Thus, the key to making SR-30TM and SR-100TM /SR-110TM soluble, is to somehow get rid of the ester group.

A great example of supports on an FDM part. The part on the right has had the supports dissolved away
A great example of supports on an FDM part. The white material on the part to the left is the soluble support material. The part on the right has had the supports dissolved away

Hydrolysis of ester in pure water is a slow process even the system is heated. Both acid and alkaline conditions can catalyze and speed up the process. Under the acid condition, the hydrolysis is a reversible process until it reaches an equilibrium state, whereas alkaline conditions promote a thorough hydrolysis with a stirring and heating system.

P400-SC Waterworks contains sodium carbonate, sodium hydroxide, sodium lauryl sulfate and sodium metasilicate. The last two constituents, with 1-5 wt% respectively, are auxiliaries in the P400-SC Waterworks. The remaining two react with carboxylic acid and ester group per the following chemical reaction:

  1. R-COOH + NaOH =  R-COONa+ + H2O (neutralization reaction)
  2. 2 R-COOH + Na2CO3 =  2 R-COONa+ + H2O + CO2
  3. R1–COO-R2 + NaOH ≜ R1-COONa+ + R2OH (ester hydrolysis under alkaline condition)

where R is the remaining carbon chain apart from carboxyl group and R1, R2 represent the two-side segments of ester group. Ester hydrolysis is the main reaction we need, which ionizes the ester group and makes it water soluble with an increased polarity. These reactions would happen when SR-30TM or SR-100TM /SR-110TM supports are dropped into a tank with P400-SC Waterworks cleaning solution inside.

From the table above, we can see that ABS-M30TM and PC-10TM don’t have hydrophilic groups, which restrains their solubility into water. Nylon is semi-crystalline polymer and difficult to dissolve into water and most organic solvent, despite the presence of the hydrophilic group acylamino (-CONH-), which still results in a nice water-absorbing ability. All these model materials are common-use engineering plastic with nice chemical resistance (depending on their functional groups), they can be safe in the cleaning solution.

SCA1200HT-side1PADT’s Support Cleaning Apparatus (SCA)

The SCA tank offers an optimized environment with agitation and heating for the ester hydrolysis reaction. The tank has four preset temperature options (50 ℃, 60℃, 70℃, 85℃) for ABS-M30TM, PC-10TM, and FDMTM Nylon 12 model materials, due to their different thermal resistance. The innovative custom designed pump is key to cause the solution to effectively and efficiently dissolve and remove the support materials.

For more information on PADT’s entire line of SCA, please see http://www.supportremoval.com/

Thoughts on Biofabrication (and a Visit to WFIRM)

The Wake Forest Institute of Regenerative Medicine (WFIRM) hosted about 400 attendees at the annual Biofabrication conference, held this year at Winston-Salem, NC (Oct 28-Nov 1, 2016). The conference included a 2 hour tour of WFIRM’s incredible facilities, 145 posters, 200 or so presentations and a small trade show with about 30 exhibitors. As a mechanical engineer attending my first bio-related conference, I struggled to fully comprehend many concepts and terms in some of the deeper technical presentations. Nonetheless, there was a lot I DID learn, and this post serves to summarize my thoughts on the four high-level insights I gleaned amidst the pile of information on offer. I hope these are of value to the larger community that is not on the front lines of this exciting and impactful area of research.

More than Organs

To say biofabrication is all about making organs is like saying manufacturing is all about making spacecrafts carrying humans to Mars. It misses a lot of the other valid human needs that can be met and suggests organs are the end of the biofabrication R&D curve, when they only represent one manifestation (arguably the most difficult one in our current sense of the world) of the application of the science. If we take a step back, biofabrication is fundamentally about “manufacturing with living materials” – in that sense, biofabrication blurs the lines between natural and man-made entities. If you could manipulate and engineer living cells in physical constructs, what all could you do? Here is a list of some examples of the different applications that were discussed at the conference:

  • Toxicology Studies – Organovo’s examples of skin, liver and kidney tissue being used to evaluate drug efficacy
  • Body-on-a-Chip – A solution to aid in pre-clinical work to study whole systems (a key regulatory hurdle) and potentially displace animal studies in the future
  • Tissues for Therapy – This could involve patches, stents and other such fixes of a therapeutic nature (as opposed to replacing the entire organ in question)
  • Non-Medical ApplicationsModern Meadow is a company that is using biofabrication techniques to make leather and thereby help reduce our dependency on animal agriculture. Biofabricated meat is another potential application.
  • Functional Tissues and Organs – An interesting thought presented by Prof. Rashid Bashir is that replacing organs with matched constructs may not be optimal – we may be able to develop biological entities that get the job done without necessarily replicating every aspect of the organ being replaced. A similar thought is to to use biological materials to do engineering tasks. The challenge with this approach is living cells need to be kept alive – this is easier done when the fabricated entity is part of a living system, but harder to do when it is independent of one.
  • Full Organ Replacement – Replicating an organ in all its detail: structurally and functionally – WFIRM has done this for a few organs that they consider Level 1-3 in terms of complexity (see Figure 1). Level 4 organs (like the heart) are at the moment exceedingly challenging due to their needs for high vascularity and large size.
Fig 1. Levels of complexity in organs, adapted from Dr. Anthony Atala’s talk at the conference. Image Attributions: Cancer Research UK (Wikimedia Commons), NA, Mikael Häggström (Wikimedia Commons), OpenStax College (Wikimedia Commons)

It Takes a Village (and a Vivarium)

Imagine this is the early 2000s and you are tasked with establishing a center dedicated to accelerating the progress of regenerative medicine. What are the parts this center needs to house? This was probably what Dr. Anthony Atala and others were working out prior to establishing WFIRM in 2004. To give you a sense of what goes on in WFIRM today, here is a (partial) list of the different rooms/groups we visited on our tour: decellularization, imaging, tissue maturation, bioprinting, electrospinning, lab-on-a-chip, direct writing, vivarium that cares for animals (mice, ferrets, sheep, pigs, dogs – beagles to be specific, and “non-human primates”) and a cleanroom for pre-clinical studies. Add administrative, outreach and regulatory staff. Today, about 450 people work at WFIRM and many more collaborate. Going into this conference, I was well aware this field was an inter-disciplinary one. The tour opened my eyes to just how many interdependent parts there are that make an end-to-end solution possible, some more interdisciplinary in nature than others and just how advantageous it must be to have all these capabilities under one roof dedicated to a larger mission instead of spread across a large university campus, serving many masters.

“I Have a Hammer, Where is the Nail?”

I will be honest – I justified my interest in biofabrication on the very dubious basis of my experience with 3D printing, a long standing interest in the life sciences that I had hitherto suppressed, and the fact that I am married to a cancer researching biochemist – bioprinting was my justification for finally getting my feet (close to a) wet (lab). I suspect I am not alone in this (support group, anyone?). When I described this to the only surgeon who entertains my questions, he accurately summarized my approach in the afore mentioned hammer-nail analogy. So, armed with my hammer, I headed to the biofabrication conference seeking nails. The good news is I found a couple. As in exactly two. The bad news? See the section above – this stuff is hard and multi-faceted – and there are folks with a multi-decade head start. So for those of us not on the front lines of this work or not in college planning our next move, the question becomes how best can we serve the scientists and engineers that are already in this field. Better tools are one option, and the trade show had examples of these: companies that make bioprinters (see Figure 2 below), improved nozzles for bioprinting, clean-room alternatives, biomaterials like hydrogels, and characterization and testing equipment. But solving problems that will help the biofabrication community is another approach and there were about 5-10 posters and
presentations (mine included) which attempted to do just that. What are some of the areas that could benefit from such peripheral R&D engagement? My somewhat biased feeling is that there is opportunity for bringing some of the same challenges Additive Manufacturing is going through to this area as well:

  • Design for Bioprinting: fully exploiting the possibilities of bioprinting – “in Silico” has made some progress with medical devices – a similar window of value exists for biofabrication due to the design freedom of 3D printing
  • Modeling: Biofabrication almost always involves multi-materials, often with varying constitutive behaviors and further are in complex, time-varying environments – getting some handle on this is a precursor to item 1 above
  • Challenges of Scale: This has many elements: quality control, cost, automation, data security, bio-safety. This is one of the key drivers behind the recent DOD call for an Advanced Tissue Biofabrication Manufacturing Innovation Institute and is likely to drive several projects in this space over the next 5-7 years.

Moral of the story for me: carry your hammer with pride but take the time to learn, ask and probe to find the pain points that are either already there or are likely to arise in the future, and keep refining your hammer with input from the biofabrication community – conferences are the best place to do this – IF you go in with that intent and prepare ahead of time identifying the people you want to talk to and the questions you wish to ask them – something I hope to be better at next time around.

bioprinters
Fig 2. A few of the Bioprinters on display at the Biofabrication 2016 conference: Rokit, CellInk and RegenHU represented here (the others were: Advanced Solutions, Biobots and EnvisionTEC)

The Rate-of-Progress Paradox

Finally, a more abstract point. From the sidelines, we may ask how far has the field of biofabrication come and how fast is it progressing? It is one thing to sift through media hype and reconcile it with ground realities. It is quite another to discover this conflict seemingly exists even in the trenches – there are several examples of transplanted biofabricated entities, yet there is a common refrain that we have a long way to go to doing just so. And that struck me initially as a paradox as I heard the plenary talks that were alternatingly cautious and wild – but on the very last day I started to appreciate why this was not a paradox at all, it is just the nature of the science itself. Unlike a lot of engineering paradigms, there are limits to efficiencies that can be gained in the life sciences – and once these are gained (shared resources, improved methods etc.), success in one particular tissue or organ may not make the next one progress much faster. Take Wake Forest’s own commonly used approach for regenerative medicine, for example: harvest cells, culture them, build scaffold constructs, mature cells on these constructs, implant and monitor. Sounds simple, but takes 5-10 years to get to clinical implantation and another 5-10 of observation before the results are published. And just because you have shown this in one area, bladder for example, doesn’t make the next one much faster at all. All the same steps have to be followed: pathways to be re-evaluated, developmental studies to be done – prior to extensive animal and clinical trials. The solution? Pursue multiple tissues/organs in parallel, follow each step diligently and be patient. Wake Forest seems to have envisioned this over a decade ago and I expect the coming decade will show a cascade of biofabrication successes hit us with increasingly boring steadiness.

Concluding Thoughts

Finally, we should all be thankful to the many PhD students and post-docs from all over the world putting in the bulk of the disciplined, hard work this field demands, most of them, in my opinion, at salaries not reflective of their extensive education and societal value. We should also spare a thought for all the animals being sacrificed for this and other research, even in the context of best veterinary practices – my personal hope is that biofabrication enables us to stop all animal trials at some point in the near future – indeed, this seems to be the only technology that can. Then we can truly say with confidence, that we have first and foremost, done no harm.

Thank you WFIRM, for a wonderful conference and all the work you do everyday!

AZ Big Media: How 3D Printing is Changing Manufacturing

azbusinessleaders-1Rey Chu, one of PADT’s owners and our head of Manufacturing Technologies, is featured in the 2017 issue of AZ Business Leaders with his article “How 3D Printing is Changing Manufacturing” It is a great overview of 3D printing and how it is impacting the way we make things.

3dprinting-sotry-azleaders

 

 

 

Students 3D Print and Assemble Prosthetic Hands for School Project

hand1What do you get when you combine a motivated student leader, enthusiastic classmates, a worldwide online community, and the latest 3D Printing technology from Stratasys? You give children around the world a cool way to hold things again.  That is what happened when high school student Rahul Jayaraman of Basis Chandler decided to take part in a project called Enabling The Future. They describe themselves as “A global network of passionate volunteers using 3D Printing to give the world a ‘helping hand'” by designing a wide variety of prosthetic hands for kids that can be printed and assembled by volunteers.

Local news station, KSAZ FOX 10 Phoenix stopped by PADT while we were printing three hands in our Stratasys FORTUS 450 to interview Rahul and talk to us about the project.  It gives a great summary:

And Channel 3, KTVK, came to the assembly event at Basis Chandler:>

azfamily.com 3TV | Phoenix Breaking News, Weather, Sport

 

As did Channel 12, KPNX:

3D Printing is a fantastic technology for one simple reason, it enables almost anyone to manufacture parts. All you need is a good design. And that is where the people at Enabling the Future come in.  Check out their website to see some great examples of how their volunteer work changes so many lives. Have a box of tissue handy if you watch the videos…

This is how the project works.  A leader like Rahul takes the initiative to sign up for the project. He then chooses which of the many designs he wants to make.  For this first go around, he picked a general design from Thingiverse called the Raptor Reloaded.  Next they needed the hardware you could not 3D Print – screws springs, velcro, and bits and pieces that hold the design together.  For this they needed to raise $25 per hand so Rahul was given the opportunity to learn how to raise money, a very useful skill.

hand2PADT’s Dhruv Bhate and the rest of our 3D Printing team worked with Rahul to get the design just right and then 3D Print the hands.  That will be done this week and this weekend the next phase will take place. Rahul and a large number of his classmates from Basis Chandler will get together at the school this weekend to put thirty or so hands together.  They will then box them up and another volunteer group, www.HandChallenge.com, will ship them to kids in the developing world that need them.

Here is a video from Tom Fergus from Fox10 showing a closeup of the hand in action:

We at PADT love projects like this because it is win-win-win.  The students get a chance to run a complicated project by themselves, learning the skills they will need later in life to organize, manage, and finish a project. PADT wins because we can contribute to our chosen area of charity, STEM education, in a way that benefits others beyond a given school. And the big winners are the kids around the world that receive a new and cool way to grab hold of life.

We will have sample hands at our open house next Thursday: Nerdtoberfest as well as an update when we get feedback from the distribution of the hands.

Nerdtoberfest: Printing a Beer Stein with Beer Filament

Noticed an interesting email in my inbox the other day with the subject line:

“Oktoberfest Time: 3D Print a Beer Stein in Beer Filament”

Marketing gold, you have my attention!

After reading the reviews from the filament manufacturer, I dove in and got some of the hoppy, malty filament on order from 3D Fuel. I was very excited when it came in and couldn’t wait to print PADT’s own beer stein for our upcoming Nerdtoberfest event. Meanwhile I found a nice starting point with a file from GrabCad and added my own additions and alterations.

cad

I quickly went to load the beer filament into one of our 3D printers, when I noticed that the roll size was not compatible with the spool holder on the printer. It was this disconnect that would have previously stopped this experiment in it’s track, however, the future is NOW!

I popped onto the Thingiverse, and alas, I was not alone in having this issue and a plethora of solution were populated before me. I was about to 3D print and adapter to allow my 3D printer to accept a new roll size that was found to be incompatible just moments before. Disaster averted, I was now cooking with gas, er, beer.

holder

roll-on-holder

The printing process was uneventful and the beer filament printed well. We now have a beer mug printed out of beer filament for PADT’s annual Nerdtoberfest!

4

mug-views

img_7587-copy

giphy

Modeling 3D Printed Cellular Structures: Challenges

In this post, I discuss six challenges that make the modeling of 3D printed cellular structures (such as honeycombs and lattices) a non-trivial matter. In a following post, I will present how some of these problems have been addressed with different approaches.

At the outset, I need to clarify that by modeling I mean the analytical representation of material behavior, primarily for use in predictive analysis (simulation). Here are some reasons why this is a challenging endeavor for 3D printed cellular solids – some of these reasons are unique to 3D printing, others are a result of aspects that are specific to cellular solids, independent of how they are manufactured. I show examples with honeycombs since that is the majority of the work we have data for, but I expect that these ideas apply to foams and lattices as well, just with varying degrees of sensitivity.

1. Complex Geometry with Non-Uniform Local Conditions

I state the most well-appreciated challenge with cellular structures first: they are NOT fully-dense solid materials that have relatively predictable responses governed by straightforward analytical expressions. Consider a dogbone-shaped specimen of solid material under tension: it’s stress-strain response can be described fairly well using continuum expressions that do not account for geometrical features beyond the size of the dogbone (area and length for stress and strain computations respectively). However, as shown in Figure 1, such is not the case for cellular structures, where local stress and strain distributions are non-uniform. Further, they may have variable distributions of bending, stretching and shear in the connecting members that constitute the structure. So the first question becomes: how does one represent such complex geometry – both analytically and numerically?

non-uniform-strain
Fig 1. Honeycomb structure under compression showing non-uniform local elastic strains [Le & Bhate, under preparation]

2. Size Effects

A size effect is said to be significant when an observed behavior varies as a function of the size of the sample whose response is being characterized even after normalization (dividing force by area to get stress, for example). Here I limit myself to size effects that are purely a mathematical artifact of the cellular geometry itself, independent of the manufacturing process used to make them – in other words this effect would persist even if the material in the cellular structure was a mathematically precise, homogeneous and isotropic material.

It is common in the field of cellular structure modeling to extract an “effective” property – a property that represents a homogenized behavior without explicitly modeling the cellular detail. This is an elegant concept but introduces some practical challenges in implementation – inherent in the assumption is that this property, modulus for example, is equivalent to a continuum property valid at every material point. The reality is the extraction of this property is strongly dependent on the number of cells involved in the experimental characterization process. Consider experimental work done by us at PADT, and shown in Figure 2 below, where we varied both the number of axial and longitudinal cells (see inset for definition) when testing hexagonal honeycomb samples made of ULTEM-9085 with FDM. The predicted effective modulus increases with increasing number of cells in the axial direction, but reduces (at a lower rate) for increasing number of cells in the longitudinal direction.

This is a significant challenge and deserves a full form post to do justice (and is forthcoming), but the key to remember is that testing a particular cellular structure does not suffice in the extraction of effective properties. So the second question here becomes: what is the correct specimen design for characterizing cellular properties?

sizeeffect
Fig 2. Effective modulus under compression showing a strong dependence on the number of cells in the structure [Le & Bhate, under preparation]

3. Contact Effects

In the compression test shown in the inset in Figure 2, there is physical contact between the platen and the specimen that creates a local effect at the top and bottom that is different from the experience of the cells closer the center. This is tied to the size effect discussed above – if you have large enough cells in the axial direction, the contribution of this effect should reduce – but I have called it out as a separate effect here for two reasons: Firstly, it raises the question of how best to design the interface for the specimen: should the top and bottom cells terminate in a flat plate, or should the cells extend to the surface of contact (the latter is the case in the above image). Secondly, it raises the question of how best to model the interface, especially if one is seeking to match simulation results to experimentally observed behavior. Both these ideas are shown in Figure 3 below. This also has implications for product design – how do we characterize and model the lattice-skin interface? As such, independent of addressing size effects, there is a need to account for contact behavior in characterization, modeling and analysis.

contact
Fig 3. Two (of many possible) contact conditions for cellular structure compression – both in terms of specimen design as well as in terms of the nature of contact specified in the simulation (frictionless vs frictional, for example)

4. Macrostructure Effects

Another consideration related to specimen design is demonstrated in an exaggerated manner in the slowed down video below, showing a specimen flying off the platens under compression – the point being that for certain dimensions of the specimen being characterized (typically very tall aspect ratios), deformation in the macrostructure can influence what is perceived as cellular behavior. In the video below, there is some induced bending on a macro-level.

5. Dimensional Errors

While all manufacturing processes introduce some error in dimensional tolerances, the error can have a very significant effect for cellular structures – a typical industrial 3D printing process has tolerances within 75 microns (0.003″) – cellular structures (micro-lattices in particular) very often are 250-750 microns in thickness, meaning the tolerances on dimensional error can be in the 10% and higher error range for thickness of these members. This was our finding when working with Fused Deposition Modeling (FDM), where on a 0.006″ thick wall we saw about a 10% larger true measurement when we scanned the samples optically, as shown in Figure 4. Such large errors in thickness can yield a significant error in measured behavior such as elastic modulus, which often goes by some power to the thickness, amplifying the error. This drives the need for some independent measurement of the manufactured cellular structure – made challenging itself by the need to penetrate the structure for internal measurements. X-ray scanning is a popular, if expensive approach. But the modeler than has the challenge of devising an average thickness for analytical calculations and furthermore, the challenge of representation of geometry in simulation software for efficient analysis.

Fig 4. (Clockwise from top left): FDM ULTEM 9085 honeycomb sample, optical scan image, 12-sample data showing a mean of 0.064″ against a designed value of 0.060″ – a 7% error in thickness

6. Mesostructural Effects

The layerwise nature of Additive Manufacturing introduces a set of challenges that are somewhat unique to 3D Printed parts. Chief among these is the resulting sensitivity to orientation, as shown for the laser-based powder bed fusion process in Figure 5 with standard materials and parameter sets. Overhang surfaces (unsupported) tend to have down-facing surfaces with different morphology compared to up-facing ones. In the context of cellular structures, this is likely to result in different thickness effects depending on direction measured.

Fig 5. 3D Printed Stainless Steel Honeycomb structures showing orientation dependent morphology [PADT, 2016]
For the FDM process, in addition to orientation, the toolpaths that effectively determine the internal meso-structure of the part (discussed in a previous blog post in greater detail) have a very strong influence on observed stiffness behavior, as shown in Figure 6. Thus orientation and process parameters are variables that need to be comprehended in the modeling of cellular structures – or set as constants for the range of applicability of the model parameters that are derived from a certain set of process conditions.

Figure
Fig 6. Effects of different toolpath selections in Fused Deposition Modeling (FDM) for honeycomb structure tensile testing  [Bhate et al., RAPID 2016]

Summary

Modeling cellular structures has the above mentioned challenges – most have practical implications in determining what is the correct specimen design – it is our mission over the next 18 months to address some of these challenges to a satisfactory level through an America Makes grant we have been awarded. While these ideas have been explored in other manufacturing contexts,  much remains to be done for the AM community, where cellular structures have a singular potential in application.

In future posts, I will discuss some of these challenges in detail and also discuss different approaches to modeling 3D printed cellular structures – they do not always address all the challenges here satisfactorily but each has its pros and cons. Until then, feel free to send us an email at info@padtinc.com citing this blog post, or connect with me on LinkedIn so you get notified whenever I write a post on this, or similar subjects in Additive Manufacturing (1-2 times/month).

Phoenix Business Journal: ​3D printing takes a giant step forward toward production manufacturing

Just-Published-PBJ-1This year’s IMTS show in Chicago saw the introduction of some great new 3D Printing technology that makes the creation of end-use parts from additive manufacturing even more feasible. “3D printing takes a giant step forward toward production manufacturing” shares my observations on the subject.

Prototyping Today: Five Unique Considerations for 3D Printing Production Parts

prototype_today_logoAs 3D Printing makes it’s long awaited move from being dominated by prototyping to manufacturing production parts, companies need to consider a few key issues.  In “Five Unique Considerations for 3D Printing Production Parts” I share what we have learned at PADT as we have helped customers make this transition.

Classification of Cellular Solids (and why it matters)

Updated (8/30/2016): Two corrections made following suggestions by Gilbert Peters: the first corrects the use of honeycomb structures in radiator grille applications as being for flow conditioning, the second corrects the use of the Maxwell stability criterion, replacing the space frame example with an octet truss.

~

This is my first detailed post in a series on cellular structures for additive manufacturing, following an introductory post I wrote where I classified the research landscape in this area into four elements: design, analysis, manufacturing and implementation.

Within the design element, the first step in implementing cellular structures in Additive Manufacturing (AM) is selecting the appropriate unit cell(s). The unit cell is selected based on the performance desired of it as well as the manufacturability of the cells. In this post, I wish to delve deeper into the different types of cellular structures and why the classification is important. This will set the stage for defining criteria for why certain unit cell designs are preferable over others, which I will attempt in future posts. This post will also explain in greater detail what a “lattice” structure, a term that is often erroneously used to describe all cellular solids, truly is.

1. Honeycomb

1.1 Definition
Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Figure 1. All cross-sections through the 3rd dimension are thus identical, making honeycombs somewhat easy to model. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs. Honeycombs have a strong anisotropy in the 3rd dimension – in fact, the modulus of regular hexagonal and triangular honeycombs is transversely isotropic – equal in all directions in the plane but very different out-of-plane.

Figure 1. Honeycomb structure showing two-dimensional, prismatic nature (Attr: modified from work done by George William Herbert, Wikipedia)
honeycomb_bmwi3
Figure 2. Honeycomb design in use as part of a BMW i3 crash structure (Attr: adapted from youkeys, Wikipedia)

1.2 Design Implications
The 2D nature of honeycomb structures means that their use is beneficial when the environmental conditions are predictable and the honeycomb design can be oriented in such a way to extract maximum benefit. One such example is the crash structure in Figure 2 as well as a range of sandwich panels. Several automotive radiator grilles are also of a honeycomb design to condition the flow of air. In both cases, the direction of the environmental stimulus is known – in the former, the impact load, in the latter, airflow.

2. Open-Cell Foam

openfoam
Figure 3. Open cell foam unit cell, following Gibson & Ashby (1997)

2.1 Definition
Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional open-cell foam design as shown in one representation of a unit cell in Figure 3. Typically, open-cell foams are bending-dominated, distinguishing them from stretch-dominated lattices, which are discussed in more detail in a following section on lattices.

2.2 Design Implications
Unlike the honeycomb, open cell foam designs are more useful when the environmental stimulus (stress, flow, heat) is not as predictable and unidirectional. The bending dominated mechanism of deformation make open-cell foams ideal for energy absorption – stretch dominated structures tend to be stiffer. As a result of this, applications that require energy absorption such as mattresses and crumple zones in complex structures. The interconnectivity of open-cell foams also makes them a candidate for applications requiring fluid flow through the structure.

Metal_Foam
Figure 4. SEM image of a metallic open-cell foam (Attr: SecretDisc, Wikipedia)
openfoam-deform
Figure 5. FEA simulation of open cell foam unit cell under compression, showing predominant mode of deformation is on account of bending

3. Closed-Cell Foam

closedfoam
Figure 6. Open cell foam unit cell representation [following Gibson and Ashby, 1997]
3.1 Definition
As the name suggests, closed cell foams are open-cell foams with enclosed cells, such as the representation shown in Figure 6. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures, though this is not necessary. Closed-cell foams arise from a lot of natural processes and are commonly found in nature. In man-made entities, they are commonly found in the food industry (bread, chocolate) and in engineering applications where the enclosed cell is filled with some fluid (like air in bubble wrap, foam for bicycle helmets and fragile packaging).

3.2 Design Implications
The primary benefit of closed cell foams is the ability to encapsulate a fluid of different properties for compressive resilience. From a structural standpoint, while the membrane is a load-bearing part of the structure under certain loads, the additional material and manufacturing burden can be hard to justify. Within the AM context, this is a key area of interest for those exploring 3D printing food products in particular but may also have value for biomimetic applications.

Closed_cell_metal_foam_with_large_cell_size
Figure 8. Closed cell Aluminum foam with very large cells [Shinko Wire Company, Attr: Curran2, Wikimedia Commons]

 4. Lattice

4.1 Definition
Lattices are in appearance very similar to open cell foams but differ in that lattice member deformation is stretch-dominated, as opposed to bending*. This is important since for the same material allocation, structures tend to be stiffer in tension and/or compression compared to bending – by contrast, bending dominated structures typically absorb more energy and are more compliant.

So the question is – when does an open cell foam become stretch dominated and therefore, a lattice? Fortunately, there is an app equation for that.

Maxwell’s Stability Criterion
Maxwell’s stability criterion involves the computation of a metric M for a lattice-like structure with b struts and j joints as follows:

In 2D structures: M = b – 2j + 3
In 3D structures:
M = b – 3j + 6

Per Maxwell’s criterion, for our purposes here where the joints are locked (and not pinned), if M < 0, we get a structure that is bending dominated. If M >= 0, the structure is stretch dominated. The former constitutes an open-cell foam, the latter a lattice.

There are several approaches to establishing the appropriateness of a lattice design for a structural applications (connectivity, static and kinematic determinism etc.) and how they are applied to periodic structures and space frames. It is easy for one (including for this author) to confuse these ideas and their applicability. For the purposes of AM, Maxwell’s Stability Criterion for 3D structures is a sufficient condition for static determinancy. Further, for a periodic structure to be truly space-filling (as we need for AM applications), there is no simple rigid polyhedron that fits the bill – we need a combination of polyhedra (such as an octahedron and tetrahedron in the octet truss shown in the video below) to generate true space filling, and rigid structures. The 2001 papers by Deshpande, Ashby and Fleck illustrate these ideas in greater detail and are referenced at the end of this post.

Video: The octet truss is a classic stretch-dominated structure, with b = 36 struts, j = 14 joints and M = 0 [Attr. Lawrence Livermore National Labs]

4.2 Design Implications
Lattices are the most common cellular solid studied in AM – this is primarily on account of their strong structural performance in applications where high stiffness-to-weight ratio is desired (such as aerospace), or where stiffness modulation is important (such as in medical implants). However, it is important to realize that there are other cellular representations that have a range of other benefits that lattice designs cannot provide.

Conclusion: Why this matters

It is a fair question to ask why this matters – is this all just semantics? I would like to argue that the above classification is vital since it represents the first stage of selecting a unit cell for a particular function. Generally speaking, the following guidelines apply:

  • Honeycomb structures for predictable, unidirectional loading or flow
  • Open cell foams where energy absorption and compliance is important
  • Closed cell foams for fluid-filled and hydrostatic applications
  • Lattice structures where stiffness and resistance to bending is critical

Finally, another reason it is important to retain the bigger picture on all cellular solids is it ensures that the discussion of what we can do with AM and cellular solids includes all the possibilities and is not limited to only stiffness driven lattice designs.

Note: This blog post is part of a series on “Additive Manufacturing of Cellular Solids” that I am writing over the coming year, diving deep into the fundamentals of this exciting and fast evolving topic. To ensure you get each post (~2 a month) or to give me feedback for improvement, please connect with me on LinkedIn.

References

[1] Ashby, “Materials Selection in Mechanical Design,” Fourth Edition, 2011
[2] Gibson & Ashby, “Cellular Solids: Structure & Properties,” Second Edition, 1997
[3] Gibson, Ashby & Harley, “Cellular Materials in Nature & Medicine,” First Edition, 2010
[4] Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley, “Metal Foams: A Design Guide,” First Edition, 2000
[5] Deshpande, Ashby, Fleck, “Foam Topology Bending versus Stretching Dominated Architectures,” Acta Materialia 49, 2001
[6] Deshpande, Fleck, Ashby, “Effective properties of the octet-truss lattice material,”  Journal of the Mechanics and Physics of Solids, 49, 2001

Notes

* We defer to reference [1] in distinguishing lattice structures as separate from foams – this is NOT the approach used in [2] and [3] where lattices are treated implicitly as a subset of open-cell foams. The distinction is useful from a structural perspective and as such is retained here.

The Additive Manufacturing Cellular Solids Research Landscape

I am writing this post after visiting the 27th SFF Symposium, a 3-day Additive Manufacturing (AM) conference held annually at the University of Texas at Austin. The SFF Symposium stands apart from other 3D printing conferences held in the US (such as AMUG, RAPID and Inside3D) in the fact that about 90% of the attendees and presenters are from academia. This year had 339 talks in 8 concurrent tracks and 54 posters, with an estimated 470 attendees from 20 countries – an overall 50% increase over the past year.

As one would expect from a predominantly academic conference, the talks were deeper in their content and tracks were more specialized. The track I presented in (Lattice Structures) had a total of 15 talks – 300 minutes of lattice talk, which pretty much made the conference for me!

In this post, I wish to summarize the research landscape in AM cellular solids at a high level: this classification dawned on me as I was listening to the talks over two days and taking in all the different work going on across several universities. My attempt in this post is to wrap my arms around the big picture and show how all these elements are needed to make cellular solids a routine design feature in production AM parts.

Classification of Cellular Solids

First, I feel the need to clarify a technicality that bothered me a wee bit at the conference: I prefer the term “cellular solids” to “lattices” since it is more inclusive of honeycomb and all foam-like structures, following Gibson and Ashby’s 1997 seminal text of the same name. Lattices are generally associated with “open-cell foam” type structures only – but there is a lot of room for honeycomb structures and close-cell foams, each having different advantages and behaviors, which get excluded when we use the term “lattice”.

CellularSolids
Figure 1. Classification of Cellular Solids [Gibson & Ashby, 1997]

The AM Cellular Solids Research Landscape

The 15 papers at the symposium, and indeed all my prior literature reviews and conference visits, suggested to me that all of the work in this space falls into one or more of four categories shown in Figure 2. For each of the four categories (design, analysis, manufacturing & implementation), I have listed below the current list of capabilities (not comprehensive), many of which were discussed in the talks at SFF. Further down I list the current challenges from my point of view, based on what I have learned studying this area over the past year.

AMcellular
Figure 2. AM Cellular Solid Research Landscape

Over the coming weeks I plan to publish a post with more detail on each of the four areas above, summarizing the commercial and academic research that is ongoing (to the best of my knowledge) in each area. For now, I provide below a brief elaboration of each area and highlight some important research questions.

1. Representation (Design)

This deals with how we incorporate cellular structures into our designs for all downstream activities. This involves two aspects: the selection of the specific cellular design (honeycomb or octet truss, for example) and its implementation in the CAD framework. For the former, a key question is: what is the optimum unit cell to select relative to performance requirements, manufacturability and other constraints? The second set of challenges arises from the CAD implementation: how does one allow for rapid iteration with minimal computational expense, how do cellular structures cover the space and merge with the external skin geometry seamlessly?

2. Optimization (Analysis)

Having tools to incorporate cellular designs is not enough – the next question is how to arrange these structures for optimum performance relative to specified requirements? The two most significant challenges in this area are performing the analysis at reasonable computational expense and the development of material models that accurately represent behavior at the cellular structure level, which may be significantly different from the bulk.

3. Realization (Manufacturing)

Manufacturing cellular structures is non-trivial, primarily due to the small size of the connecting members (struts, walls). The dimensions required are often in the order of a few hundred microns and lower, which tends to push the capabilities of the AM equipment under consideration. Additionally, in most cases, the cellular structure needs to be self-supporting and specifically for powder bed fusion, must allow for removal of trapped powder after completion of the build. One way to address this is to develop a map that identifies acceptable sizes of both the connecting members and the pores they enclose. For this, we need robust ways of monitoring quality of AM cellular solids by using in-situ and Non-Destructive techniques to guard against voids and other defects.

4. Application (Implementation)

Cellular solids have a range of potential applications. The well established ones include increasing stiffness-to-weight ratios, energy absorption and thermal performance. More recent applications include improving bone integration for implants and modulating stiffness to match biological distributions of material (biomimicry), as well as a host of ideas involving meta-materials. The key questions here include how do we ensure long term reliability of cellular structures in their use condition? How do we accurately identify and validate these conditions? How do we monitor quality in the field? And how do we ensure the entire life cycle of the product is cost-effective?

So What?

I wrote this post for two reasons: I love to classify information and couldn’t help myself after 5 hours of hearing and thinking about this area. But secondly, I hope it helps give all of us working in this space context to engage and communicate more seamlessly and see how our own work fits in the bigger picture.

A lot of us have a singular passion for the overlapping zone of AM and cellular solids and I can imagine in a few years we may well have a conference, an online journal or a forum of some sort just dedicated to this field – in fact, I’d love to assess interest in such an effort or an equivalent collaborative exercise. If this idea resonates with you, please connect with me on LinkedIn and drop me a note, or send us an email (info@padtinc.com) and cite this blog post so it finds its way to me.

Engineering a Better Pokemon Go Experience

padt-pikachu-1The other day, I saw a post on Engadget about a special case for Pokemon Go users to solve the problem of missing your prized Jigglypuff that you have happened across in the wild (or let’s face it, probably a CP 10 Rattata who is going to break out multiple times before disappearing in a puff of smoke…). The case is designed to give the user access to on screen controls and a nice channel to keep your Pokeball flinging finger straight and true.

Pokemon Go Photo 0
Original Device designed by Jon Clever

As pointed out in the article on Engadget, this case is only useful in the capture screen. This caveat aside, the other issue with the case is that it obscures the screen. Here at PADT, we are fortunate to sell a wide variety of 3D Printing machines, some of which are capable of multiple colors and material durometers. I decided to design my own take on the case from Jon Clever to be prototyped on our Stratasys Connex 3.

Pokemon Go Photo 1

Pokemon Go Photo 2

The case was made with black and clear material. The black material can be combined to produce a custom stiffness, so we made that part soft and rubber like and kept the clear portion rigid. The clear has good optical quality, which could be increased with a layer of “clearcoat.”

Pokemon Go Photo 3

If you have a Stratasys Connex 3 or J750 and an iPhone 6, you can make your own with these STL files, one for the rubber part and one for the clear part.

Iphone 6 Pokemon_Prod_R1-CLEAR

Iphone 6 Pokemon_Prod_R19895

  Pokemon Go stl 1

Other variations and additional possibilities would be made possible with the new Stratasys J750, the first true full color printer that can also mix clear and solid as well as hard and soft materials.  The J750 was just released and highlighted on our recent road show. Visit our blog article on the Scottsdale show to learn more about this incredible printer.

Additional information about PADT and our wide range of 3D Printing offerings here.

On the Biocompatibility of PolyJet MED610

Is PolyJet MED610 truly biocompatible? And what does that mean anyway?

IMG_0144
Figure 1. Our PolyJet Eden 260V dedicated to running MED610

A couple of months ago, our product development team contacted me to see if I could 3D print them a small bio-compatible masking device that was needed for temporary attachment to an invasive device prior to insertion for surgery. That led me to investigate all the different bio-compatible materials we did have access to at PADT on our FDM (Fused Deposition Modeling) and PolyJet machines. Given the tiny size and high detail required in the part, I decided to opt for PolyJet, which does offer the MED610 material that is claimed to be biocompatible. As it so happens, we have an Objet Eden 260V PolyJet machine that has been dedicated to running MED610 exclusively since it’s installation a year ago.

We printed the mask, followed all the post-processing instructions per supplier recommendations (more on that later) and delivered the parts for further testing. And that is when I asked myself the questions at the top of this post.

I set off on a quest to see what I could find. My first stop was the RAPID conference in (May 2016), where the supplier (Stratasys Inc.) had a well-staffed booth – but no one there knew much about MED610 apart from the fact that some orthodontists were using it. I did pick up one interesting insight: one of the engineers there hypothesized that MED610 was not very popular because it was cost-prohibitive since its proper use required machine dedication. I then went to the Stratasys Direct Manufacturing (a service bureau owned by Stratasys) booth, but it turned out they don’t even offer MED610 as a material option for service jobs – presumably because of the low demand for this material, consistent with our own observations.

So I took a step back and began searching for all I could find in the public domain on MED610 – and while it wasn’t much, here is the summary of my findings that I hope help anyone interested in this. I categorize it in three sources of information: claims made by the supplier, published work on in vitro studies and finally, some in vivo animal trials. But first, we must ask…

What does it mean for a Material to be Biocompatible?

A definition by Williams (The Williams Dictionary of Biomaterials, 1999) is in order: “Biocompatibility is the ability of a material to perform with an appropriate host response in a specific application.” So if PolyJet MED610 is to be called biocompatible, we must ask – what application do we have in mind? Fortunately, the supplier has a recommendation.

IMG_0152
Figure 2. PolyJet MED610 printed “Hydrogel Hand Bone Scaffolds” [Design Attribution: dotmatrix, Published on December 11, 2015, www.thingiverse.com/thing:1193425]

Supplier Claims

MED610 was launched by Objet in 2011 (Objet was acquired by Stratasys in 2012) as a biocompatible material, ideal for “applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours“. Stratasys claims that parts printed according to Objet MED610 Use and Maintenance Terms were evaluated for biocompatibility in accordance with standard “DIN EN ISO 10993-1: 2009, Biological Evaluation of Medical Devices-Part 1: Evaluation and testing within a risk management process. This addresses cytotoxicity, genotoxicity, delayed hypersensitivity, and USP plastic Class VI, which includes the test for irritation, acute systemic toxicity and implantation”. Unfortunately, the actual data from the biocompatibility study conducted by Objet have not been made publicly available.

It is important to remember that Stratasys publishes a “Use and Maintenance Terms” document that details the steps needed not just to clean the part after printing, but also on the proper setup of the machine for ensuring best chances of meeting biocompatibility requirements. These are published online at this link and include a 3 hour soak in a 1-percent NaOH solution, a 30 min soak in IPA and multiple water jet rinses, among other steps. In other words, the claimed biocompatibility of MED610 is only valid if these instructions are followed.  These steps are primarily driven by the need to completely remove supports and any support-residue, but it is not clear if this is needed if a part can be printed without supports. Given such strong process dependencies, it is only to be expected that Stratasys provide a disclaimer at the end of the document clarifying that the users of their machines are responsible for independently validating biocompatibility of any device they make with MED610.

The next question is: have there been any relevant published, independent studies that have used MED610? In my search, I could only find two instances, which I discuss below.

Primary Human Cells Response (In Vitro)

In a recent (January 2016) study published in the Journal of Medical and Biological Engineering, Schmelzer et al. studied the response of primary human cells to four 3D printed materials in vitro: ABS, PC, PLA and MED610 – the only such study I could find. All samples instead went through a 100% ethanol brief rinse and were washed 5 times with de-mineralized water – this seems like a less stringent process than what the supplier recommends (3 hour 1-percent NaOH solution soak, 30 minutes IPA soak and 10 times waterjet blasting) but was designed to be identical across all the materials tested.

There were some very interesting findings:

  • Different cells had different responses:
    • MED610 had the most negative impact on cell viability for keratinocytes (epidermal cells that produce keratin) – and the only material that showed statistically significant difference from the control.
    • For bone marrow mesenchymal (stem) cells, a different effect was observed: direct culture on ABS and PC showed significant growth (7X compared to control) but MED610 and PLA showed no significant effect
  • Surface Roughness influences cell attachment and proliferation:
    • In agreement with other work, the authors showed that while rougher surfaces promote initial cell attachment, subsequent cell proliferation and overall cell numbers are higher on smoother surfaces. The MED610 samples had rougher surfaces than the FDM samples (possibly due to the use of the “matte” finish option) and could be one of the contributors to the observed negative effects on cell viability, along with the leached contents from the specimen.

Glaucoma Drainage Device (In Vivo, Rabbit studies)

A group of Australian researchers published a 2015 paper where they designed and used PolyJet MED610 to manufacture a Glaucoma Drainage Device (GDD). They selected PolyJet because of its ability to resolve very fine details that they needed for the device. Importantly, the purpose of this study was to assess the effect of different design parameters on the effectiveness of the device (relieving intraocular pressure). The device was implanted into rabbit eyeballs where it remained for up to 4 weeks.

The devices were printed on a Connex 350 PolyJet machine, after which the supports were removed from the devices with a water jet and “were repeatedly washed and inspected for consistency and integrity.” Tubes were attached with Silicone adhesive and the entire assembly was then “washed and sterilized with a hospital-grade hydrogen peroxide system before use”. The researchers did not examine the cellular and extracellular reactions in great detail, but did conclude that the reactions were similar between the MED610 device and the more standard polypropylene injection-molded device.

A short video recorded by some of the researchers as part of a Bioprinting course also provides some details into the 3D printing aspects of the work done.

Concluding Thoughts

In conclusion, the question I posed at the start of this post (Is PolyJet MED610 truly biocompatible?) is too simplistic. A process and a material together are not sufficient – there are procedures that need to be defined and controlled and further and more importantly, biocompatibility itself has to be viewed in the context of the application and the specific toxicity and interaction demands of that application. And that brings us to our key takeaways:

  • MED610 is only recommended at best for applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours and there is no data to dispute the suppliers claim that it is biocompatible in this context once all recommended procedures are implemented
  • The work done by Australian researchers in using PolyJet MED610 for devoloping their Glaucoma Drainage Device in animal trials is perhaps the best example of how  this material and the technology can be pushed further for evaluating designs and hypothesis in vivo when really fine features are needed. Stratasys’s FDM PC-ISO or ABS M30i materials, or other FDM extrusion capable materials like PLA, PCL and PLGA may be better options when the resolution allows – but this is a topic for a follow-on blog post.
  • More in vitro work needs to be done to extend the work done by Schmelzer et al., which suggests that MED610 potentially has leachables that do impact cell viability negatively. Specifically, effects of surface finish (“matte” vs “gloss”) and sterilization on cell viability is a worthwhile follow-on step. In the interim, MED610 is expected to perform well for mucosal membrane contact under 24 hours (and why this is a great technology for dental guides and other temporary in-mouth placement).

If you have any thoughts on this matter or would like to collaborate with us and take advantage of our access to a PolyJet printer that is dedicated to MED610 or other bio-compatible FDM materials, as well as our extensive post-processing and design & analysis facilities, please connect with me on LinkedIn or send us a note at info@padtinc.com and cite this blog post.

Thanks for reading!

References

  1. Stratasys Bio-compatible Materials Page: http://www.stratasys.com/materials/polyjet/bio-compatible
  2. PolyJet MED610 Data Sheets: http://www.stratasys.com/materials/material-safety-data-sheets/polyjet/dental-and-bio-compatible-materials
  3. Schmelzer, E., Over, P., Gridelli, B., & Gerlach, J. (2016). Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. Journal of Medical and Biological Engineering, 36, 153-167.
  4. Ross C, Pandav S, Li Y, et al. Determination of Bleb Capsule Porosity With an Experimental Glaucoma Drainage Device and Measurement System. JAMA Ophthalmol.2015;133(5):549-554. doi:10.1001/jamaophthalmol.2015.30.
  5. Glaucoma case study in online course on Bioprinting, University of Woolongong, Future Learn, https://www.futurelearn.com/courses/bioprinting/3/steps/87168

Full Color 3D Printer Road Show: J750 Wows in Scottsdale, Including Local TV Coverage

Stratasys-J750-Road-Show-partsOur loop around the Southwest with the new Stratasys J750 Full Color 3D Printer finished strong with a well attended gathering at ASU’s Skysong in Scottsdale.  The event was so popular, Channel 10 did a story on it. Over 130 people signed up to learn more about this fantastic device, get caught up on latest industry trends, and talk with other users of Additive Manufacturing.

Stratasys-J750-Road-Show-lectureThis event had a great mix of users from multiple industries as well as students and people wanting to just learn more about the technology.

The presentations were a big hit from every seminar, and Dhruv’s was especially popular in Arizona.  You can download the presentations here:

Eric Miller’s Presentation on Design for 3D Printing:
PADT-Design-for-3DPrinting-2016_07_29-1

Dhruv Bhate’s Overview of Additive Manufacturing:
PADT-Introduction-to-Additive-Manufacturing-2016_07_29-1

James Barker and Mario Vargas’s Introduction of the Stratasys J750:
PADT-Introduction-Stratasys-J750-2016_07_29-1

Stratasys-J750-Road-Show-group

During the breaks and after the presentations, we had a chance to interact one-on-one with customers, show off parts, and answer questions.  If you have any questions, please feel free to contact us at 480.813.4884 or info@padtinc.com.

Lastly, we were visited by local TV channel 10, KSAZ who did a short but really informative segment on the show and the Stratasys J750:

Full Color 3D Printer Road Show: Salt Lake City Event Focuses on Real World Applications

slc-i4The second stop on our trip around the Southwest for Stratasys’ new J750 Full Color 3D Printer was in fantastic downtown Salt Lake City. This device is reinventing 3D printing, and we are showing it off in person so people can see it up close along with holding incredible parts it makes in their hands.

Next stop if Phoenix – sign up here!

The 3D Printing community in Utah is very mature and the attendees were mostly very experienced users of many different additive manufacturing technologies.  So we focused on real world applications for the J750 as well as other Stratasys systems.

slc-i1
slc-i2We were fortunate enought to have a customer, Ultradent, present the fantastic ways that they use their FDM and Polyjet printers to make prototypes, tooling, and production parts. slc-i3

As is usual in this type of an event, the discussion between and after presentations are the best part.  People from Aerospace, sporting goods, medical devices, and consumer products swapped stories, suggestions, and tips.

It was also a family affair. with Jame Barker’s latest family addition was in attendence to help spread the word on the value of 3D Printing with Stratasys solutions:slc-baby-1Beyond the little guy, the other hit of the afternoon was the J750.  As seasoned additive manufacturing profesionals they see the incredible leap forward this machine represents – truly reinventing 3D Printing and opening up a huge range of oportunities.

Full Color 3D Printer Road Show: First Stop a Success Including Radio Broadcast

ICOSA_07169Denver was the first stop on a trip around the Southwest for Stratasys’ new J750 Full Color 3D Printer.  We are showing this machine that is reinventing 3D printing off in person so people can see the device up close and hold the incredible parts it makes in their hands.

You can still sign up for the Salt Lake City or Phoenix events.

ICOSA_70965The Denver event was hosted by St. Patrick’s Brewery in Littleton, right down the street from PADT’s Colorado Office. Several customers and PADT employees gave talks on how to better use 3D Printing, including a presentation from Mario Vargas on the new Stratasys J750.

On top of all of that, local radio station KDMT, Denver’s Money Talk 1690, did a live broadcast from the event.  You can listen in here. Again, PADT employees and customers talked about 3D Printing as well as the new Stratasys J750.

ICOSA_30368We also made the local paper, check that out here.