Using Command Snippets in Solution (And a cool new ACT Extension to make life easier)

So you have results for a job that took several hours to run, or several days, and now you realize that you need to use a post-processing command snippet. In the past, prior to version 14.5, this would be a huge problem, because just adding the command snippet in the Solution branch would trigger a resolve. So, in those cases, we would usually just jump over to MAPDL to do the post-processing.  In version 14.5, however, ANSYS allowed you to add the snippet to the Solution branch without triggering a resolve.

When you hit “Evaluate All Results”, Mechanical will copy the files to a scratch directory and start a separate MAPDL session. This leads to a secondary problem. Often you need to select nodes or elements to use during your snippet. This is usually done with a Named Selection, or a material ID that you saved to a parameter in a Geometry command snippet.  The problem is that the Named Selections, or components in MAPDL, are not saved in the RST file, neither are parameters. They are stored in the DB file. If you thought ahead, then in the Analysis Settings, you set the ‘Save DB file’ option to ‘Yes’ before you solved. In your post-processing command snippet you could then use the RESUME command to bring the database back to the state that it was just before the solve – having all your Named Selections and parameters. But since the default is to not save the DB file, odds are that you don’t have it.  It’s okay, though. There are still some options.

The first thing I recommend is that you save the solved project, and then do a ‘Save As’ to make a copy from which to work, just in case something goes wrong.

Method 1:

When you hit the Solve button in Mechanical, it writes out a ‘ds.dat’ file that then gets run in a batch MAPDL run.

If you have all of your needed Named Selections setup prior to the Solve, then you can open an MAPDL session and use the File>Read Input From… command to read in the ds.dat file.  In interactive mode, the file stops just before the Solve command, so you can then save the database file at that point.  You then need to right-click on the Solution branch in Mechanical and hit “Open Solution Directory”, in to which you need to copy the new “file.db” file.  Then you can resume the file.db in your post-processing command snippet. 

If you need to add a new Named  Selection, you can add a new one, even in 14.5, without triggering a resolve, but then you will have to write out a new input file. To do this, highlight the Solution branch in the tree, go to Tools>Write Input File…, and then follow the procedure above.  

Method 2:

If you are using version 17.1 or later, you have another option. You can Right-click on a Name Selection and choose “Create a Nodal Named Selection”. Then right-click that new nodal named selection and hit “Export Selections to CDB File”.  You can select several Nodal Named Selections to export, and the export will all go to one file. Include that text in your snippet.

Method 3:

In R19.2, the Named Selections are now stored in the RST file. If you don’t need to add a new Named Selection, then can you access the Named Selections that were created prior to the solution run.  After a SET command in your snippet, you can just use the name in the NSEL command, as I did in the picture above, with no need to include the CMBLOCK from the CDB file.  If you need a new Named Selection, however, then you have to use Methods 1 or 2 above.

Pitfalls:

Now that all sounds somewhat difficult, and it actually gets worse. With Method 1, you have to know at least enough MAPDL to open it and read in the input file, and then save the database file.

With Method 2 and 3, the parameters are still not saved in the RST file. So if you need parameters that were created in earlier command snippets, then you have to go back to Method 1.

But there’s hope!!

Method 4:  Oh, Joy!!!

There is one other thing that you can do, and this is my favorite method. (Probably because I wrote it. J)  There is now a new free ACT extension in the ANSYS App store. It is called SAVE_DB, and was written because yours truly got tired of dealing with the other three methods above.  SAVE_DB allows you to save the MAPDL database file without having to solve the Mechanical model, or cause a resolve. SAVE_DB will automatically change the Analysis Settings > Analysis Data Management > Save MAPDL DB value to “Yes” so that future resolves are also saved. MAPDL will be run in the background on the same version as the Workbench project, and the “file.db” will be saved to the Solver Files Directory.  Now any new Named Selections that you add will be ready at the push of a button. This one:

This is the first of many helpful tools planned for a PADT_Toolkit. I will post another plug, I mean ‘blog’, when I get more tools added and the PADT_Toolkit uploaded to the APP Store.  Until then enjoy SAVE_DB!

All Things ANSYS 032 – What’s New in ANSYS Mechanical: Updates Made in 2019 R1

 

Published on: March 11th, 2019
With: Eric Miller & Ted Harris
Description:  

PADT’s Simulation Support Manager, Ted Harris for a discussion on what updates have been made available in the 2019 R1 version on ANSYS Mechanical. Listen as they discuss the various capabilities and applications for this new release, along with what makes these updates so significant.

Want to learn more about what to expect in ANSYS Mechanical 2019 R1? Check out PADT’s webinar covering everything you need to know about the tool’s latest update.

Watch here: https://bit.ly/2SSntmd

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Mechanical Updates in ANSYS 2019 R1 – Webinar

From designers and occasional users looking for quick, easy, and accurate results, to experts looking to model complex materials, large assemblies, and nonlinear behavior, ANSYS Mechanical enables engineers of all levels to get answers fast and with confidence. 

With applications for everything form strength analysis to topology optimization, it’s no wonder this comprehensive suite of tools continues to serve as the flagship mechanical engineering software solution.

Impressive performance just got even faster with ANSYS Mechanical’s ability to run models with large contact areas up to 2X faster.

Join PADT’s Simulation Support Manager, Ted Harris for a look at this update along with what other new capabilities are available for ANSYS Mechanical, in the latest version; 2019 R1.

This presentation will feature exploration into updates regarding:

  • Linear Dynamics
  • Rigid Body Dynamics
  • Explicit Dynamics
  • Topology Optimization
  • Composites
  • And Much More

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 031 – Experience the Power of Simulation on the Cloud

 

Published on: February 25th, 2019
With: Eric Miller, Sina Ghods, & Judd Kaiser
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Sina Ghods from the Simulation Support Team and Judd Kaiser of ANSYS Inc. for a discussion on the latest offering from ANSYS: ANSYS Cloud; a tool that allows you to take advantage of the speed and computing power of ANSYS simulation products, all without the need for expensive hardware. Listen as they discuss the various capabilities and applications for this new tool and share their excitement about what impact this will have on the world of engineering.

Want to learn more about what to expect in ANSYS Cloud? Check out PADT’s webinar covering everything you need to know about the tool’s latest update.

Watch here: https://bit.ly/2U7blzj

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Introducing ANSYS Cloud Compute – Webinar

Engineering simulation has long been constrained by fixed computing resources available on a desktop or cluster. Today, however, cloud computing can deliver the on-demand, high performance computing (HPC) capacity required for faster high-fidelity results offering greater performance insight.

ANSYS Cloud delivers the speed, power and compute capacity of cloud computing directly to your desktop — when and where you need it. You can run larger, more complex and more accurate simulations to gain more insight into your product — or you can evaluate more design variations to find the optimal design without long hardware/software procurement and deployment delays.

Join PADT’s Application & Simulation Support Engineer Sina Ghods for a look at how ANSYS is working to drive adoption by providing users a ready to use cloud service that offers: 

  • Reduced Turnaround Time
  • More Accurate Results
  • Access to More Complex/Larger Models
  • Secure Workflows
  • And Much More
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 030 – Updates Available in ANSYS Fluent 2019 R1

 

Published on: February 13th, 2019
With: Eric Miller, Tom Chadwick, & Sina Ghods
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Sina Ghods, and Tom Chadwick from the Simulation Support Team for a discussion on their favorite updates available in the latest release of ANSYS Fluent so far, followed by an update on news and upcoming events pertaining to PADT and ANSYS Simulation.

Want to learn more about what to expect in ANSYS Fluent 2019 R1? Check out PADT’s webinar covering everything you need to know about the tool’s latest update.

Watch here: https://bit.ly/2SJBFC4

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Gone Skiing: Aerodynamics – Does It Matter Which Way Your Skis Are Pointing On Your Roof Rack?

I was on the gondola up at Keystone for night-skiing a week ago, after a long day at Beaver Creek, because the last thing I am going to do at 3:00 pm is try to make it back to Denver, as everyone knows it’s hardly more than a parking lot at that point. As it gets later, there’s nothing like a solo gondola ride, however, a solo ride would stop this story right about now.

On the gondola, I overheard a conversation where one gentleman was discussing how he was unable to open the hatch of his vehicle when his skis are in his roof rack. That’s fair, I know older WRX wagons with the spoiler would not be able to open with skis on the roof no matter what, so I figured that was the case. It turns out, that was NOT the case. The reason his hatch would not open was that he orients the skis with the tails forward because it is ‘more aerodynamic’ that way… I was skeptical, but held my tongue, knowing that I had the tools at my disposal to investigate!

I decided to make a model that would allow me to simulate various conditions to get to the bottom of this. My initial hypothesis is that the addition of the ski rack and crossbars is what has the largest effect on aerodynamics, and orientation of the skis probably has a negligible effect after that. As a side note, I am solely concerned with aerodynamics in this case, and am not worrying about the amount of the ski’s base material that is exposed for a given orientation. I am of the mindset that tree trunks and hidden rocks on the mountain are more of a danger to your bases than small rocks on the highway anyway. If you are waiting to comment, “Just get a roof box!”, I understand as I own both a box and a rack at this point, and they both have their advantages, and I will not be exploring the aerodynamics of a box…

…yet…

I was able to start by finding some faceted geometry of a Subaru Forester online (I’m from Colorado, can you tell?) and was able to import that into ANSYS Spaceclaim. Once in Spaceclaim, I was able to edit the faceted geometry to get nice exterior panel surfaces, which I then combined to get a single clean faceted exterior for the car.


Faceted Forester Geometry (Equipped with factory side rails)

After that, I used Spaceclaim to generate the remainder of the rack and skis, including crossbars, a ski rack, and a pair of skis (Complete with the most detailed bindings you have ever seen!). I made a combined part of the crossbars, rack, and skis for each one of my orientations, as this allows me to report the forces on each combined part during the simulation.


Added CAD geometry for the crossbars, ski rack, and a pair of skis

For the simulation, I used ANSYS Discovery Live, the newest tool from ANSYS that allows for instant and interactive design exploration. This tool lets me actively add my CAD geometry and shows results in realtime. I was able to start with just the car and then add and swap my ski/rack geometry with simple button clicks. With traditional simulation tools, I would have needed to create a mesh for each one of these cases, analyze them one at a time, and the post-process and compare results after the fact. After launching Discover Live, it’s as easy as selecting the type on analysis I want to run.

The various types of solutions that can be done in ANSYS Discovery Live. For the purpose of this blog, I am using ‘Wind Tunnel’

Once I have selected ‘Wind Tunnel’ for my solution, I can select my geometry, and then am prompted for the direction of flow, as well as selecting the ‘floor’ of my domain. Once that is done, results show up on the screen instantly. I only needed to modify the flow velocity to ~65 mph. I am most interested in the force on the faces of the combined crossbars, rack, and skis in each orientation, so I created Calculations for each one, which is done by simply selecting the part and using the popup toolbar to create the graph.

Popup toolbar allows for the quick creation of solution calculations

I was already off and running. I ran each one of the cases until the force plot had become steady.

Car Only
Skis Tips Forward Orientation

Skis Tails Forward Orientation

Seeing that the force results for the Tips Forward vs. Tails Forward cases were very similar, I decided I should also run a ‘Bases Up’ Orientation, even though I STRONGLY advise against this, as UV wrecks the base material of your skis/snowboard.

Ski Bases Up and Tips Forward Orientation

In addition to the contour plot shown in the images above, you can also use emitters to show streamlines and particle flow, which also give some pretty neat visualizations.

Streamlines shown on the Tips Forward orientation

Particle Emitter shown on the Tips Forward orientation

The graph plots show values for the Total Y Force for Tips Foward, Tails Forward, and Bases Up orientations to be 37.7 N, 39.1 N, and 37.1 N, respectively. Using Discovery Live, I was able to quickly run all 3 of these simulations, showing that there is not a major difference in the forces on the ski rack between the three orientations. So, put the skis on the roof in the direction that makes life easiest for you, and keep those bad boys paired to protect your bases from the sun, because splitting them isn’t going to help with aerodynamics anyway!

Next steps would be taking a specific case and running in 2D, then 3D, in ANSYS Fluent.

Video: Tips and Tricks for ANSYS Mechanical Users

Over time Ziad Melham, one of PADT’s support engineers, has developed a variety of tips and tricks for ANSYS Mechanical that he shares with users when providing them with support. In this video, Ziad shares that same information with all users.

Users of ANSYS mechanical, both new and experienced, will find them helpful in making their simulation pre- and post-processing more efficient. Please enjoy and do not hesitate to share with your co-workers.

Fluent Updates in ANSYS 2019 R1 – Webinar

Computational Fluid Dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. Serious CFD, the kind that provides insights to help you optimize your designs, could be out of reach unless you choose your software carefully.

Experienced engineers need to go further and faster with well-validated CFD results across a wide range of applications, and with ANSYS Fluent users are to do just that; delivering reliable and accurate results.

Join Padt’s CFD Team Lead Engineer, Clinton Smith for a look at what new capabilities are available for the latest version of Fluent, in ANSYS 2019 R1.

This presentation will be focused on eight main sections, including:

  • User Interface
  • Preprocessing
  • Workflow Enhancements
  • Solver Enhancements
  • Transient Enhancements
  • Applications
  • Physics
  • Optimization

Learn how Fluent is the most effective tool for simulating fluid flow, various types of erosion, and much more.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing ANSYS 2019 R1

PADT is excited to announce the release of ANSYS 2019 R1, the first group of updates for the suite of ANSYS simulation software this year. The release features updates for a wide variety of applications, including simulation for fluids, structures, electronics, 3D design, and much more.

We will be hosting a series of live webinars over the course of 2019 that will allow you to learn about what’s new in this release, from PADT’s team of expert support engineers.

Take a look at the following upcoming product update webinars for 2019 R1 and register by clicking the links below.

There is more to come, so stay tuned


Fluent Updates in ANSYS 2019 R1
Wednesday, February 13th – 11:00 am – 12:00 pm MST AZ

Computational Fluid Dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. Serious CFD, the kind that provides insights to help you optimize your designs, could be out of reach unless you choose your software carefully. Experienced engineers need to go further and faster with well-validated CFD results across a wide range of applications, and with ANSYS Fluent users are able to do just that; delivering reliable and accurate results.

Join Padt’s CFD Team Lead Engineer, Clinton Smith for a look at what new capabilities are available for the latest version of Fluent, in ANSYS 2019 R1.

Register Here


Mechanical Updates in ANSYS 2019 R1
Wednesday, March 13th – 11:00 am – 12:00 pm MST AZ

From designers and occasional users looking for quick, easy, and accurate results, to experts looking to model complex materials, large assemblies, and nonlinear behavior, ANSYS Mechanical enables engineers of all levels to get answers fast and with confidence. With applications for everything form strength analysis to topology optimization, it’s no wonder this comprehensive suite of tools continues to serve as the flagship mechanical engineering software solution.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what new capabilities are available for ANSYS Mechanical, in the latest version; 2019 R1.

Register Here


High Frequency Electromagnetics Updates in ANSYS 2019 R1
Wednesday, April 10th – 11:00 am – 12:00 pm MST AZ

In today’s world of high performance electronics and advanced electrification systems, the effects of electromagnetic fields on circuits and systems cannot be ignored. ANSYS software can uniquely simulate electromagnetic performance across component, circuit and system design, evaluating temperature, vibration and other critical mechanical effects.

Join PADT’s Electrical Engineer, Michael Griesi for a look at what new capabilities are available with regards to High Frequency Electromagnetics, in the latest version of ANSYS; 2019 R1

Register Here


Discovery Updates in ANSYS 2019 R1
Wednesday, May 8th – 11:00 am – 12:00 pm MST AZ

The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1.

Register Here


If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!


All Things ANSYS 029 – Thoughts on The 2019 ANSYS Sales Kickoff & Exciting Applications for IcePak

 

Published on: January 23rd, 2019
With: Eric Miller
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by some very special guests, to discuss how their company makes use of ANSYS IcePak, followed by PADT’s thoughts on the information delivered at this year’s ANSYS Sales Kickoff.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Introducing the 2019 Tucson ANSYS User Conference

PADT is excited to announce the agenda for our 2019 Tucson ANSYS User Conference. This single day event brings together ANSYS users, partners, and industry experts for networking, learning, and sharing of innovative ideas.

Join us after work at Brother John’s BBQ from 5:00 pm – 8:00 pm to explore the role ANSYS simulation plays right here in Tucson Arizona.

This free event will feature PADT’s Simulation Support Manager discussing ANSYS offerings in the realm of additive manufacturing, as well as talks from the founders of Tucson based companies, such as:

Food and drink will be provided.

Check out the full agenda below for more information on the presenters & their talks:

Don’t miss this unique opportunity to connect with other ANSYS users who call the city of Tucson Arizona their home. Secure your spot today.

We look forward to seeing you there!

All Things ANSYS 028 – A Year in Review: Predictions for ANSYS in 2019

 

Published on: January 7th, 2019
With: Eric Miller, Joe Woodward, & Ted Harris
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and Specialist Mechanical Engineer Joe Woodward, for a discussion on their predictions for ANSYS in 2019, and a look back at our predictions from 2018.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 027 – 2018 Wrap-up – Our Favorite ANSYS Features From This Year

 

Published on: December 17th, 2018
With: Eric Miller, Tom Chadwick, Joe Woodward, & Ahmed Fayad
Description:  

 

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Team, including Tom Chadwick, Joe Woodward, and Ahmed Fayad for a round-table discussion of their favorite ANSYS features released in 2018, along with news regarding the PADT and ANSYS worlds.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

How to Use Lattice Optimization in ANSYS Mechanical and ANSYS SpaceClaim 19.2

One of the great new features in ANSYS Mechanical 19.2 is the ability to perform a lattice optimization.  Accomplished as an option within Topology Optimization, lattice optimization allows us to generate a lattice structure within our region of interest.  It includes varying thickness of the lattice members as part of the optimization.

Lattice structures can be very beneficial because weight can be substantially reduced compared to solid parts made using traditional manufacturing methods.  Further, recent advances in additive manufacturing enable the creation of lattice structures in ways that weren’t possible with traditional manufacturing.

Here I’ll explain how to perform a lattice optimization in ANSYS 19.2 step by step.

The procedure starts the same as a normal topology optimization in ANSYS Mechanical, with an initial static structural analysis on our original part or assembly.  If you’re not familiar with the process, this earlier PADT Focus blog should be helpful:  http://www.padtinc.com/blog/the-focus/topological-optimization-in-ansys-18-1-motorcycle-component-example

For the lattice optimization, I’m starting with a part I created that acts as a corner brace:

At this early point in the simulation, the Project Schematic looks like this:

I used the Multizone mesh method to get a hex mesh on the part:

Simple loads and constraints are recommended especially if you’ll be doing a downstream validation study.  That is because the downstream simulation on the resulting lattice geometry will most likely need to operate on the FE entities rather than geometric entities for load and constraint application. The boundary conditions in this simple model consisted of a fixed support on one side of the brace and a force load on the other side:

After solving, I reviewed the displacement as well as the stress results:

Satisfied with the results, the next step is to add a Topology Optimization block in the Project Schematic. The easiest way to do this is to right click on the Solution cell, then select Transfer Data to New > Topology Optimization:

You may need to re-solve the static structural simulation at this point.  You’ll know if you have yellow thunderbolts in the Project Schematic instead of green checkmarks for the Static Structural analysis. 

At this point, the Project Schematic now looks like this:

The Mechanical window now has the Topology Optimization branch added:

The change to make to enable a lattice optimization is accomplished in the details view of the Optimization Region branch:

We then need to specify some settings for the lattice.  The first of these is the Lattice Type.  The various types are documented in the ANSYS 19.2 Help.  In my example I selected the Crossed option.

The other properties to define are:

  • Minimum Density (to avoid lattice structures that are toothin.  Allowed bounds are 0 and 1)
  • Maximum Density (elements are considered full/solid fordensities higher than this value, allowed bounds are 0 and 1)
  • Lattice Cell Size (used in downstream geometry steps andadditive manufacturing)

Values I used in my example are shown here:

Assuming no other options need to be set, we solve the lattice optimization and review the results.  The results are displayed as a contour plot with values between zero and one, with values corresponding to the density settings as specified above.

Note that at this stage we don’t actually visualize the lattice structure – just a contour plot of where the lattice can be in the structure.  Where density values are higher than the maximum density specified, the geometry will end up being solid.  The lattice structure can exist where the results are between the minimum and maximum density values specified, with a varying thickness of lattice members corresponding to higher and lower densities.

The next step is to bring the lattice density information into SpaceClaim and generate actual lattice geometry.  This is done by adding a free standing Geometry block in the Workbench Project Schematic.

The next step is to drag and drop the Results cell from the Topology Optimization block onto the Geometry cell of the new free standing Geometry block:

The Project Schematic will now look like this:

Notice the Results cell in the Topology Optimization branch now has a yellow lightning bolt.  The next step is to right click on that Results cell and Update.  The Project Schematic will now look like this:

Before we can open SpaceClaim, we next need to right click on the Geometry cell in the downstream Geometry block and Update that as well:

After both Updates, the Project Schematic will now look like this:

The next step is to double click or right click on the now-updated Geometry cell to open SpaceClaim.  Note that both the original geometry and a faceted version of the geometry will exist in SpaceClaim:

It may seem counter intuitive, but we actually suppress the faceted geometry and only work with the original, solid geometry for the faceted process.  The faceted geometry should be automatically suppressed, as shown by the null symbol, ø, in the SpaceClaim tree.  At this point it will be helpful to hide the faceted geometry by unchecking its box in the tree:

Next we’ll utilize some capability in the Facets menu in SpaceClaim to create the lattice geometry, using the lattice distribution calculated by the lattice optimization.  Click on the Facets tab, then click on the Shell button:

Set the Infill option to be Basic:

At this point there should be a check box for “Use Density Attributes” below the word Shape.  This check box doesn’t always appear.  If it’s not there, first try clicking on the actual geometry object in the tree:

In one instance I had to go to %appdata%\Ansys and rename the v192 folder to v192.old to reset Workbench preferences and launch Workbench again.  That may have been ‘pilot error’ on my part as I was learning the process.

The next step is to check the Use density attributes box.  The Shape dropdown should be set to Lattices.  Once the Use density attributes box is checked, we can then one of the predefined lattice shapes, which will be used for downstream simulation and 3D printing.  The shape picked needs to match the lattice shape previously picked in the topology optimization.

In my case I selected the Cube Lattice with Side Diagonal Supports, which corresponds to the Crossed selection I made in the upsteam lattice optimization.  Note that a planar preview of this is displayed inside the geometry:

The next step is to click the green checkmark to have SpaceClaim create the lattice geometry based on the lattice distribution calculated by the lattice optimization:

When SpaceClaim is done with the lattice geometry generation, you should be able to see a ghosted image showing the lattice structure in the part’s interior:

Note that if you change views, etc., in SpaceClaim, you may then see the exterior surfaces of the part, but rest assured the lattice structure remains in the interior.

Your next step may need to be a validation.  To do this, we create a standalone Static Structural analysis block on the Project Schematic:

Next we drag and drop the Geometry cell from the faceted geometry block we just created onto the Geometry cell of the newly created Static Structural block:

We can now open Mechanical for the new Static Structural analysis.  Note that the geometry that comes into Mechanical in this manner will have a single face for the exterior, and a single face for the exterior. To verify that the lattice structure is actually in the geometry, I recommend creating a section plane so we can view the interior of the geometry:

To mesh the lattice structure, I’ve found that inserting a Mesh Method and setting it to the Tetrahedrons/Patch Independent option has worked for getting a reasonable mesh.  Care must be taken with element sizes or a very large mesh will be created.  My example mesh has about 500,000 nodes.  This is a section view, showing the mesh of the interior lattice structure (relatively coarse for the example).

For boundary condition application, I used Direct FE loads.  I used a lasso pick after aligned the view properly to select the nodes needed for the displacement and then the force loads, and created Named Selections for each of those nodal selections for easy load application.

Here are a couple of results plots showing a section view with the lattice in the interior (deflection followed by max principal stress):

Here is a variant on the lattice specifications, in which the variance in the thickness of the lattice members (a result of the optimization) is more evident:

Clearly, a lot more could be done with the geometry in SpaceClaim before a validation step or 3D printing.  However, hopefully this step by step guide is helpful with the basic process for performing a lattice optimization in ANSYS Mechanical and SpaceClaim 19.2.