Machine & Fuel Efficiency – Industry Application

As it progresses, we here at PADT would like to share some examples of companies working within the five topics that this campaign focuses on (Advanced Electrification, Machine & Fuel Efficiency, Effective Lightweighting, Thermal Optimization, and Aerodynamic Design) in order to give you a better idea as to how they can be applied within the industry.

Machine & Fuel Efficiency – Infiniti unveils its Twin-Turbo VC-T Engine at the PMS 2016

Infiniti Motor Company gave a tech briefing on a new remarkable engine at the Paris Motor Show 2016. The VC-T Engine is the world’s first production-ready compression ratio machine. It will be available from

All you need to know about Infiniti's Twin Turbo V6 Engine

Want to learn more? Click Here for more information on how ANSYS simulation software can benefit companies working in the field of Machine & Fuel Efficiency.

Join PADT in exploring the impact of breakthrough energy innovation as well as how ANSYS simulation solutions can be used to help combat the challenges that this area presents. Fill out the registration form to receive additional information on each topic, along with updates regarding the release of various webinars as the campaign progresses.

Advanced Electrification – Industry Application

As it progresses, we here at PADT would like to share some examples of companies working within the five topics that this campaign focuses on (Advanced Electrification, Machine & Fuel Efficiency, Effective Lightweighting, Thermal Optimization, and Aerodynamic Design) in order to give you a better idea as to how they can be applied within the industry.

Advanced Electrification – Regenerative energy harvesting in 48V mild hybrids

48V mild hybrids are incremental improvements to conventional internal combustion engine vehicles so they can handle four times the current and store four times as much electricity.

Image result for Regenerative energy harvesting in 48V mild hybrids Read more at: http://www.energyharvestingjournal.com/articles/9959/regenerative-energy-harvesting-in-48v-mild-hybrids

Want to learn more? Click Here for more information on how ANSYS simulation software can benefit companies working in the field of Advanced Electrification.

Join PADT in exploring the impact of breakthrough energy innovation as well as how ANSYS simulation solutions can be used to help combat the challenges that this area presents. Fill out the registration form to receive additional information on each topic, along with updates regarding the release of various webinars as the campaign progresses.

ANSYS How To: Result Legend Customization and Reuse

ansys-mechanical-custom-legend-0A user was asking how to modify the result legend in ANSYS Mechanical R17 so Ted Harris put together this little How To in PowerPoint:

padt_mechanical_custom_legend_r17.pdf

It shows how to modify the legend to get just what you want, how to save the settings to a file, and then how to use those seettings again on a different model.  Very simple and Powerful.

ansys-mechanical-custom-legend-1

 

 

ansys-mechanical-custom-legend-2

Advanced Electrification – Industry Application

As it progresses, we here at PADT would like to share some examples of companies working within the five topics that this campaign focuses on (Advanced Electrification, Machine & Fuel Efficiency, Effective Lightweighting, Thermal Optimization, and Aerodynamic Design) in order to give you a better idea as to how they can be applied within the industry.

Advanced Electrification – Hybrid Cost Advantage

One of the world’s leading experts in the electrification of cars says that hybrid technology has already reached price parity with diesel, and that this trend is likely to continue as the cost of diesel cars goes up due to tougher regulations.

Satoshi Ogiso at his office in Kariya, Jpana (Photo; Bertel Schmitt)

Want to learn more? Click Here for more information on how ANSYS simulation software can benefit companies working in the field of Advanced Electrification.

Join PADT in exploring the impact of breakthrough energy innovation as well as how ANSYS simulation solutions can be used to help combat the challenges that this area presents. Fill out the registration form to receive additional information on each topic, along with updates regarding the release of various webinars as the campaign progresses.

 

ANSYS Breakthrough Energy Innovation Campaign – Advanced Electrification

Information regarding the first topic in the Breakthrough Energy Innovation Campaign has been released, covering advanced electrification and how ANSYS simulation software can be used to help solve a variety of issues related to this topic, as well as provide significant competitive advantages.

Additional content regarding advanced electrification can be viewed and downloaded here.

This is the first topic of a campaign that covers five main topics:

  1. Advanced Electrification
  2. Machine & Fuel Efficiency
  3. Effective Lightweighting
  4. Thermal Optimization
  5. Aerodynamic Design

Information on each topic will be released over the course of the next few months as the webinars take place.

Sign Up Now to receive updates regarding the campaign, including additional information on each subject, registration forms to each webinar and more.

We here at PADT can not wait to share this content with you, and we hope to hear from you soon.

Jet Engines to Golf Clubs – Phoenix Area ANSYS Users Share their Stories

ansys-padt-skysong-conference-1There is nothing better than seeing the powerful and interesting way that other engineers are using the same tools you use.  That is why ANSYS, Inc. and PADT teamed up on Thursday to hold an “ANSYS Arizona Innovation Conference”  at ASU SkySong where users could come to share and learn.

The day kicked off with Andy Bauer from ANSYS welcoming everyone and giving them an update on the company and some general overarching direction for the technology.  Then Samir Rida from Honeywell Aerospace gave a fantastic keynote sharing how simulation drive the design of their turbine engines.  As a former turbine engine guy, I found it fascinating and exciting to see how accurate and detailed their modeling is.

img_1629b

Next up was my talk on the Past, Present, and Future of simulation for product development.  The point of the presentation was to take a step back and really think about what simulation is, what we have padt-ansys-innovation-az-2016-pptbeen doing, and what it needs to look at in the future.  We all sort of agreed that we wanted voice activation and artificial intelligence built in now.  If you are interested, you can find my presentation here: padt-ansys-innovation-az-2016.pdf.

After a short break ANSYS’s Sara Louie launched into a discussion on some of the new Antenna Systems modeling capabilities, simulating multiple physics and large domains with ANSYS products.  The ability to model the entire interaction of an antenna including large environments was fascinating.

Lunchtime discussions focused on the presentations in the morning as well as people sharing what they were working on.

img_1632The afternoon started with a review by Hoang Vinh of ANSYS of the ANSYS AIM product. This was followed by customer presentations. Both Galtronics and ON Semiconductor shared how they drive the design of their RF systems with ANSYS HFSS and related tools.  Then Nammo Talley shared how they incorporated simulation into their design process and then showed an example of a projectile redesign from a shoulder launched rocket that was driven by simulation in ANSYS CFX.  They had the added advantage of being able to show something that blows up, always a crowd pleaser.

ping-ansysAnother break was followed by a great look at how Ping used CFD to improve the design of one of their drivers.  They used simulation to understand the drag on the head through an entire swing and then add aerodynamic features that improved the performance of the club significantly. Much of the work is actually featured in an ANSYS Advantage article.

We wrapped things up with an in depth technical look at Shock and Vibration Analysis using ANSYS Mechanical and Multiphysics PCB Analysis with the full ANSYS product suite.

The best part of the event was seeing how all the different physics in ANSYS products were being used and applied in different industries.  WE hope to have similar events int he future so make sure you sign up for our mailings, the “ANSYS – Software Information & Seminars” list will keep you in the loop.

img_1628

 

 

ANSYS Breakthrough Energy Innovation Campaign is live!

As the worldwide demand for energy continues to grow every year, energy systems simulation is becoming an indispensable tool for improving the way energy is produced and consumed. At the same time, concerns about climate change are leading to stricter emissions regulations and calls for sustainable design in all future energy systems. Clearly, breakthroughs in energy innovation are needed to meet these formidable challenges.

Join PADT in exploring the impact of breakthrough energy innovation as well as how ANSYS simulation solutions can be used to help combat the challenges that this area presents.

This campaign covers five main topics:

  1. Advanced Electrification
  2. Machine & Fuel Efficiency
  3. Effective Lightweighting
  4. Thermal Optimization
  5. Aerodynamic Design
Information on each topic will be released over the course of the next few months as the webinars take place.
The campaign will consist of a series of webinars explaining the applications of ANSYS simulations software with regards to each topic, along with additional downloadable content.

Sign Up Now to receive updates regarding the campaign, including additional information on each subject, registration forms to each webinar and more.

More information regarding the campaign in general can be found Here.

artwork-for-bei-campaign

Video Tips: Node and Element IDs in ANSYS Mechanical

This is a common question that we get, particularly those coming from APDL – how to get nodal and element IDs exposed in ANSYS Mechanical. Whether that’s for troubleshooting or information gathering, it was not available before. This video shows how an ANSYS developed extension accomplishes that pretty easily.

The extension can be found by downloading “FE Info XX” for the version XX of ANSYS you are using at  https://support.ansys.com/AnsysCustom…

Classification of Cellular Solids (and why it matters)

Updated (8/30/2016): Two corrections made following suggestions by Gilbert Peters: the first corrects the use of honeycomb structures in radiator grille applications as being for flow conditioning, the second corrects the use of the Maxwell stability criterion, replacing the space frame example with an octet truss.

~

This is my first detailed post in a series on cellular structures for additive manufacturing, following an introductory post I wrote where I classified the research landscape in this area into four elements: design, analysis, manufacturing and implementation.

Within the design element, the first step in implementing cellular structures in Additive Manufacturing (AM) is selecting the appropriate unit cell(s). The unit cell is selected based on the performance desired of it as well as the manufacturability of the cells. In this post, I wish to delve deeper into the different types of cellular structures and why the classification is important. This will set the stage for defining criteria for why certain unit cell designs are preferable over others, which I will attempt in future posts. This post will also explain in greater detail what a “lattice” structure, a term that is often erroneously used to describe all cellular solids, truly is.

1. Honeycomb

1.1 Definition
Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Figure 1. All cross-sections through the 3rd dimension are thus identical, making honeycombs somewhat easy to model. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs. Honeycombs have a strong anisotropy in the 3rd dimension – in fact, the modulus of regular hexagonal and triangular honeycombs is transversely isotropic – equal in all directions in the plane but very different out-of-plane.

Figure 1. Honeycomb structure showing two-dimensional, prismatic nature (Attr: modified from work done by George William Herbert, Wikipedia)
honeycomb_bmwi3
Figure 2. Honeycomb design in use as part of a BMW i3 crash structure (Attr: adapted from youkeys, Wikipedia)

1.2 Design Implications
The 2D nature of honeycomb structures means that their use is beneficial when the environmental conditions are predictable and the honeycomb design can be oriented in such a way to extract maximum benefit. One such example is the crash structure in Figure 2 as well as a range of sandwich panels. Several automotive radiator grilles are also of a honeycomb design to condition the flow of air. In both cases, the direction of the environmental stimulus is known – in the former, the impact load, in the latter, airflow.

2. Open-Cell Foam

openfoam
Figure 3. Open cell foam unit cell, following Gibson & Ashby (1997)

2.1 Definition
Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional open-cell foam design as shown in one representation of a unit cell in Figure 3. Typically, open-cell foams are bending-dominated, distinguishing them from stretch-dominated lattices, which are discussed in more detail in a following section on lattices.

2.2 Design Implications
Unlike the honeycomb, open cell foam designs are more useful when the environmental stimulus (stress, flow, heat) is not as predictable and unidirectional. The bending dominated mechanism of deformation make open-cell foams ideal for energy absorption – stretch dominated structures tend to be stiffer. As a result of this, applications that require energy absorption such as mattresses and crumple zones in complex structures. The interconnectivity of open-cell foams also makes them a candidate for applications requiring fluid flow through the structure.

Metal_Foam
Figure 4. SEM image of a metallic open-cell foam (Attr: SecretDisc, Wikipedia)
openfoam-deform
Figure 5. FEA simulation of open cell foam unit cell under compression, showing predominant mode of deformation is on account of bending

3. Closed-Cell Foam

closedfoam
Figure 6. Open cell foam unit cell representation [following Gibson and Ashby, 1997]
3.1 Definition
As the name suggests, closed cell foams are open-cell foams with enclosed cells, such as the representation shown in Figure 6. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures, though this is not necessary. Closed-cell foams arise from a lot of natural processes and are commonly found in nature. In man-made entities, they are commonly found in the food industry (bread, chocolate) and in engineering applications where the enclosed cell is filled with some fluid (like air in bubble wrap, foam for bicycle helmets and fragile packaging).

3.2 Design Implications
The primary benefit of closed cell foams is the ability to encapsulate a fluid of different properties for compressive resilience. From a structural standpoint, while the membrane is a load-bearing part of the structure under certain loads, the additional material and manufacturing burden can be hard to justify. Within the AM context, this is a key area of interest for those exploring 3D printing food products in particular but may also have value for biomimetic applications.

Closed_cell_metal_foam_with_large_cell_size
Figure 8. Closed cell Aluminum foam with very large cells [Shinko Wire Company, Attr: Curran2, Wikimedia Commons]

 4. Lattice

4.1 Definition
Lattices are in appearance very similar to open cell foams but differ in that lattice member deformation is stretch-dominated, as opposed to bending*. This is important since for the same material allocation, structures tend to be stiffer in tension and/or compression compared to bending – by contrast, bending dominated structures typically absorb more energy and are more compliant.

So the question is – when does an open cell foam become stretch dominated and therefore, a lattice? Fortunately, there is an app equation for that.

Maxwell’s Stability Criterion
Maxwell’s stability criterion involves the computation of a metric M for a lattice-like structure with b struts and j joints as follows:

In 2D structures: M = b – 2j + 3
In 3D structures:
M = b – 3j + 6

Per Maxwell’s criterion, for our purposes here where the joints are locked (and not pinned), if M < 0, we get a structure that is bending dominated. If M >= 0, the structure is stretch dominated. The former constitutes an open-cell foam, the latter a lattice.

There are several approaches to establishing the appropriateness of a lattice design for a structural applications (connectivity, static and kinematic determinism etc.) and how they are applied to periodic structures and space frames. It is easy for one (including for this author) to confuse these ideas and their applicability. For the purposes of AM, Maxwell’s Stability Criterion for 3D structures is a sufficient condition for static determinancy. Further, for a periodic structure to be truly space-filling (as we need for AM applications), there is no simple rigid polyhedron that fits the bill – we need a combination of polyhedra (such as an octahedron and tetrahedron in the octet truss shown in the video below) to generate true space filling, and rigid structures. The 2001 papers by Deshpande, Ashby and Fleck illustrate these ideas in greater detail and are referenced at the end of this post.

Video: The octet truss is a classic stretch-dominated structure, with b = 36 struts, j = 14 joints and M = 0 [Attr. Lawrence Livermore National Labs]

4.2 Design Implications
Lattices are the most common cellular solid studied in AM – this is primarily on account of their strong structural performance in applications where high stiffness-to-weight ratio is desired (such as aerospace), or where stiffness modulation is important (such as in medical implants). However, it is important to realize that there are other cellular representations that have a range of other benefits that lattice designs cannot provide.

Conclusion: Why this matters

It is a fair question to ask why this matters – is this all just semantics? I would like to argue that the above classification is vital since it represents the first stage of selecting a unit cell for a particular function. Generally speaking, the following guidelines apply:

  • Honeycomb structures for predictable, unidirectional loading or flow
  • Open cell foams where energy absorption and compliance is important
  • Closed cell foams for fluid-filled and hydrostatic applications
  • Lattice structures where stiffness and resistance to bending is critical

Finally, another reason it is important to retain the bigger picture on all cellular solids is it ensures that the discussion of what we can do with AM and cellular solids includes all the possibilities and is not limited to only stiffness driven lattice designs.

Note: This blog post is part of a series on “Additive Manufacturing of Cellular Solids” that I am writing over the coming year, diving deep into the fundamentals of this exciting and fast evolving topic. To ensure you get each post (~2 a month) or to give me feedback for improvement, please connect with me on LinkedIn.

References

[1] Ashby, “Materials Selection in Mechanical Design,” Fourth Edition, 2011
[2] Gibson & Ashby, “Cellular Solids: Structure & Properties,” Second Edition, 1997
[3] Gibson, Ashby & Harley, “Cellular Materials in Nature & Medicine,” First Edition, 2010
[4] Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley, “Metal Foams: A Design Guide,” First Edition, 2000
[5] Deshpande, Ashby, Fleck, “Foam Topology Bending versus Stretching Dominated Architectures,” Acta Materialia 49, 2001
[6] Deshpande, Fleck, Ashby, “Effective properties of the octet-truss lattice material,”  Journal of the Mechanics and Physics of Solids, 49, 2001

Notes

* We defer to reference [1] in distinguishing lattice structures as separate from foams – this is NOT the approach used in [2] and [3] where lattices are treated implicitly as a subset of open-cell foams. The distinction is useful from a structural perspective and as such is retained here.

New Second Edition in Paperback and Kindle: Introduction to the ANSYS Parametric Design Language (APDL)

APDL-Guide-Square-Advert-1After three years on the market and signs that sales were increasing year over year, we decided it was time to go through our popular training book “Introduction to the ANSYS Parametric

Introduction_to_APDL_V2-Kindle-Ipad-1
I’ll be honest, it was cool to see the book in print the first time, but seeing it on my iPad was just as cool.

Design Language (APDL)” and make some updates and reformat it so that it can be published as a Kindle e-book.   The new Second Edition includes two additonal chapters: APDL Math and Using APDL with ANSYS Mechanical.  The fact that we continue to sell more of these useful books is a sign that APDL is still a vibrant and well used language, and that others out there find power in its simplicity and depth.

This book started life as a class that PADT taught for many years. Then over time people asked if they could buy the notes. And then they asked for a real book. The bulk of the content came from Jeff Strain with input from most of our technical staff. Much of the editing and new content was done by Susanna Young and Eric Miller.

Here is the Description from Amazon.com:

The definitive guide to the ANSYS Parametric Design Language (APDL), the command language for the ANSYS Mechanical APDL product from ANSYS, Inc. PADT has converted their popular “Introduction to APDL” class into a guide so that users can teach themselves the APDL language at their own pace. Its 14 chapters include reference information, examples, tips and hints, and eight workshops. Topics covered include:

– Parameters
– User Interfacing
– Program Flow
– Retrieving Database Information
– Arrays, Tables, and Strings
– Importing Data
– Writing Output to Files
– Menu Customization
– APDL Math
– Using APDL in ANSYS Mechanical

At only $75.00 it is an investment that will pay for itself quickly. Even if you are an ANSYS Mechanical user, you can still benefit from knowing APDL, allowing you to add code snippets to your models. We have put some images below and you can also learn more here or go straight to Amazon.com to purchase the paperback or Kindle versions.

Introduction_to_APDL_V2-1_Cover

PADT-Intro-APDL-pg184-185 PADT-Intro-APDL-pg144-145 PADT-Intro-APDL-pg112-113 PADT-Intro-APDL-pg100-101 PADT-Intro-APDL-pg-020-021

 

Investigation Signal Integrity: How to find problems before they find you – Webinar

In the Age of IoT, electronics continue to get smaller, faster, more power efficient, and are integrated into everything around us. Increasingly, companies are incorporating simulation early in the product development process, when the cost of design changes are at their lowest, to meet the challenges presented by Signal Integrity. For this to be effective, simulation tools need to be easy-to-use, compatible with existing work flows, and accurate, all while delivering meaningful results quickly.

If you or your company are designing or using electronics that are:
Critical to revenue, performance, or safety
Getting smaller, faster, or more efficient
Communicating with Gbps data rates
Using several or new connectors
Using long cables or backplanes
Then you could be a victim of Signal Integrity failure!

Join us September 7th, 2016 at 1 pm Pacific Time for this free webinar to discover how ANSYS is delivering intuitive Signal Integrity analysis solutions that can easily import ECAD geometry to compute SYZ parameters, inter-trace coupling, or impedance variations. Learn how ANSYS can help identify Signal Integrity problems and optimize potential solutions faster and cheaper than prototyping multiple iterations.

This webinar will introduce:

  • What products ANSYS provides for Signal Integrity problems
  • How these products can integrate into existing design workflows
  • And how easy these products are to use, even for novice operators

Followed by a Q&A session!

Click Here to register for this event and be sure to add it to your calendar to receive reminders.

Can’t make it? We suggest you register regardless, as our webinars are recorded and sent out along with a PDF of the presentation to our contacts within 24 hours of the presentation finishing.

Video Tips: Changing Multiple Load Step Settings in ANSYS Mechanical

ANSYS Mechanical allows you to specify settings for load steps one at a time. Most users don’t know that you can change settings for any combination of load steps using the selection of the load step graph. PADT’s Joe Woodward shows you how in this short but informative video.

ANSYS AIM Webinar: Increase Simulation Realism with Multiphysics

Some product designs require a single physics solution, while others require multiple physics simulations. Electronics cooling, wind loading on a solar array and the thermal performance of a heat exchanger are just a few examples of applications that require multiphysics simulation. Setting up and running multiphysics simulations used to be a challenging task involving the transfer of data between multiple physics solvers. With AIM, multiphysics simulations are easy to perform. AIM provides a consistent workflow and intuitive simulation environment for fluids, structures and electromagnetics that lowers the barrier to entry for multiphysics simulations.

 

Join us for this webinar to discover how AIM makes it easier than ever to solve your multiphysics design challenges in a single, easy-to-use environment. Don’t settle for single physics approximation when multiphysics simulations yield more accurate results with AIM.

This webinar will be held on September 1st from 1:00 – 2:00 pm PT 
Click Here to register for this webinar
AIM Webinar Title Page3

ANSYS AIM Webinar: Democratize Simulation for Your Design Engineers

Innovative companies are using simulation early in the product development process to improve and optimize product designs. Companies deploying up-front simulation to their product design teams require simulation software that is easy-to-use, provides accurate simulation results and allows customization to enforce best practices. Such design engineering simulation software allows teams to develop and refine design ideas early in the design cycle when the cost of making design changes is still low.

Join us for this webinar to discover how AIM’s intuitive simulation workflow delivers high levels of automation and allows customization to automate engineering simulation best practice. Learn how AIM’s custom applications enable every engineer in your organization to benefit from simulation insights.
This webinar will be held on August 24th from 1:00 pm – 2:00 pm PT

 

Click Here to register for this webinar

AIM Webinar Title Page2

Introducing Signal Integrity: What is it and how does it impact you? – Webinar

Is your comapny designing or using electronics that are:
  • Critical to revenue, performance, or safety
  • Designed in-house or by 3rd parties
  • Using wireless technology (e.g. Wi-Fi, Bluetooth)
  • Connecting to the cloud or Internet of Things (IoT)
  • Collecting large sets of data
  • Getting smaller, faster, or more efficient
If so then you could potentially be a victim of signal integrity failure!
Join us August 17th, 2016 at 1 pm Pacific Time for a free webinar covering an introduction to Signal Integrity

This is a high-level introduction that will cover:
  • What Signal Integrity is
  • Some of the challenges related to it
  • How to identify those at risk of signal integrity related failure
  • What is being done in response
Followed by a Q&A session afterwards!

Click Here to register for this event and be sure to add it to your calendar to receive reminders.

 

Can’t make it? We suggest you register regardless, as our webinars are recorded and sent out along with a PDF of the presentation to our contacts within 24 hours of the presentation finishing.