ASU Polytechnique Deploys Robots in Project for 3D Printing Automation for Orbital ATK

Sometimes we run across some great exampls of industry and academia working together and like to share them as examples of win-win partnerships that can move technology forward and give studends a great oportunity.   A current Capstone Design Project by students at ASU Polytechnique is a great example.  It is also an early exmple of what can be done at the brand new Additive Manufacturing Center that was recently opened at the campus.

I’ll let ASU Mecanical Enginering Systems student Dean McBride tell you in his own words:

Orbital ATK in Chandler currently utilizes two Stratasys Dimension SST 1200es printers to prototype various parts with.  These printers print on parts trays, which must be removed and re-inserted into the printer to start new prints.  Wanting to increase process efficiency, Orbital had the desire of automating this 3D printing process during times when employees are not present to run the printers.  After the idea was born, Orbital presented this project to ASU Polytechnic as a potential senior capstone design project.  Shortly after, an ambitious team was assembled to take on the project.

 Numerous iterations of the engineering design process took place, and the team finally arrived at a final solution.  This solution is a Cartesian style robot, meaning the robot moves in linear motions, similar to the 1200es printer itself.  The mechanical frame and structure of the robot have been mostly assembled at this point.  Once assembly is achieved, the team will focus their efforts on the electrical system of the robot, as well as software coding of the micro-controller control system.  The team will be working to fine tune all aspects of the system until early May when the school semester ends.  The final goal of this project is to automate at least two complete print cycles without human interaction.

Here is a picture of the team with the robot they are building along side the Stratasys FDM printer they are automating.


PADT and ASU Collaborate on 3D Printed Lattice Research

The ASU Capstone team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest.
ASU student team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest

Over the past two academic semesters (2015/16), I had the opportunity to work closely with six senior-year undergraduate engineering students from the Arizona State University (ASU), as their industry adviser on an eProject (similar to a Capstone or Senior Design project). The area we wanted to explore with the students was in 3D printed lattice structures, and more specifically, address the material modeling aspects of these structures. PADT provided access to our 3D printing equipment and materials, ASU to their mechanical testing and characterization facilities and we both used ANSYS for simulation, as well as a weekly meeting with a whiteboard to discuss our ideas.

While there are several efforts ongoing in developing design and optimization software for lattice structures, there has been little progress in developing a robust, validated material model that accurately describes how these structures behave – this is what our eProject set out to do. The complex internal meso- and microstructure of these structures makes them particularly sensitive to process variables such as build orientation, layer thickness, deposition or fusion width etc., none of which are accounted for in models for lattice structures available today. As a result, the use of published values for bulk materials are not accurately predictive of true lattice structure behavior.

In this work, we combined analytical, experimental and numerical techniques to extract and validate material parameters that describe mechanical response of lattice structures. We demonstrated our approach on regular honeycomb structures of ULTEM-9085 material, made with the Fused Deposition Modeling (FDM) process. Our results showed that we were able to predict low strain responses within 5-10% error, compared to 40-60% error with the use of bulk properties.

This work is to be presented in full at the upcoming RAPID conference on May 18, 2016 (details at this link) and has also been accepted for full length paper submission to the SFF Symposium. We are also submitting a research proposal that builds on this work and extends it into more complex geometries, metals and failure modeling. If you are interested in the findings of this work and/or would like to collaborate, please meet us at RAPID or send us an email (

Our final poster and the Fortus 400mc that we printed all our honeycomb structures with
The final poster summarizing our work rests atop the Stratasys Fortus 400mc that we printed all our honeycomb structures on

Flownex and PADT Sponsor University of Houston’s Rankin Rollers Team

rankin-rollers-logoA group of enthusiastic students at the University of Houston are doing their part at solving that age old academia problem: not enough hand’s on experience.  They are designing and building a working steam turbine for the schools Thermodynamics lab so students can experiment with a Rankin cycle, learn how to take meaningful measurements, and study how to control a real thermodynamic system.

Look! Flownex and PADT on Social Media! Thanks for the plug guys.
After meeting a team member at the 2014 Houston ANSYS User conference, PADT saw a great opportunity to help the team by providing them with access to a full seat of Flownex SE so that they can create a virtual prototype of their steam turbine and the control system they are developing. 

The four team members have the following goals for their project:

    1. Create a fully automated system control
    2. Create system with rolling frame for ease of transport
    3. Create system with dimensions of 4x2x3.5 ft
    4. Deliver pre-made lab experiments
    5.  Produce an aesthetically pleasing product

    Flownex should be a great tool for them, allowing the team to simulate the thermodynamics and flow in the system as well as the system controls before committing to hardware. 

    You can learn more about the team on their Facebook page here, or on their website here

    We hope to share their models and what they have learned when their project is complete. If you are interested in using Flownex for your work or school project, contact PADT.

    This is the Team’s proposed configuration for the final test bench.
    We can’t wait to see this flow diagram translated into Flownex.