ASME OMAE2015 Paper: The Importance of Grid Convergence Studies in the Design of a Semi-Submersible Platform

asme-papers

Vibration induced by vortices in off shore oil rigs are a significant area of concern, and understanding them is a major area of research. In this paper, PADT’s Clinton Smith, PhD, and Tyler Smith are joined by Lubeena Rahumathulla from ANSYS, Inc. to describe how they used ANSYS FLUENT to model this situation. Get the paper here: proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2465497 

Abstract:

omae-2015-FLUENT-off-shore-flowThe design of semi-submersible platforms for offshore oil and gas operations requires an iterative process between early-stage design, numerical simulation, measurements, and full-scale design. Early stage designs are evaluated using numerical simulations, which are typically validated using measurements of a scaled model tested in a wave tank. Full-scale semi-submersibles present a unique challenge, because of the sheer size of the structure. Since VIV measurements of full scale structures are not possible, numerical simulation plays an important role for evaluating vortex-induced vibration (VIV) effects in the appropriate physical regime. The quantification of error in numerical simulation results is limited to verification-type studies, in which the error is reduced by converging the solution on the computational grid. The importance of grid convergence studies in this field cannot be understated, since it is the only way to judge solution accuracy in the absence of measurement data at the full scale. In this paper, a method for a grid convergence study of vortex-induced vibration (VIV) of a model scale semi-submersible platform is presented, in which solutions are obtained using the ANSYS Fluent CFD solver. Five levels of grid refinement are used, with the finest mesh acting as the reference solution for the coarser four levels. Qualitative results of vorticity, pressure and Q-criterion (vortex identification) are presented. Quantitative results such as the nominal amplitude (A/D) of the sway motion are used for judging the convergence of the solution as the grid is refined.

 

Video Tips: Fluid Volume Extraction

This video shows a really quick and easy way to extract a fluid domain from a structural model without having to do any Boolean subtract operations.

Free ANSYS AIM Resource Kit — Expert Advice, Insights and Best Practices for Multiphysics Simulation

ANSYS-AIM-Icon1We have been talking a lot about ANSYS AIM lately.  Mostly because we really like ANSYS AIM and we think a large number of engineers out there need to know more about it and understand it’s advantages.  And the way we do that is through blog posts, emails, seminars, and training sessions.  A new tool that we have started using are “Resource and Productivity Kits,” collections of information that users can download.

Earlier in the year we introduced several kits, including ANSYS Structural, ANSYS Fluids, and ANSYS ElectroMechanical.  Now we are pleased to offer up a collection of useful information on ANSYS AIM.  This kit includes:

  • “Getting to know ANSYS AIM,” a video by PADT application engineer Manoj Mahendran
  • “What I like about ANSYS AIM,” a video featuring insights on the tool
  • Six ANSYS AIM demonstration videos, including simulations and a custom template demonstration
  • Five slide decks that provide an overview of ANSYS AIM and describe its new features
  • An exclusive whitepaper on effectively training product development engineers in simulation.

You can download the kit here.

If you need more info, view the ANSYS AIM Overview video or read about it on our ANSYS AIM page.

Watch this blog for more useful content on AIM in the future.


AIM_City_CFD

NICE Desktop Cloud Visualization

nice-dcv-banner

In a previous post I argued that engineers do magic (read it here). And to help them do their magic better PADT Inc. introduced CoresOnDemand.com.

af-1
Among the magical skills engineers use in their daily awesomeness is their ability to bend the time fabric of the universe and perform tasks in almost impossible deadlines. It’s as if engineers work long hours and even work from home, while commuting and even at the coffee shop. Wait, is that what they actually do?

Among a myriad of tools that facilitate remote access and desktop redirection available, one stands out with distinction. NICE-Software developed a tool called Desktop Cloud Visualization (DCV for short). DCV has numerous advantages that we will get into shortly. The videos below give a general idea of what can be achieved with NICE-DCV.

Here is a video from the people at NICE:

And here is one of two PADT Employees using an iPhone to check their CFD results:

Advantages of Nice-DCV

Physical location of cluster/workstation or the engineers becomes irrelevant

Because engineers have fast, efficient and secure access to their workstations and clusters, they no longer need to be in the same office or on the same network segment to utilize the available compute resources. They can utilize NICE-DCV to create a fast, efficient and encrypted connection to their resources to submit, monitor and process results. The DCV clients are supported on Windows, Linux & IOS and even have a stand-alone Windows client that can be run on shared or public computers. In a recent live test, one of our engineers was travelling on a shuttle bus to a tiny ski town in Colorado, he was able to connect over the courtesy Wifi, check the status of his jobs and visualize some of the results.

af-2

The need for a powerful laptop or remote workstation to enable offsite work is no longer the only solution

There is no need for offsite engineers lug around a giant laptop in order to efficiently launch and modify their designs or perform simulation runs. Users launch the DCV client, connect to their workstation or cluster and are immediately given access to their desktop. No need to copy files, borrow licenses or transfer data. Engineers don’t need to create copies of files and carry them around on the laptops or on external storage which is an unnecessary security risk.

af-3a

 “If it ain’t broken don’t fix it!”

Every engineer uses ANSYS in his own special way. Some prefer the good old command line for everything even when a flashy GUI option is available. Others are comfortable using the Windows like GUI interface and would

af-3

Opens the door for GUI-only users to utilize large cluster resources without a steep learning curve or specialized tools.

Nice-DCV makes the use of ANSYS on large HPC clusters within reach for everyone. Engineers can log into pre-configured environments with all of the variables needed for parallel ANSYS runs already defined. Users can use can have their favorite ANSYS software added to the desktop as shortcuts or system admins can write small scripts or programs that serve as an answer file for custom job scripts.

From 0-60 in about…10 Minutes

For an engineer with the smallest amount of system administration skills it takes about 10 minutes to install the Nice-DCV server and launch the first connection. It’s surprisingly simple and straightforward on both the server and the client side. The benefits of Nice-DCV can be immediately realized in both simplified cluster administration and peace of mind for both the engineers and the system admins.

PADT’s CoresOnDemand and Nice-DCV

The CoresOnDemand service that PADT introduced last year utilizes the Nice-DCV tool to simplify and enhance the user experience. If you are interested in a live demo on Nice-DCV or the CoresOnDemand environment contact us either by phone: 480-813-4884 or by email cod@padtinc.com. For more information please visit: CoresOnCemand.com

(Note: some of the social media posts had a typo in the title, that was my fault (Eric) not Ahmed’s…)

ANSYS Launches Free Student Version

ansys-student-1This week ANSYS, Inc. made a fantastic announcement that has been in the works for a while, and that we think will greatly benefit the simulation community:  A free ANSYS Student product.  This is an introductory product that is focused on students who are learning the fundamentals of simulation who also want to learn the full power and capability of the ANSYS product suite.  It includes ANSYS® Multiphysics™ , ANSYS® CFD™ , ANSYS® Autodyn®, ANSYS® Workbench™, ANSYS® DesignModeler™and ANSYS®DesignXplorer™

Yes you read that right, all of the flagship products for free. No features or capabilities are turned off. It is the exact same software as the commercial product, but the size of problems that you can solve is limited.  It runs on MS Windows. Perfect for students.

PADT is excited about this because it gives students access to the ability to learn FEA and CFD simulation with the world’s most popular and capable simulation tool, without running in to brick walls. Want to do a flat plate with a hole in it? No Problem. Want to model fluid-solid-interaction on a flexible membrane valve? No Problem.  Want to model explosive forming? No Problem.  Want to model combustion with complex turbulence? No problem.

All in the same interface as students will use when they enter the work force or do research at University.

This is great news and we can’t wait to see what schools and students do with this access.

How to Get It – The New Academic Web Pages

The previous Student Portal is being replaced with an Academic Web area on the ansys.com site: ansys.com/academic.

Go to the ANSYS Student site to learn more about ANSYS Student and how to download your copy. These same pages will have resources to help you learn and understand the product.

The “Pictures”

Let me state categorically that PADT was not consulted on the image that ANSYS, Inc. used for the “student” user that was so happy to find out that there is now a free version of the ANSYS software suite.  Here is their picture:

ANSYS-student-version We would have preferred something like this:

huge.1.7907

 

Just kidding. We were happy to see this product come out and thought the picture was hilarious.  In all seriousness, we will also plug the  recent #ilooklikeanengineer twitter hash tag , highlighting the diversity of female engineers. that was awesome and we would love to see more chances for engineers to show their true selves.

 

Five Ways CoresOnDemand is Different than the Cloud

CoresOnDemand-Logo-120hIn a recent press release, PADT Inc. announced the launch of CoresOnDemand.com. CoresOnDemand offers CUBE simulation clusters for customers’ ANSYS numerical simulation needs. The clusters are designed from the ground up for running ANSYS numerical simulation codes and are tested and proven to deliver performance results.

CoresOnDemand_CFD-Valve-1

POWERFUL CLUSTER INFRASTRUCTURE

The current clusters available as part of the CoresOnDemand offering are:
1- CoresOnDemand – Paris:

80-Core Intel based cluster. Based on the Intel Xeon E5-2667 v.2 3.30GHz CPU’s, the cluster utilizes a 56Gbps InfiniBand Interconnect and is running a modified version of CentOS 6.6.

CoresOnDemand-Paris-Cluster-Figure

2- CoresOnDemand – Athena:

544-Core AMD based cluster. Based on the AMD Opteron 6380 2.50GHz CPU’s the cluster utilizes a 40Gbps InfiniBand Interconnect and is running a modified version of CentOS 6.6.

CoresOnDemand-Athena-Cluster-Figure

Five Key Differentiators

The things that make CoresOnDemand different than most other cloud computing providers are:

  1. CoresOnDemand is a non-traditional cloud. It is not an instance based cluster. There is no hypervisor or any virtualization layer. Users know what resources are assigned exclusively to them every time. No layers, no emulation, no delay and no surprises.
  2. CoresOnDemand utilizes all of the standard software designed to maximize the full use of hardware features and interconnect. There are no layers between the hardware and operating system.
  3. CoresOnDemand utilizes hardware that is purpose built and benchmarked to maximize performance of simulation tools instead of a general purpose server on caffeine.
  4. CoresOnDemand provides the ability to complete high performance runs on the compute specialized nodes and later performing post processing on a post-processing appropriate node.
  5. CoresOnDemand is a way to lease compute nodes completely and exclusively for the specified duration including software licenses, compute power and hardware interconnect.

CoresOnDemand is backed up by over 20 years of PADT Inc. experience and engineering know-how. Looking at the differentiating features of CoresOnDemand, it becomes apparent that the performance and flexibility of this solution are great advantages for addressing numerical simulation requirements of any type.

To learn more visit www.coresondemand.com or fill out our request form.

Or contact our experts at coresondemand@padtinc.com or 480.813.4884 to schedule a demo or to discuss your requirements.

CoresOnDemand-ANSYS-CUBE-PADT-1

Announcing CoresOnDemand.com – Dedicated Compute Power when you Need It

CoresOnDemand-Logo-120hWe are pleased to announce a new service that we feel is remote solving for FEA and CFD done right: CoresOnDemand.com.  We have taken our   proven CUBE Simulation Computers and built a cluster that users can simply rent.  So you get fast hardware, you get it all to your self, and you receive fantastic support from the ANSYS experts at PADT.

It is not a time share system, it is not a true "cloud" solution.  You tell us how many nodes you need and for how long and we rent them to you. You can submit batch or you can configure the machines however you need them.  Submit on the command line, through a batch scheduler, or run interactive. And when you are done, you do not have to send your files back to your desktop. We've loaded NICE DCV so you can do graphics intense pre- and post-processing from work or home, over the internet to our head nodes.  You can even work through your iPad.

CUBE-HVPC-512-core-closeup3-1000h

If you visit our Blog page a lot, you may have noticed the gray cloud logo with a big question mark next to it. If you guessed that was a hint that we were working on a cloud solution for ANSYS users, you were correct. We've had it up and running for a while but we kept "testing" it with  benchmarks for people buying CUBE computers. Plus we kept tweaking the setup to get the best user experience possible.  With today's announcement we are going live.

We created this service for a simple reason. Customers kept calling or emailing and asking if they could rent time on our machines.  We got started with the hardware but also started surveying and talking to users. Everyone is talking about the cloud and HPC, but we found few providers understood how to deliver the horsepower people needed in a usable way, and that users were frustrated with the offerings they had available. So we took our time and built a service that we would want to use, a service we would find considerable value in.

simulation-hardware ansys-expertise dependability

You can learn more by visiting www.CoresOnDemand.com. Or by reading the official press release included below. To get your started, here are some key facts you should know:

  1. We are running PADT CUBE computers, hooked together with infiniband. They are fast, they are loaded with RAM, and they have a ton of disk space. Since we do this type of solving all the time, we know what is needed
  2. This is a Bring Your Own License (BYOL) service. You will need to lease the licenses you need from whoever you get your ANSYS from.  As an ANSYS Channel partner we can help that process go smoothly.
  3. You do not share the hardware.  If you reserve a node, it is your node. No one else but your company can log in.  You can rent by the week, or the day.
  4. When you are done, we save the data you want us to save and then wipe the machines.  If you want us to save your "image" we can do that for a fee so next time you use the service, we can restore it to right where you were last time.
  5. Right now we are focused on ANSYS software products only. We feel strongly about focusing on what we know and maximizing value to the customers.
  6. This service is backed by PADT's technical support and IT staff. You would be hard pressed to find any other HPC provider out there who knows more about how to run ANSYS Mechanical, ANSYS Mechanical APDL, ANSYS FLUENT, ANSYS CFX, ANSYS HFSS, ANSYS MAXWELL, ANSYS LS-DYNA, ANSYS AUTODYN, ICEM CFD, and much more.

To talk to our team about running your next big job on CoresOnDemand.com contact us at 480-813-4884 or email cod@padtinc.com

CoresOnDemand-ANSYS-CUBE-PADT-1

See the official Press Release here

Press Release:

CoresOnDemand.com Launches as Dedicated ANSYS Simulation
High Performance Cloud Compute Resource 

PADT launches CoresOnDemand.com, a dedicated resource for users who need to run ANSYS simulation software in the cloud on optimized high performance computers.

Tempe, AZ – April 29, 2015 – Phoenix Analysis & Design Technologies, Inc. (PADT), the Southwest’s largest provider of simulation, product development, and 3D Printing services and products, is pleased to announce the launch of a new dedicated high performance compute resource for users of ANSYS simulation software – CoresOnDemand.com.  The team at PADT used their own experience, and the experience of their customers, to develop this unique cloud-based solution that delivers exceptional performance and a superior user experience. Unlike most cloud solutions, CoresOnDemand.com does not use virtual machines, nor do users share compute nodes. With CoresOnDemand.com users reserve one or more nodes for a set amount of time, giving them exclusive access to the hardware, while allowing them to work interactively and to set up the environment the way they want it.

The cluster behind CoresOnDemand.com is built by PADT’s IT experts using their own CUBE Simulation Computers (http://www.padtinc.com/cube), systems that are optimized for solving numerical simulation problems quickly and efficiently. This advantage is coupled with support from PADT’s experienced team, recognized technical experts in all things ANSYS. As a certified ANSYS channel partner, PADT understands the product and licensing needs of users, a significant advantage over most cloud HPC solutions.

“We kept getting calls from people asking if they could rent time on our in-house cluster. So we took a look at what was out there and talked to users about their experiences with trying to do high-end simulation in the cloud,” commented Eric Miller, Co-Owner of PADT. “What we found was that almost everyone was disappointed with the pay-per-cpu-second model, with the lack of product understanding on the part of the providers, and mediocre performance.  They also complained about having to bring large files back to their desktops to post-process. We designed CoresOnDemand.com to solve those problems.”

In addition to exclusive nodes, great hardware, and ANSYS expertise, CoresOnDemand.com adds another advantage by leveraging NICE Desktop Cloud Visualization (https://www.nice-software.com/products/dcv) to allow users to have true interactive connections to the cluster with real-time 3D graphics.  This avoids the need to download huge files or running blind in batch mode to review results. And as you would expect, the network connection and file transfer protocols available are industry standards and encrypted.

The initial cluster is configured with Intel and AMD-based CUBE Simulation nodes, connected through a high-speed Infiniband interconnect.  Each compute node has enough RAM and disk space to handle the most challenging FEA or CFD solves.  All ANSYS solvers and prep/post tools are available for use including: ANSYS Mechanical, ANSYS Mechanical APDL, ANSYS FLUENT, ANSYS CFX, ANSYS HFSS, ANSYS MAXWELL, ANSYS LS-DYNA, ANSYS AUTODYN, ICEM CFD, and much more. Users can serve their own licenses to CoresOnDemand.com or obtain a short-term lease, and PADT’s experts are on hand to help design the most effective licensing solution.

Pre-launch testing by PADT’s customers has shown that this model for remote on-demand solving works well.  Users were able to log in, configure their environment from their desktop at work or home, mesh, solve, and review results as if they had the same horsepower sitting right next to their desk.

To learn more about the CoresOnDemand: visit http://www.coresondemand.com, email cod@padtinc.com, or contact PADT at 480.813.4884. 

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work. “  With over 75 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com.

You will be Surprised Where Sneeze Germs Travel in an Airplane

sneezing-in-airplane-300x279Ever been on a flight, hear someone sneeze, and then sit in fear as you imagine millions of tiny infectiousness germs laughing historically as they spread through the cabin of the plane?  In my imagination they are green and drip mucus. In reality they are small liquid particles and instead of going everywhere, it appears they fall on just a few unlucky people. 

ANSYS, Inc.  put out a very cool video showing the results of an in-cabin CFD run done by Purdue University that tracks the pathogens as they leave the sick persons mouth, get caught in the climate control system’s air stream, and waft right on the people next to and behind them.  The study was done for the FAA Center for Excellence for Airliner Cabin Environment Research.   

Here is the video, check it out and share with your friends. Especially if you have a friend that doesn’t sneezes out into the open air:

Visit the ANSYS Blog to learn even more.

#betterlivingthroughsimulation

Video Tips: Create and Display Custom Units in ANSYS CFD-Post

By: Susanna Young

ANSYS CFD-Post is a powerful tool capable of post-processing results from multiple ANSYS tools including FLUENT, CFX, and Icepak. There are almost endless customizable options in ANSYS CFD-Post. This is a short video demonstrating how to create and display a set of custom units within the tool. Stay tuned for additional videos on tips for more effective post-processing in ANSYS CFD-Post.

Flownex 2014 Released and Webinars Announced

987786-flownex_simulation_environment-11_12_13The June release of Flownex SE software includes numerous updates for companies that model thermal fluid systems; videos and webinars are available to showcase the impact of these enhancements.

Flownex SE has increased the ability of engineers to accurately model their fluid-thermal with the release of version of Flownex 2014 on June 19th, 2014. The program is known for its in ease of use, breadth of capability, and depth of functionality.  With enhancements in turbomachinery modeling, support for 3D networks, GIS data import, heat transfer and a myriad of additional new features impacting efficiency, integration, and automation, this release expands the industries that can take advantage of it, and will help current users model their systems more accurately with greater ease.

7271351-Flownex2014-GIS

To help the user community understand the impact of these significant enhancements, PADT is offering two webinars. Both webinars will include a brief introduction to the tool, so if you are new to Flownex SE you will have a good foundation to get started.

Webinar Sign-Up:

Overview webinar: July 24, 2014, 1:00-2:00 PM MST

This webinar will focus all of the new features in Flownex SE 8.3.6.  
Register here

7271351-Flownex2014-Rotating_ComponentsTurbomachinery webinar: August 7, 2014, 1:00-2:00 PM MST

This webinar will be a deep dive into the extensive turbomachinery capabilities added in this release, and will be of interest to anyone simulating turbine engines, pumps, blowers, or other rotating machinery that involves fluids.
Register here

All registrants will be sent links to recordings so they can view the presentation even if they cannot attend them live.

Video Resources:

A video is also available that hits the important new capabilities: 

If you are new to Flownex SE, visit PADT’s Flownex page to learn more:  

Key Features:

The key features introduced in Flownex 2014 (Flownex SE 8.3.6) are:  

  1. Rotating components, Swirl Boundary, and General Turbine and Compressor Models
  2. Importing and Geometries
  3. GIS File Support
  4. Connections to ANSYS Products
  5. Link to Mathcad
  6. Graphical Script Generation Tool
  7. New Designer Tools to Quickly Model Common Systems.
  8. Five Additional Convection Models
  9. Exit Thrust Nozzle Added
  10. Additional Enhancements ranging from 3D Graphs to Support for Miter Bends in Piping

7271351-Flownex2014-Pipe-Results

Visit here to see a detailed list of these key features, or download the complete release notes here.

These additional features reflect the growing diversity of industries that are using Flownex SE to model their systems.  Users in oil and gas, mining, chemical processing, and turbomachinery will all see additional accuracy, functionality, and efficiency from this release. Built on an existing strong foundation that offers un-paralleled capability with  intuitive ease of use, a short look at Flownex SE will show you why so many users around the world are choosing it as their thermo-fluid modeling tool.

PADT is the distributor of Flownex SE in the United States.  Our experienced staff is eager to discuss your system modeling needs and is ready to show you how Flownex SE can start delivering value almost immediately. Contact us today to meet with our experts.

Top 10 New Thermal Fluid Modeling Capabilities in Flownex 2014

3D graphWe are pleased to announce the release of Flownex SE 2014.  This is a very exciting release for all of us involved in Flownex because it introduces a mix of advanced features and usability enhancements – we love better and easier.  We will be publishing more information about this release, as well as videos and webinars. While we set all of that up, we wanted to whet everyone’s appetite and give you a list of what we feel are the 10 most important enhancements.

  1. Rotating components, Swirl Boundary, and General Turbine and Compressor Models 
    A new library has been added which models rotating flow on a system level. Focusing on secondary flow and heat transfer in turbine engines, it includes all the components needed including compressors, turbines, seals, gaps, nozzles, and cavities. A complete library for Steam Turbine modeling was also added. 
  2. Importing and Geometries
    Users can read in 2D and 3D layout files in common formats and directly create Flownex models from the geometry. The model and results can then be visualized with the 3D geometry.
  3. GIS File Support
    When modeling systems that cover a large area, such as water or gas pipelines, the geographical data can be imported for display and to automatically include altitude into the model. 
  4. Connections to ANSYS Products
    Users can import 3D Pipe geometry as an ANF file, and connect to ANSYS Mechanical and ANSYS Fluent for co-simulation.
  5. Link to Mathcad
    Users can transfer parametric data to and from Mathcad worksheets
  6. Graphical Script Generation Tool
    Users can use Quick Script to create complex scripts to customize their processes or models without having to learn the full scripting language
  7. New Designer Tools to Quickly Model Common Systems.
    Designer tools atomically iterate on a user’s model to calculate unknown values for them. This release includes tools for calculating mass flow when only pressure is known at a boundary, automatically calculating steady state conditions in a two-phase tank, and a component designer that calculates input parameters for common components so that those components deliver the users requested mass flow.
  8. Five Additional Convection Models 
    Based on user input, five new models were added to the Dittus-Boelter correlation for calculating heat transfer coefficients: tube, shell-side single phase, shell-side horizontal tube condensation, ribbed wall channel, and channel with pedestals. 
  9. Exit Thrust Nozzle Added
    New model in subsonic and supersonic flow at the outlet of a flow network with gasses and superheated fluids
  10. Additional Enhancements:
    Support for miter bends in piping
    3D graphs
    Radiation supports multiple surface enclosures
    The range of methane two phase fluid was increased
    Support for 64 bit 
    Several more values can be changed during a transient solution

The best way to learn more about these additions, or anything about Flownex, is to contact Roy Haynie at roy.haynie@padtinc.com or 480-813-4884.  
There is also some more detailed material here:

 

Part 2: ANSYS FLUENT Performance Comparison: AMD Opteron vs. Intel XEON

AMD Opteron 6308, INTEL XEON e5-2690 & INTEL XEON e5-2667V2 Comparison using ANSYS FLUENT 14.5.7

Note: The information and data contained in this article was complied and generated on September 12, 2013 by PADT, Inc. on CUBE HVPC hardware using FLUEN 14.5.7.  Please remember that hardware and software change with new releases and you should always try to run your own benchmarks, on your own typical problems, to understand how performance will impact you.

By David Mastel

Due to the response to the original article on this subject,  I thought it would be good to do a quick follow-up using one of our latest CUBE HVPC builds. Again, the ANSYS Fluent standard benchmarks were used in garnering the stats on this dual socket INTEL XEON e5-2667V2 configuration.

CUBE HVPC Test configurations (Same as in last comparison)

  • Server 1: CUBE HVPC c16
  • CPU: 4, AMD Opteron 6308 @ 3.5GHz (Quad Core)
  • Memory: 256GB (32x8G) DDR3-1600 ECC Reg. RAM (1600MHz)
  • Hardware RAID Controller: Supermicro AOC-S2208L-H8iR 6Gbps, PCI-e x 8 Gen3
  • Hard Drives: Supermicro HDD-A0600-HUS156060VLS60 – Hitachi 600G SAS2.0 15K RPM 3.5″
  •  OS: Linux 64-bit / Kernel 2.6.32-358.18.1.e16.x86_64
  • App: ANSYS FLUENT 14.5.7
  • MPI: Platform MPI
  • HCA: SMC AOC-UIBQ-M2 – QDR Infiniband
    • The IB card installed however solves were run distributed locally
  • Switch: MELLANOX IS5023 Non-Blocking 18-port switch

Server 2: CUBE HVPC c16i (Intel server from last comparison)

  • CPU: 2, INTEL XEON e5-2690 @ 2.9GHz (Octa Core)
  • Memory: 128GB (16x8G) DDR3-1600 ECC Reg. RAM (1600MHz)
  • RAID Controller: Supermicro AOC-S2208L-H8iR 6Gbps, PCI-e x 8 Gen3
  • Hard Drives: Supermicro HDD-A0600-HUS156060VLS60 – Hitachi 600G SAS2.0 15K RPM 3.5″
  • OS: Windows 7 Professional 64-bit
  • App: ANSYS FLUENT 14.5.7
  • MPI: Platform MPI

Server 3: CUBE HVPC c16ivy (New “Ivy” based Intel server)

  • CPU: 2, INTEL XEON e5-2667V2 @ 3.3 (Octa Core)
  • Memory: 128GB (16x8G) DDR3-1600 ECC Reg. RAM (1600MHz)
  • RAID Controller: Supermicro AOC-S2208L-H8iR 6Gbps, PCI-e x 8 Gen3
  • Hard Drives: Supermicro HDD-A0600-HUS156060VLS60 – Hitachi 600G SAS2.0 15K RPM 3.5″
  • OS: Linux 64-bit / Kernel 2.6.32-358.18.1.e16.x86_64
  • App: ANSYS FLUENT 14.5.7
  • MPI: Platform MPI
  • HCA: SMC – QDR Infiniband
    • The IB card installed however solves were run distributed locally

ANSYS FLUENT 14.5.7 Performance using the ANSYS FLUENT Benchmark suite provided by ANSYS, Inc.

ANSYS Fluent Benchmark page link:http://www.ansys.com/Support/Platform+Support/Benchmarks+Overview/ANSYS+Fluent+Benchmarks

Release ANSYS FLUENT 14.5.7 Test Cases
(20 Iterations each)

  • Reacting Flow with Eddy Dissipation Model (eddy_417k)
  • Single-stage Turbomachinery Flow (turbo_500k)
  • External Flow Over an Aircraft Wing (aircraft_2m)
  • External Flow Over a Passenger Sedan (sedan_4m)
  • External Flow Over a Truck Body with a Polyhedral Mesh (truck_poly_14m)
  • External Flow Over a Truck Body 14m (truck_14m)

Here are the results for all three machines, total and average time:

Intel-AMD-Flunet-Part2-Chart1Intel-AMD-Flunet-Part2-Chart2

 

Summary: Are you sure? Part 2

So I didn’t have to have the “Are you sure?” question with Eric this time and I didn’t bother triple checking the results because indeed, the Ivy Bridge-EP Socket 2011 is one fast CPU! That combined with a 0.022 micron manufacturing process  the data speaks for itself. For example, lets re-dig into the data for the External Flow Over a Truck Body with a Polyhedral Mesh (truck_poly_14m) benchmark and see what we find:

Intel-AMD-FLUENT-Details

 

 

 

 

 

 

 

 

 

 

 

Intel-AMD-FLUENT-summary

 

 

 

 

 

 

 

 

 

 

 

Current Pricing of INTEL® and AMD® CPU’s

Here is the up to the minute pricing for each CPU’s. I took these prices off of NewEgg and IngramMicro’s website. The date of the monetary values was captured on October 4, 2013.

Note AMD’s price per CPU went up and the INTEL XEON e5-2690 went down. Again, these prices based on today’s pricing, October 4, 2013.

AMD Opteron 6308 Abu Dhabi 3.5GHz 4MB L2 Cache 16MB L3 Cache Socket G34 115W Quad-Core Server Processor OS6308WKT4GHKWOF

  •  $501 x 4 = $2004.00

Intel Xeon E5-2690 2.90 GHz Processor – Socket LGA-2011, L2 Cache 2MB, L3 Cache 20 MB, 8 GT/s QPI

  • $1986.48 x 2 = $3972.96

Intel Xeon E5-2667V2 3.3 GHz Processor – Socket LGA-2011, L2 Cache 2MB, L3 Cache 25 MB, 8 GT/s QPI,

  • $1933.88 x 2 = $3867.76

REFERENCES:
http://www.ingrammicro.com
http://www.newegg.com

INTEL XEON e5-2667V2
http://ark.intel.com/products/75273/Intel-Xeon-Processor-E5-2667-v2-25M-Cache-3_30-GHz

INTEL XEON e5-2690
http://ark.intel.com/products/64596/

AMD Opteron 6308
http://www.amd.com/us/Documents/Opteron_6300_QRG.pdf

http://en.wikipedia.org/wiki/Double-precision_floating-point_format

http://en.wikipedia.org/wiki/Central_processing_unit#Integer_range

http://en.wikipedia.org/wiki/Floating_point

STEP OUT OF THE BOX, STEP INTO A CUBE

PADT offers a line of high performance computing (HPC) systems specifically designed for CFD and FEA number crunching aimed at a balance between cost and performance. We call this concept High Value Performance Computing, or HVPC. These systems have allowed PADT and our customers to carry out larger simulations, with greater accuracy, in less time, at a lower cost than name-brand solutions. This leaves you more cash to buy more hardware or software.

Let CUBE HVPC by PADT, Inc. quote you a configuration today!

 

CFX Expression Language–Part 3: Applying Boundary Conditions Using CEL

In two previous entries we introduced CFX Expression Language, CEL:

Part 1: Accessing CFD Simulation Information in CFX (and FLUENT)

Part 2: Augmenting Material Property Assignments in ANSYS CFX

In this third installment we will see how to use CEL to apply boundary conditions as equations rather than constant values. For example, if a non-constant velocity profile can be defined as an equation, we can use CEL to define as well as apply the profile.

Let’s look at an example in which the velocity profile is a function of y coordinate:

u(y) = 6 * Umax * y / H * (1 – y/H) (m/s)

Using the procedure we learned in part 1 of this series, in CFX Pre we have defined expressions for H and Umax. We then defined the equation for the velocity profile as Uprofile:

clip_image002

Next we go to the Plot tab within the Expressions editor to verify that our velocity profile matches expectations:

clip_image004

To use our new expression in CFX Pre, we just enter the expression name in the appropriate field when defining the inlet velocity:

clip_image006

Finally, this velocity plot from CFD Post shows that indeed our desired velocity profile was applied at the inlet.

clip_image008

Hopefully this demonstrates how easy it can be to use CFX Expressions to define non-constant boundary conditions. In the next part of the series, we will look at using expressions to ramp or step apply loads.

CFX Expression Language – Part 2: Augmenting Material Property Assignments in ANSYS CFX

In a previous entry we introduced CFX Expression Language, CEL.  You can view that post here

Before we get started, there are some key things to remember:

  1. Expressions can be easily created by right-clicking in the Expressions tab after double clicking on Expressions in the CFX Pre object tree.
  2. Expressions and their contents are case sensitive.

In this next part of the series, we’ll show how to use CEL to augment your material property definitions in CFX. If material properties are constants then their input is straightforward. However, if the properties are defined as equations, we can use CEL to input those equations in CFX.

For example, if viscosity is defined as a function of shear strain rate, we need to define viscosity using an equation that captures that relationship, such as

m = K * gn-1

Below are shown two ways in which that equation can be captured using CFX Expression Language, visc1 and visc2. The second equation, visc2, is more flexible in that we have defined the constant terms as expressions themselves.

clip_image002

It’s always a good idea to verify the input. Most expressions can be easily plotted by clicking on the Plot tab in the Details view. Here is a plot of the viscosity vs. shear strain rates between 0 and 1, as calculated by expression visc2:

clip_image004

Similarly, the Evaluate tab can be used to evaluate the expression for desired values of the inputs.

So, we have defined an expression for a material property, viscosity in this case. How do we get CFX to use that expression? In the material property input, we click on the expression icon to the right of the particular material property we are defining, then enter the name of the expression, as shown here for expression visc2:

clip_image006

Summing it up, we can use CFX Expression Language to define material property equations for non-constant material values. In the next installment we will look at how to use CEL to define changing boundary conditions, such as a ramped load.

Monster in the Closet: PADT Goes Live with 512 Core HVPC CUBE Cluster

imageThere is a closet in the back of PADT’s product development lab. It does not store empty boxes, old files, or obsolete hardware.  Within that closet is a monster.  Not the sort of monster that scares little children at night.  No, this is a monster that puts fear into the heart of those who try to paint high performance computing as a difficult and expensive task only to be undertaking by those who are in the priesthood.  It makes salespeople who earn fat commissions by selling consulting services and unnecessary add-ons quake in fear.

This closet holds PADT’s latest upgrade to our compute infrastructure: a 512 core CUBE HVPC Cluster.  No data center, no special consultants, no expensive add-ons. Just 512 cores chugging away at solving FLUENT and CFX problems, and pumping a large amount of heat up into the ceiling.

Here are the specifics:

CUBE C512 Columbia Class Cluster

  • 512 AMD 2.4GHz Cores (in 8 nodes, 4 sockets per node, 16 cores per socket)
  • 2TB RAM (256 GB per node of DDR3 1600 ECC RAM)
  • Raid Controller Card (1 per node)
  • 24TB Data Disk Space (3TB per node of SAS2 15k drives in RAID0)
  • Infiniband (8 Port switch, 40 Gbps)
  • 52 Port GIGE switch connected to 2 GIGE ports per node
  • 42 U Rack with thermal convection ducting (chimney)
  • Keyboard, monitor, mouse in drawer
  • CENTOS (switching to RedHat soon)

We built this system with CFD simulation in mind.  The original goal was to provide a proof of concept to expand our CUBE HVPC offering, showing that you can create a cluster of this size, with very good speed, for a price that small and medium sized companies can afford.  We also needed a way to run large problems for benchmarks in support of our ANSYS sales efforts and to provide faster technical support our FLUENT and CFX customers.  We already have a growing queue of benchmarks waiting to get into the machine.

The image above is the glamour shot.  Here is what it looks like in the closet:

image

Keeping with our theme of High Value Performance Computing we stuck it into this closet that was built for telephone equipment and networking equipment back at the turn of the century when Motorola had this suite.  We were able to fit a modern rack in next to an old rack that was in there. We then used the included duct to push the air up into our ceiling space and moved the A/C ducting to duct right into the front of the units.  We did need to keep the flow going into the rack instead of into the area under the networking and telephone switches, so we used an old video game poster:

image
Anyone remember Ratchet and Clank? 
Best PS2 games ever.

It works well and adds a little color to the closet.

So far our testing has shown some great numbers. Not the fastest cluster out there, but if you look at the cost, it offers incredible performance.   You could add a drive array over Infiniband, faster chips, and some redundant power. And it will run faster and more reliably, but it will cost much more.  We are cheap so we like this solution.

Oh yea, with the parts from our old CFD cluster and some new bits, we will be building a smaller mini-cluster using INTEL chips, a GPU or two, and a ton of fast disk and RAM as our FEA cluster.  Look for an update on that in a couple of months.

Interested in getting a cluster like this for you computing pleasure?  A system configured like this one will run about $150,000 (video game poster is extra). Visit our CUBE page to learn more or just shoot an email to sales@padtinc.com.  Don’t worry, we don’t sell these with sales people, someone from IT will get back with you.