From Piles to Power – My First PADT PC Build

Welcome to the PADT IT Department now build your own PC

[Editors Note: Ahmed has been here a lot longer than 2 weeks, but we have been keeping him busy so he is just now finding the time to publish this. ]

I have been working for PADT for a little over 2 weeks now. After taking the ceremonial office tour that left me with a fine white powder all over my shoes (it’s a PADT Inc special treat). I was taken to meet my team, David Mastel – My Boss for short, who is the IT commander & chief at PADT Inc. and Sam Goff – the all-knowing systems administrator.

I was shown to a cubicle that reminded me of the shady computer “recycling” outfits you’d see on a news report highlighting the vast amounts of abandoned hardware; except there were no CRT (tube) screens or little children working as slave labor.

Sacred Tradition

This tradition started with Sam, then Manny, and now it was my turn taking this rite of passage. As part of the PADT IT department, I am required by sacred tradition to build my own desktop with my bare hands – then I was handed a screwdriver.

My background is mixed and diverse but mostly has one thing in common. We usually depended on pre-built servers, systems and packages. Branded machines have an embedded promise of reliability, support and superiority over the custom built machines.

  1. What most people don’t know about branded machines is that they carry two pretty heavy tariffs.
  2. First, you are paying upfront for the support structure, development, R&D, supply chains that are required to pump out thousands of machines.
  3. Second, because these large companies are trying to maximize their margins, they will look for a proprietary cost effective configuration that will:
    1. Most probably fail or become obsolete as close as possible to the 3-year “expected” life-span of computers.
    2. Lock users into buying any subsequent upgrade or spare part from them.

Long Story short, the last time I fully built a desktop computer was back in college when a 2GB hard disk was a technological breakthrough that we could only imagine how many MP3’s we could store on it.

The Build

There were two computer cases on the ground, one resembled a 1990 Mercury Sable that was at most tolerable as a new car and the other looked more like 1990 BMW 325ci a little old but carries a heritage and potential to be great once again.

So with my obvious choice for a case I began to collect parts from the different bins and drawers and I was immediately shocked at how “organized” this room really was. So I picked up the following:

There are a few things that I would have chosen differently but were not available at the time of the build or were ridiculous for a work desktop would be:

  • Replaced 2 drives with SSD disks to hold OS and applications
  • Explored a more powerful Nvidia card (not really required but desired)

So after a couple of hours of fidgeting and checking manuals this is what the build looks like.

(The case above was the first prototype ANSYS Numerical Simulation workstation in 2010. It has a special place in David’s Heart)

Now to the Good STUFF! – Benchmarking the rebuilt CUBE prototype

ANSYS R15.0.7 FEA Benchmarks

Below are the results for the v15sp5 benchmark running distributed parallel on 4-Cores.

ANSYS R15.0.7 CFD Benchmarks

Below are the results for the aircraft_2m benchmark using parallel processing on 4-Cores.

This machine is a really cool sleeper computer that is more than capable at whatever I throw at it.

The only thing that worries me is that when Sam handed me the case to get started, David was trying –but failed- to hide a smile that makes me feel that there is something obviously wrong in my first build and I failed to catch it. I guess I will just wait and see.

Monster in the Closet: PADT Goes Live with 512 Core HVPC CUBE Cluster

imageThere is a closet in the back of PADT’s product development lab. It does not store empty boxes, old files, or obsolete hardware.  Within that closet is a monster.  Not the sort of monster that scares little children at night.  No, this is a monster that puts fear into the heart of those who try to paint high performance computing as a difficult and expensive task only to be undertaking by those who are in the priesthood.  It makes salespeople who earn fat commissions by selling consulting services and unnecessary add-ons quake in fear.

This closet holds PADT’s latest upgrade to our compute infrastructure: a 512 core CUBE HVPC Cluster.  No data center, no special consultants, no expensive add-ons. Just 512 cores chugging away at solving FLUENT and CFX problems, and pumping a large amount of heat up into the ceiling.

Here are the specifics:

CUBE C512 Columbia Class Cluster

  • 512 AMD 2.4GHz Cores (in 8 nodes, 4 sockets per node, 16 cores per socket)
  • 2TB RAM (256 GB per node of DDR3 1600 ECC RAM)
  • Raid Controller Card (1 per node)
  • 24TB Data Disk Space (3TB per node of SAS2 15k drives in RAID0)
  • Infiniband (8 Port switch, 40 Gbps)
  • 52 Port GIGE switch connected to 2 GIGE ports per node
  • 42 U Rack with thermal convection ducting (chimney)
  • Keyboard, monitor, mouse in drawer
  • CENTOS (switching to RedHat soon)

We built this system with CFD simulation in mind.  The original goal was to provide a proof of concept to expand our CUBE HVPC offering, showing that you can create a cluster of this size, with very good speed, for a price that small and medium sized companies can afford.  We also needed a way to run large problems for benchmarks in support of our ANSYS sales efforts and to provide faster technical support our FLUENT and CFX customers.  We already have a growing queue of benchmarks waiting to get into the machine.

The image above is the glamour shot.  Here is what it looks like in the closet:


Keeping with our theme of High Value Performance Computing we stuck it into this closet that was built for telephone equipment and networking equipment back at the turn of the century when Motorola had this suite.  We were able to fit a modern rack in next to an old rack that was in there. We then used the included duct to push the air up into our ceiling space and moved the A/C ducting to duct right into the front of the units.  We did need to keep the flow going into the rack instead of into the area under the networking and telephone switches, so we used an old video game poster:

Anyone remember Ratchet and Clank? 
Best PS2 games ever.

It works well and adds a little color to the closet.

So far our testing has shown some great numbers. Not the fastest cluster out there, but if you look at the cost, it offers incredible performance.   You could add a drive array over Infiniband, faster chips, and some redundant power. And it will run faster and more reliably, but it will cost much more.  We are cheap so we like this solution.

Oh yea, with the parts from our old CFD cluster and some new bits, we will be building a smaller mini-cluster using INTEL chips, a GPU or two, and a ton of fast disk and RAM as our FEA cluster.  Look for an update on that in a couple of months.

Interested in getting a cluster like this for you computing pleasure?  A system configured like this one will run about $150,000 (video game poster is extra). Visit our CUBE page to learn more or just shoot an email to  Don’t worry, we don’t sell these with sales people, someone from IT will get back with you.

Building CUBE Mini-Clusters in the Clean Room

It is a busy time in the world of CUBE computers. We are building our own new cluster, replacing a couple of older file servers we bought from “those other guys” and building a 128 core mini-cluster for a new CUBE customer.  We ran out of room in the IT cubicle so we looked around and found that PADT’s clean room was not being used.  A few tables and tools later and we had a mini-cluster assembly facility.


With the orders that customers have told us are on the way before the end of the year, this is going to be a busy area through December.