Mechanical Updates in ANSYS 2019 R2 – Webinar

With ANSYS structural analysis software, users are able to solve more complex engineering problems, faster and more efficiently than ever before. Customization and automation of structural solutions is much easier to optimize thanks to new and innovative finite element analysis (FEA) tools available in this product suite. 

Once again, ANSYS is able to cement their role as industry leaders when it comes to usability, productivity, and reliability; adding innovative functionality to an already groundbreaking product offering. ANSYS structural analysis software continues to be used throughout the industry, and for good reason as it enables engineers to optimize their product design and reduce the costs of physical testing. 

Join PADT’s Specialist Mechanical Engineer Joe Woodward, for an in-depth look at what’s new in the latest version of ANSYS Mechanical, including updates regarding: 

  • Software User Interface
  • Topology Optimization
  • Rigid Body Dynamics
  • Post Processing
  • And much more
Natural frequency study of engine block in ANSYS Mechanical

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 039: Updates for Design Engineers in ANSYS 2019 R2

 

Published on: June 17th, 2019
With: Eric Miller, Ted Harris, & Tom Chadwick
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and Senior CFD Engineer Tom Chadwick for a discussion on what new capabilities (beta or otherwise) are available for design engineers in the latest updates made to Discovery Live in ANSYS 2019 R2.

If you would like to learn more about this update and see the tool in action, along with others in the 3D Design family of products (Discovery AIM, SpaceClaim & Live) check out PADT’s webinar on the topic here: https://bit.ly/2KfO0tK

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Ten Suggestions for Automating Product Duty Cycle Testing

No product is perfect. Much of engineering is trying to determine when a part will fail in the field or when there are field failures, why it failed and how to fix it. Although simulation and engineering experience can make a huge difference, sometimes the best way to understand product robustness in the real world is through duty cycle testing; designing a test that puts the product through the varied and repeated loading that it will see in use.

This type of testing is perfect for automation. For decades, PADT has been designing testing devices for our customers to determine durability, uncover problems, and verify that proposed solutions work. Over those years our engineers have developed guidelines that we use to design tests and test apparatus. We got together and summarized that experience in the ten suggestions listed below.

But first, it would be good to define what automated product duty cycle testing is.

Automated Product Duty Cycle Testing Defined

When a physical product is used, it sees some sort of loading; force, pressure, temperature, friction, chemicals, sunlight, etc… That loading causes deformation of the various materials used or changes the physical properties of those materials. In most cases, the deformation or property change is not permanent. But sometimes the loads are large enough or are replied long enough to cause permanent changes. Metal fatigues, rubber tubes become brittle, or glue fails.

Large loads are easy to test. You apply them and see what happens. But long term loading, especially a set of repeated loads, needs to be applied over time. This type of long-term testing that applies the loads the product will see over time is called duty cycle testing. Add in the need to apply temperatures cycles, humidity, and power loads – all things that components see in the real world – and the value of automation multiplies.

As engineers, when we see something that happens over time and repeats, we know that automation can be used to reduce cost and enforce repeatability. And that is why most duty cycle testing is automated. But those time savings and that repeatability are only effective if the test and the text fixture are designed correctly, which leads us to PADT’s ten suggestions.

1: Define the purpose and the expected outcome of the test

Most people define the purpose or the outcome, but not both. This really starts with understanding who the customer is for the test, even within the same company. What do they need from the test and why do they need it.

2: Map the full duty cycle being tested

The physical behavior of a system, especially over time, is impacted by all of the loads that the system sees. The cause of a failure or performance degradation is often not one load, but some unexpected combination of loads. You may think a problem may be caused by say, a bending load that happens tens-of-thousands of times. But it may be that bending load combined with a torque that only occurs every once in a while.

3: Document the test process, keeping it as simple as possible

Simplicity is the key here. Complexity adds cost, slows schedules, and introduces irrelevant failure modes. Designing is like writing a good story. Put everything down, then start cutting. Keep cutting until you only have exactly what you need.

4: Design the apparatus to the test

This seems obvious, but it can often be missed. The three previous suggestions need to be reviewed before, during, and after the design process. Every feature, chunk of code, or fixture needs to be there for a reason. The device must carry out the test process and apply the full duty cycle while meeting the purpose and expected outcome of the test.

5: Make the system versatile

After developing our second or third test rig, we discovered that our customers almost always wanted to add new loads or change loading. You may design a system to test one component, to find that a different component is failing more in the field so you need to change the test to load that part. If you design the apparatus to allow for easy changes that don’t require a complete redesign, you can create a far more valuable device.

6: Make the remaining human steps as easy as possible

The whole point of automation is to take humans out of the loop. But someone still has to load, unload, repair, and maintain the system. With so much focus on automation, it is easy to make the apparatus difficult to use. Human interface design still plays an important role.

7: Keep the hardware as simple as possible

Simplicity is the key to success in most designs, and automating duty cycle testing is no different. The repetitive nature of the operating steps and long run times make it especially important. Also, if you make the design too complex it is more difficult to capture and interpret results.

8: Invest in robust, off-the-shelf industrial quality equipment.

Do not try and save money using hobby or educational hardware or in making your own components, unless what you need is not commercially available. Remember, you are measuring the robustness of your product so having robust equipment to carry out the testing is critical. There is a reason why an industrial controller costs more. Invest in hardware that results in a test system that will last.

9: Spend the time and money upfront to automate as much as possible

Just as you should invest in high-quality hardware, you should put time and money into automating as much as possible. It is tempting to save money by saying “we can have a person do this step” but when you do that you introduce long term costs, delays, and a source of error.

10: Test the test before releasing the apparatus to the customer

Plan for a lot of testing of the system before official testing starts. This can seem obvious but because the focus of the design process is a test itself, it is easy to forget that the hardware and software need to be tested before they are released for use.

Better automated testing is achievable

Testing of your products should never be an afterthought or an add-on to the product’s design. Plan for it as an important part of the product lifecycle. If you follow the guidelines above and budget the proper time, money, and space (don’t forget you will need a place to do the testing) you can achieve a greater understanding of the robustness, failure modes, and efficiency of the things you make.

If you need help with duty cycle testing, please reach out to PADT. Our expertise in project management, engineering problems solving, controller programming, industry applications, and creative design are a unique combination that results in better fixture design and more useful information from your testing.

We can assist you in the design or take on the whole project, including doing the testing here at our facility. Contact us at info@padtinc.com or 480.813.4884 and ask to speak to someone in our Engineering Services Team about product testing. And don’t forget, we have world-class simulation and 3D Printing here on site to speed up the process and deliver deeper insight.

3D Design Updates in ANSYS 2019 R2 – Webinar

When it comes to the exploration of rapid 3D design, simulation provides a more efficient and optimized workflow for design engineers looking to streamline product development and improve product performance. The toolkit of flagship ANSYS 3D design products made up of Discovery SpaceClaim, Discovery Live, and Discovery AIM allow users to build, and optimize lighter and smarter products with an interface easier to use than most other simulation products. 

Users can delve deeper into the details of a design with the same accuracy as other, more robust ANSYS tools, all while refining their concept and introducing multiple physics simulations to better account for real-world conditions.

Join PADT’s Simulation Support Manager Ted Harris, for a look at what’s new for this line of products with the release of ANSYS 2019 R2. Explore updates for these three tools including:

  • Shared Topology
  • Meshing
  • Navigation
  • Modal Supports 
  • Multi-physics Coupling
  • Topology Optimization 
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Meshing Updates in ANSYS 2019 R2 – Webinar

An intelligent, high-quality mesh is at the core of any effective simulation based model; creating the basis for what will help to drive valuable results for even the most complex engineering problems.

Among a variety of tools in ANSYS 2019 R2 are enhanced meshing capabilities that can help reduce pre-processing time and provide a more streamlined solution.

Join PADT’s Specialist Mechanical Engineer, Joe Woodward for a look at what new meshing capabilities are available in the latest release of ANSYS. This presentation will focus predominately on updates regarding:

ANSYS Mechanical Meshing
Batch Connections
Axisymmetric Sweep
Layered Tetrahedron Enhancements
Local Sizing Enhancements
SpaceClaim Meshing
Parameter Management
Direct Modeling/Meshing
Hex Meshing
Block Decomposition

And much more!

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).


You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

“Equation Based Surface” for Conformal and Non-Planar Antenna Design

ANYSY HFSS provides many options for creating non-planar and conformal shapes. In MCAD you may use shapes such as cylinders or spheres, and with some steps, you can design you antennas on various surfaces. In some applications, it is necessary to study the effect of curvatures and shapes on the antenna performance. For example for wearable antennas it is important to study the effect of bending, crumpling and air-gap between antenna and human body.

Equation Based Surface

One of the tools that HFSS offers and can be used to do parametric sweep or optimization, is “Draw equation based surface”. This can be accessed under “Draw” “Equation Based Surface” or by using “Draw” tab and choosing it from the banner (Fig. 1)

Fig. 1. (a) Select Draw -> Equation Based Surface
Fig. 1. (b) click on the icon that is highlighted

Once this is selected the Equation Based Surface window that opens gives you options to enter the equation with the two variables (_u, _v_) to define a surface. Each point of the surface can be a function of (_u,_v). The range of (_u, _v) will also be determined in this window. The types of functions that are available can be seen in “Edit Equation” window, by clicking on “…” next to X, Y or Z (Fig. 2). Alternatively, the equation can be typed inside this window. Project or Design Variables can also be used or introduced here.

Fig. 2. (a) Equation Based Surface window
Fig. 2. (b) Clikc on the “…” next to X and see the “Edit Equation: window to build the equation for X

For example an elliptical cylinder along y axis can be represented by:

This equation can be entered as shown in Fig. 3.

Fig. 3. Elliptical surface equation

Variation of this equation can be obtained by changing variables R1, R2, L and beta. Two examples are shown in Fig. 4.

Fig. 4. Elliptical surface equation

Application of Equation Based Surface in Conformal and Non-Planar Antennas

To make use of this function to transfer a planar design to a non-planar design of interest, the following steps can be taken:

  • Start with a planar design. Keep in mind that changing the surface shape can change the characteristics of the antenna. It is a good idea to use a parameterized model, to be able to change and optimize the dimensions after transferring the design on a non-planar surface. As an example we started with a planar meandered line antenna that works around 700MHz, as shown in Fig. 5. The model is excited by a wave port. Since the cylindrical surface will be built around y-axis, the model is transferred to a height to allow the substrate surface to be made (Fig 5. b)
Fig. 5. Planar meandered antenna (a) on xy plane, (b) moved to a height of 5cm
  • Next, using equation based surface, create the desired shape and with the same length as the planar substrate. Make sure that the original deisgn is at a higher location. Select the non-planar surface. Use Modeler->Surface->Thicken Sheet … and thicken the surface with the substrate thickenss. Alternatively, by choosing “Draw” tab, one can expand the Sheet dropdown menu and choose Thicken Sheet. Now select the sheet, change the material to the substrate material.
Fig. 6. Thicken the equation based surface to generate the substrate
  • At this point you are ready to transfer the antenna design to the curved surface. Select both traces of the antenna and the curved substrate (as shown in Fig. 7). Then use Modeler->Surface->Project Sheet…, this will transfer the traces to the curved surface. Please note that the original substrate is still remaining. You need not delete it.
Fig. 7. Steps for transferring the design to the curved surface (a)

Fig. 7. Steps for transferring the design to the curved surface (b)

Fig. 7. Steps for transferring the design to the curved surface (c)
  • Next step is to generate the ground plane and move the wave port. In our example design we have a partial ground plane. For ground plane surface we use the same method to generate an equation based surface. Please keep in mind that the Z coordinate of this surface should be the same as substrate minus the thickness of the substrate. (If you thickened the substrate surface to both sides, this should be the height of substrate minus half of the substrate thickness). Once this sheet is generate assign a Perfect E or Finite Conductivity Boundary (by selecting the surface, right click and Assign Boundary). Delete the old planar ground plane.
Fig. 8. Non-planar meandered antenna with non-planar ground

Wave Port Placement using Equation Based Curve

A new wave port can be defined by the following steps:

  • Delete the old port.
  • Use Draw->Equation Based Curve. Mimicking the equation used for ground plane (Fig. 9).
Fig. 9. Use Equation Based Curve to start a new wave port (a) Equation Based Curve definition window (b) wave pot terminal created using equation based curve and sweep along vector
  • Select the line from the Model tree, select Draw->Sweep->Along Vector. Draw a vector in the direction of port height. Then by selecting the SweepAlongVector from Model tree and double clicking, the window allows you to set the correct size of port height and vector start point (Fig. 10).
  • Assign wave port to this new surface.
Fig. 10. Sweep along vector to create the new wave port location

Similar method can be used to generate (sin)^n or (cos)^n surfaces. Some examples are shown in Fig. 11. Fig. 11 (a) shows how the surface was defined.

Fig. 11. (a) Equation based surface definition using “cos” function, (b), (c), & (d) three different surfaces generated by this equation based surface.

Effect of Curvature on Antenna Matching

Bending a substrate can change the transmission line and antenna impedance. By using equation based port the change in transmission line impedance effect is removed. However, the overall radiation surface is also changed that will have effects on S11. The results of S11 for the planar design, cylindrical design (Fig. 8), cos (Fig. 11 b), and cos^3 (Fig. 11 c) designs are shown in Fig. 12. If it is of interest to include the change in the transmission line impedance, the port should be kept in a rectangular shape.

Fig. 12. Effect of curvature on the resonance frequency.

Equation based curves and surfaces can take a bit of time to get used to but with a little practice these methods can really open the door to some sophisticated geometry. It is also interesting to see how much the geometry can impact a simple antenna design, especially with today’s growing popularity in flex circuitry. Be sure to check out this related webinar  that touches on the impact of packaging antennas as well. If you would like more information on how these tools may be able to help you and your design, please let us know at info@padtinc.com.

You can also click here to download a copy of this example.

Presentation: Metal 3D Printing is Changing Design, Here is how Design Engineers can Adapt

Legacy Presentation Series:

The experts at PADT are often asked to speak at conferences around the country, even around the world. This is a great opportunity for us to present what we do and share what we know. The downside is that we only reach the people in the room. The solve this, we are going back and presenting past live seminars at our desks and recording them on BrightTalk. This is the first of those recordings. To find others go to our BrightTalk Channel

Metal 3D Printing systems, especially Powder Bed Fusion Additive Manufacturing machines, have made the free-form creation of metal parts directly from CAD a reality. This has freed geometry from the constraints of traditional manufacturing and reducing the product development process. 

This presentation goes over what Design Engineers need to know to adapt to the possibility and constraints of 3D Printing in metal.

View the recording here: https://www.brighttalk.com/webcast/15747/359359

Discovery Updates in ANSYS 2019 R1 – Webinar

The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.

Two key tools helping design engineers meet such demands are ANSYS Discovery AIM and ANSYS Discovery Live. ANSYS Discovery AIM seamlessly integrates design and simulation for all engineers, helping them to explore ideas and concepts in greater depth, while Discovery Live operates as an environment providing instantaneous simulation, tightly coupled with direct geometry modeling, to enable interactive design exploration.

Both tools help to accelerate product development and bring innovations to market faster and more affordably.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1. This webinar will include discussions on updates regarding: 

  • Suppression of loads, constraints, & contacts
  • Topology Optimization
  • Improving simulation speed
  • Transferring data from AIM to Discovery Live

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing ANSYS Cloud Compute – Webinar

Engineering simulation has long been constrained by fixed computing resources available on a desktop or cluster. Today, however, cloud computing can deliver the on-demand, high performance computing (HPC) capacity required for faster high-fidelity results offering greater performance insight.

ANSYS Cloud delivers the speed, power and compute capacity of cloud computing directly to your desktop — when and where you need it. You can run larger, more complex and more accurate simulations to gain more insight into your product — or you can evaluate more design variations to find the optimal design without long hardware/software procurement and deployment delays.

Join PADT’s Application & Simulation Support Engineer Sina Ghods for a look at how ANSYS is working to drive adoption by providing users a ready to use cloud service that offers: 

  • Reduced Turnaround Time
  • More Accurate Results
  • Access to More Complex/Larger Models
  • Secure Workflows
  • And Much More
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing ANSYS 2019 R1

PADT is excited to announce the release of ANSYS 2019 R1, the first group of updates for the suite of ANSYS simulation software this year. The release features updates for a wide variety of applications, including simulation for fluids, structures, electronics, 3D design, and much more.

We will be hosting a series of live webinars over the course of 2019 that will allow you to learn about what’s new in this release, from PADT’s team of expert support engineers.

Take a look at the following upcoming product update webinars for 2019 R1 and register by clicking the links below.

There is more to come, so stay tuned


Fluent Updates in ANSYS 2019 R1
Wednesday, February 13th – 11:00 am – 12:00 pm MST AZ

Computational Fluid Dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. Serious CFD, the kind that provides insights to help you optimize your designs, could be out of reach unless you choose your software carefully. Experienced engineers need to go further and faster with well-validated CFD results across a wide range of applications, and with ANSYS Fluent users are able to do just that; delivering reliable and accurate results.

Join Padt’s CFD Team Lead Engineer, Clinton Smith for a look at what new capabilities are available for the latest version of Fluent, in ANSYS 2019 R1.

Register Here


Mechanical Updates in ANSYS 2019 R1
Wednesday, March 13th – 11:00 am – 12:00 pm MST AZ

From designers and occasional users looking for quick, easy, and accurate results, to experts looking to model complex materials, large assemblies, and nonlinear behavior, ANSYS Mechanical enables engineers of all levels to get answers fast and with confidence. With applications for everything form strength analysis to topology optimization, it’s no wonder this comprehensive suite of tools continues to serve as the flagship mechanical engineering software solution.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what new capabilities are available for ANSYS Mechanical, in the latest version; 2019 R1.

Register Here


High Frequency Electromagnetics Updates in ANSYS 2019 R1
Wednesday, April 10th – 11:00 am – 12:00 pm MST AZ

In today’s world of high performance electronics and advanced electrification systems, the effects of electromagnetic fields on circuits and systems cannot be ignored. ANSYS software can uniquely simulate electromagnetic performance across component, circuit and system design, evaluating temperature, vibration and other critical mechanical effects.

Join PADT’s Electrical Engineer, Michael Griesi for a look at what new capabilities are available with regards to High Frequency Electromagnetics, in the latest version of ANSYS; 2019 R1

Register Here


Discovery Updates in ANSYS 2019 R1
Wednesday, May 8th – 11:00 am – 12:00 pm MST AZ

The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1.

Register Here


If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!


Discussing Tools for AM with Softwareconnect.com

With the substantial growth of more advanced manufacturing technologies over the past decade, the engineering world has seen additive manufacturing lead the way towards the future of innovation.


While the process of additive manufacturing, has proven to yield valuable results that can drastically reduce lead time and overall cost, without an effective design and an in-depth understanding of the process behind it end users of the tool will struggle to achieve the high-quality results they initially envisioned.

PADT’s Principle and Co-Owner Eric Miller sat down with David Budiac of Software Connect to discuss the use of software when it comes to Additive Manufacturing, including integrating MES & QMS into your process, specific steps for ensuring success with AM software.

Check out the blog post featuring notes from their discussion here.

You can also view a recording of PADT’s webinar discussing design for Additive Manufacturing below:

 

Explore the Latest Advancements in Design Engineering with ANSYS 19.2 – Webinar

Don’t miss this informative presentation – Secure your spot today!

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Don’t compromise your composite tooling design – Streamline your Sacrificial tooling with FDM

FDM Sacrificial Tooling: Using Additive Manufacturing for Sacrificial Composite Tool Production

Additive manufacturing has seen an explosion of material options in recent years. With these new material options comes significant improvements in mechanical properties and the potential for new applications that extend well beyond prototyping; one such application being sacrificial tooling.

Traditional composite manufacturing techniques work well to produce basic shapes with constant cross sections. However, complex composite parts with hollow interiors present unique manufacturing challenges. However, with FDM sacrificial tooling, no design compromise is necessary.

Download the white paper to discover how FDM sacrificial tooling can dramatically streamline the production process for complicated composite parts with hollow interiors.

This document includes insight into:

  • Building for optimal results
  • Consolidating composites
  • Finding application best fits

Best practices for composite tooling with additive manufacturing

Additively Manufactured: Best Practices for Composite Tooling with 3D Printing

The advanced composites industry has a continual need for innovative tooling solutions. Conventional tooling is typically heavy, costly and time-consuming to produce. New applications, product improvements and the demand for faster, lower-cost tool creation challenge composite product manufacturers to innovate and remain competitive.

The use of additive manufacturing (or “3D printing”), and specifically FDM, for composite tooling has demonstrated considerable cost and lead time reductions while providing numerous other advantages such as immense design freedom and rapid iteration, nearly regardless of part complexity.

Download the white paper to learn more about the various advantages and capabilities of composite tooling with additive over traditional manufacturing methods, and discover the best practices for ensuring that your composite tooling process is efficient as possible.

This document includes best practices for:

  • Testing and characterization
  • Tool Design, Production, & Use
  • Analyzing results

Getting to Know PADT: Medical Device Product Development

 This post is the thirteenth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

The development of medical devices is difficult.  The regulatory challenges, quality requirements,  and technical hurdles of dealing with the complex system that is the human body make the processes required to bring products for this industry to market unique and difficult. That is why PADT has a team in our Engineering Services department that is focused on one thing: Medical Device Development.

If you read our article on Product Development Services or watched the flashy video then you know how we do product development differently.  That our processes and staff are proven, that we are all about solving problems and using project management intelligently, all geared towards to deliver a complete solution.  Every one of those characteristis is true for our Medical Device team as well, we just add more on top to give our customers the confidence to work with us on their product development.

We sometimes get involved in projects all the way from defining specifications to coordinating with manufacturing. We also provide assistance at every step along the way: testing, concept modeling, trade studies, material evaluations, quality consulting, design for manufacturing, and testing to name just a few areas that we can help.  That is one of the things that makes PADT unique in this particular industries. Most companies will only do the full product development, whereas we serve as an outside resource for the whole thing, or only where our customers need additional help.

Solving the Tough Problems

There are a lot of medical device design companies out there.   We often get asked how we can stay busy in this industry, especially when we are not located in a hot-bed of device design and manufacturing like California, Boston, or Minneapolis.   The answer is simple.  Customers from those locations and other markets come to Tempe to work with us because we are good at solving the difficult problems.  Most of this capability comes from the skill and experience of our staff.  They know their stuff and they know how to systematically investigate and solve the most difficult problems.  They also have access to advanced tools like 3D Printing and world-class simulation in-house. Combine this with solid project management and a well-provisioned lab, and you have a winning combination.

Understanding Medical Devices

The other key requirement for anyone doing medical device product development is a thorough understanding of Medical Devices themselves. Every industry has its buzzwords and acronyms, but medical devices are in a category all their own. They are a bridge between the world of mechanical engineering and medicine, so they terminology and operating environment are different then say aerospace devices or consumer products.  To work on medical devices you have to understand all the physics, manufacturing, software, and electronics that every mechanical device needs. You also need to understand biology and treatment.  PADT’s staff walks that fine line between the two worlds and often serves as a translator between the end user (doctors and nurses) and engineering, even within our customer’s organizations.

Quality Centric

Quality is the most important, and least understood, unique aspect of Medical Device Product Development.  Any team attempting to bring a product to market who does not know ISO 13485 and the FDA requirements will fail.  We also know that Quality is a tool, not a barrier.  We understand the client’s quality system and adapt our processes as efficiently as possible to get value from the entire quality process.

Let us Engineer your Medical Device Innovations

Here is a powerpoint we put together last year with even more information:

Product development for medical devices is something we are just plain good at.  Large corporations and startups come to PADT to because we get the job done.  You can see some great case studies here that tell the story in the words of our customers.  Reach out to us via email (info@padtinc.com) or give us a call at 480.813.4884 and we can talk about how our team can help engineer your medical device innovation.

PADT-Medical-Overview-Portfolio-2018_02_13-1