Getting to Know PADT: Medical Device Product Development

 This post is the thirteenth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

The development of medical devices is difficult.  The regulatory challenges, quality requirements,  and technical hurdles of dealing with the complex system that is the human body make the processes required to bring products for this industry to market unique and difficult. That is why PADT has a team in our Engineering Services department that is focused on one thing: Medical Device Development.

If you read our article on Product Development Services or watched the flashy video then you know how we do product development differently.  That our processes and staff are proven, that we are all about solving problems and using project management intelligently, all geared towards to deliver a complete solution.  Every one of those characteristis is true for our Medical Device team as well, we just add more on top to give our customers the confidence to work with us on their product development.

We sometimes get involved in projects all the way from defining specifications to coordinating with manufacturing. We also provide assistance at every step along the way: testing, concept modeling, trade studies, material evaluations, quality consulting, design for manufacturing, and testing to name just a few areas that we can help.  That is one of the things that makes PADT unique in this particular industries. Most companies will only do the full product development, whereas we serve as an outside resource for the whole thing, or only where our customers need additional help.

Solving the Tough Problems

There are a lot of medical device design companies out there.   We often get asked how we can stay busy in this industry, especially when we are not located in a hot-bed of device design and manufacturing like California, Boston, or Minneapolis.   The answer is simple.  Customers from those locations and other markets come to Tempe to work with us because we are good at solving the difficult problems.  Most of this capability comes from the skill and experience of our staff.  They know their stuff and they know how to systematically investigate and solve the most difficult problems.  They also have access to advanced tools like 3D Printing and world-class simulation in-house. Combine this with solid project management and a well-provisioned lab, and you have a winning combination.

Understanding Medical Devices

The other key requirement for anyone doing medical device product development is a thorough understanding of Medical Devices themselves. Every industry has its buzzwords and acronyms, but medical devices are in a category all their own. They are a bridge between the world of mechanical engineering and medicine, so they terminology and operating environment are different then say aerospace devices or consumer products.  To work on medical devices you have to understand all the physics, manufacturing, software, and electronics that every mechanical device needs. You also need to understand biology and treatment.  PADT’s staff walks that fine line between the two worlds and often serves as a translator between the end user (doctors and nurses) and engineering, even within our customer’s organizations.

Quality Centric

Quality is the most important, and least understood, unique aspect of Medical Device Product Development.  Any team attempting to bring a product to market who does not know ISO 13485 and the FDA requirements will fail.  We also know that Quality is a tool, not a barrier.  We understand the client’s quality system and adapt our processes as efficiently as possible to get value from the entire quality process.

Let us Engineer your Medical Device Innovations

Here is a powerpoint we put together last year with even more information:

Product development for medical devices is something we are just plain good at.  Large corporations and startups come to PADT to because we get the job done.  You can see some great case studies here that tell the story in the words of our customers.  Reach out to us via email (info@padtinc.com) or give us a call at 480.813.4884 and we can talk about how our team can help engineer your medical device innovation.

PADT-Medical-Overview-Portfolio-2018_02_13-1

What’s New & Exciting in Mechanical Simulation – Webinar

Don’t miss this informative presentation – Secure your spot today!
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 013 – Lessons in simulation learned from Anaheim’s Pacific Design & Manufacturing Show

 

Published on: February 12, 2018
With: Joe Woodword, Tom Chadwick, Ted Harris, Eric Miller
Description: In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Joe Woodword, Tom Chadwick, and Ted Harris, for a discussion on what they learned about the world of simulation by attending this year’s Pacific Design & Manufacturing show, North America’s largest Advanced Design and Manufacturing event. This talk includes tips for a variety of ANSYS tools, along with some general “how-to” points regarding overall process that will help to ensure your simulation runs smoothly.
Listen:
Subscribe:

 

Getting to Know PADT: Product Development Services

This post is the ninth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

The “D” in PADT stands for design.  It has been an integral part of PADT’s service offering since the company was started. Design, or more broadly Product Development, is the engineer process of defining, designing, testing, prototyping and transferring the manufacturing of a product.  From concept to manufacturing, or any point in between, PADT’s engineers can help with product development.

Doing product development with PADT is about defining product requirements and then stepping the team through a proven process that iterates efficiently and results in working hardware that has been tested and verified. This approach works across industries.  We have worked on products for golfing, designed the insides of an electric vehicle fast charger, designed and built an alpha-machine for semiconductor manufacturing, reconfigured the configuration of an avionics device, developed several medical devices through clinical trials, and tested the fittings on an artificial heart.

We specialize in working with companies that have an engineering staff, but don’t have the specialization or capacity need to complete a project entirely in-house.  Our engineers become part of the customer’s team and can work on specific tasks, a subsystem of the product, or complete the entire process.  Regardless of the scope, it comes down to our providing our customers with experienced and capable engineers that can plug in where they are needed.

There are four characteristics that set PADT apart from other design houses that help with product development:

Proven

We have been providing product development services since 1994.  As of this post being published, we have 30 engineers onstaff and we have helped over 400 customers with their product development needs.  Many of those customers choose to use PADT over and over again letting us design and test their products.

Problem Solvers

What sets PADT apart from most providers of design or product development is the fact that we are problem solvers.  Product development is primarily the process of identifying problems and finding solutions. And that is what our engineers excel at and thrive on.  We are brought in by customers because we can answer the tough questions.

Project Management

It does not matter how experienced your staff is, or how amazing your tools and equipment.  To be successful in product development you need to have a proven Project Management process.  PADT’s process has been developed over decades to provide a flexible methodology to ensure requirements are defined, that they are met on time.  It drives the entire process to achieve deliverables on-time and on-budget with minimal customer oversight.

Complete Solution

Project managers and design engineers work with simulation, test, software, and manufacturing engineers to address the needs of the complete product lifecycle.  Almost every capability that is needed is available within PADT’s walls, and a tested network of approved vendors fills in any missing needs.

One of the best ways to understand these difference is to watch our video on Product Development here:

You can also review some of our great case studies:

Satellite Messaging
Device
Electric Vehicle
Fast Charger

Tissue Expander

Smart Orthopedic
Sensor

Ultrasonic Skin
Treatment Device

Compact High Pressure
Hydrogen Pump

Or, check out our brochure:

If you are developing a product of any kind, then please contact PADT so we can explore where and how we can help with that process.  Our slogan is “We Make Innovation Work.” Join over 400 other companies who have trusted PADT to make their innovation work.

Leaving CAD Embedded Simulation Behind – Webinar

With simulation driven product design and development becoming the norm in the world of manufacturing, it has become increasingly relevant for companies to stay on the cutting edge in the search of the next best thing, in order to succeed in their respective industries.

Join PADT’s Co-Owner and Principal Engineer, Eric Miller for a live presentation on the benefits of ditching your current CAD-Embedded Software for state of the art ANSYS Simulation Solutions.

This webinar will dispel common misconceptions surrounding ANSYS Software, explain how to make the move away from CAD-Embedded tools, and present highly requested topics that ANSYS can provide solutions for, such as:

  • Understanding fluid flow: accurate and fast CFD
  • Real parts that exist in assemblies
  • The importance of robust meshing
  • Advanced capabilities and faster solvers

Cellular Design Strategies in Nature: A Classification

What types of cellular designs do we find in nature?

Cellular structures are an important area of research in Additive Manufacturing (AM), including work we are doing here at PADT. As I described in a previous blog post, the research landscape can be broadly classified into four categories: application, design, modeling and manufacturing. In the context of design, most of the work today is primarily driven by software that represent complex cellular structures efficiently as well as analysis tools that enable optimization of these structures in response to environmental conditions and some desired objective. In most of these software, the designer is given a choice of selecting a specific unit cell to construct the entity being designed. However, it is not always apparent what the best unit cell choice is, and this is where I think a biomimetic approach can add much value. As with most biomimetic approaches, the first step is to frame a question and observe nature as a student. And the first question I asked is the one described at the start of this post: what types of cellular designs do we find in the natural world around us? In this post, I summarize my findings.

Design Strategies

In a previous post, I classified cellular structures into 4 categories. However, this only addressed “volumetric” structures where the objective of the cellular structure is to fill three-dimensional space. Since then, I have decided to frame things a bit differently based on my studies of cellular structures in nature and the mechanics around these structures. First is the need to allow for the discretization of surfaces as well: nature does this often (animal armor or the wings of a dragonfly, for example). Secondly, a simple but important distinction from a modeling standpoint is whether the cellular structure in question uses beam- or shell-type elements in its construction (or a combination of the two). This has led me to expand my 4 categories into 6, which I now present in Figure 1 below.

Figure 1. Classification of cellular structures in nature: Volumetric – Beam: Honeycomb in bee construction (Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring), Lattice structure in the Venus flower basket sea sponge (Neon); Volumetric – Shell: Foam structure in douglas fir wood (U.S. National Archives and Records Administration), Periodic Surface similar to what is seen in sea urchin skeletal plates (Anders Sandberg); Surface: Tessellation on glypotodon shell (Author’s image), Scales on a pangolin (Red Rocket Photography for The Children’s Museum of Indianapolis)

Setting aside the “why” of these structures for a future post, here I wish to only present these 6 strategies from a structural design standpoint.

  1. Volumetric – Beam: These are cellular structures that fill space predominantly with beam-like elements. Two sub-categories may be further defined:
    • Honeycomb: Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Fig 1. All cross-sections through the 3rd dimension are thus identical. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs.
    • Lattice and Open Cell Foam: Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional lattice or open-cell foam. Lattice designs tend to embody higher stiffness levels while open cell foams enable energy absorption, which is why these may be further separated, as I have argued before. Nature tends to employ both strategies at different levels. One example of a predominantly lattice based strategy is the Venus flower basket sea sponge shown in Fig 1, trabecular bone is another example.
  2. Volumetric – Shell:
    • Closed Cell Foam: Closed cell foams are open-cell foams with enclosed cells. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures. Plant sections often reveal a closed cell foam, such as the douglas fir wood structure shown in Fig 1.
    • Periodic Surface: Periodic surfaces are fascinating mathematical structures that often have multiple orders of symmetry similar to crystalline groups (but on a macro-scale) that make them strong candidates for design of stiff engineering structures and for packing high surface areas in a given volume while promoting flow or exchange. In nature, these are less commonly observed, but seen for example in sea urchin skeletal plates.
  3. Surface:
    • Tessellation: Tessellation describes covering a surface with non-overlapping cells (as we do with tiles on a floor). Examples of tessellation in nature include the armored shells of several animals including the extinct glyptodon shown in Fig 1 and the pineapple and turtle shell shown in Fig 2 below.
    • Overlapping Surface: Overlapping surfaces are a variation on tessellation where the cells are allowed to overlap (as we do with tiles on a roof). The most obvious example of this in nature is scales – including those of the pangolin shown in Fig 1.
Figure 2. Tessellation design strategies on a pineapple and the map Turtle shell [Scans conducted at PADT by Ademola Falade]

What about Function then?

This separation into 6 categories is driven from a designer’s and an analyst’s perspective – designers tend to think in volumes and surfaces and the analyst investigates how these are modeled (beam- and shell-elements are at the first level of classification used here). However, this is not sufficient since it ignores the function of the cellular design, which both designer and analyst need to also consider. In the case of tessellation on the skin of an alligator for example as shown in Fig 3, was it selected for protection, easy of motion or for controlling temperature and fluid loss?

Figure 3. Varied tessellation on an alligator conceals a range of possible functions (CCO public domain)

In a future post, I will attempt to develop an approach to classifying cellular structures that derives not from its structure or mechanics as I have here, but from its function, with the ultimate goal of attempting to reconcile the two approaches. This is not a trivial undertaking since it involves de-confounding multiple functional requirements, accounting for growth (nature’s “design for manufacturing”) and unwrapping what is often termed as “evolutionary baggage,” where the optimum solution may have been sidestepped by natural selection in favor of other, more pressing needs. Despite these challenges, I believe some first-order themes can be discerned that can in turn be of use to the designer in selecting a particular design strategy for a specific application.

References

This is by no means the first attempt at a classification of cellular structures in nature and while the specific 6 part separation proposed in this post was developed by me, it combines ideas from a lot of previous work, and three of the best that I strongly recommend as further reading on this subject are listed below.

  1. Gibson, Ashby, Harley (2010), Cellular Materials in Nature and Medicine, Cambridge University Press; 1st edition
  2. Naleway, Porter, McKittrick, Meyers (2015), Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 27(37), 5455-5476
  3. Pearce (1980), Structure in Nature is a Strategy for Design, The MIT Press; Reprint edition

As always, I welcome all inputs and comments – if you have an example that does not fit into any of the 6 categories mentioned above, please let me know by messaging me on LinkedIn and I shall include it in the discussion with due credit. Thanks!

Discover the Power of Pervasive Simulation – ANSYS R 18

Introducing the Release of ANSYS 18

Manufacturing is undergoing the most fundamental transformation since the introduction of the assembly line. Trends like the Internet of Things, additive manufacturing and machine learning are merging the physical and digital worlds, resulting in products that defy imagination.

Join the new CEO of ANSYS, Ajei Gopal, and visionary customers

CumminsNebia,OticonMetso, and GE Digital as they demonstrate the power of pervasive simulation, available in the release of ANSYS 18.

Attend this webinar to learn:

  • How you can use digital exploration to quickly evaluate changes in design, reducing development costs and preventing late-stage design changes
  • How digital prototyping enables you to provide insights into real-world product performance, test “what-if” scenarios and ensure optimal designs
  • How simulation is moving downstream of the product life-cycle through the use of digital twins to increase efficiency and to decrease unplanned downtime

Stay tuned as we will be covering the new additions in ANSYS 18 over the next few months.

ANSYS Startup Roadshow – November 18th, Phoenix AZ

Phoenix!

The Co-Owner of PADT, Inc. Eric Miller will be at The Gateway Center for Entrepreneurial Innovation (CEI) this Friday, November 18th, from 12-1pm to discuss how ANSYS software is helping new entrepreneurs drive success through simulation.

This is a free event, and while registration is not required it is preferred.

The presentation will include a discussion on:

  • What simulation is and how it can be applied to product development

  • How partnering with PADT and ANSYS can be crucial to the success of a startup
  • How using ANSYS software will help deliver ideas to market more rapidly and cost effectively. Thus saving money, time, and increasing the probability of success.

Click Here for directions and additional registration information.

Eric will also be presenting information on the ANSYS Startup Program, which provides entrepreneurs with access to various ANSYS multiphysics simulation products bundled and priced specifically for early stage startup companies.

Acceptance to this program is limited to companies who are not current ANSYS customers and meet a variety of qualifications.

Those who are eligible will also receive access to the ANSYS Customer Portal for marketing opportunities and customer support.

Visit Padtinc.com/ANSYS_Startup to see if you qualify for this program, or Click Here to register to attend the startup presentation on November 18th.

We look forward to seeing you there

Digital Engineering: Fast-Forwarding Next-Generation Product Development

digital_engineering_logoNothing beats seeing a product we were part of hit the shelves, except seeing that product become a success.  The Globalstar Spot3 project was even better because we were able to apply the full range of PADT’s capabilities to contribute to this success: Product Development, Simulation, and 3D Printing.

In “Fast-Forwarding Next-Generation Product Development” PADT’s Mike Landis outlines how we applied leading edge technology and a proven process to quickly develop Globalstar’s next-generation design, not just for performance but also for manufactuing.  The article is a great overview of the service PADT has to offer and how we partner with customers to make their innovation work.

If you have a new generation of an existing product line, or a brand new product under development and want a better product to market faster, PADT is here to help with our design, simulation, 3D Printing, test, and manufacturing expertise.  Just give us a call at 1-800-293-PADT or email info@paditnc.com.

 

The Additive Manufacturing Cellular Solids Research Landscape

I am writing this post after visiting the 27th SFF Symposium, a 3-day Additive Manufacturing (AM) conference held annually at the University of Texas at Austin. The SFF Symposium stands apart from other 3D printing conferences held in the US (such as AMUG, RAPID and Inside3D) in the fact that about 90% of the attendees and presenters are from academia. This year had 339 talks in 8 concurrent tracks and 54 posters, with an estimated 470 attendees from 20 countries – an overall 50% increase over the past year.

As one would expect from a predominantly academic conference, the talks were deeper in their content and tracks were more specialized. The track I presented in (Lattice Structures) had a total of 15 talks – 300 minutes of lattice talk, which pretty much made the conference for me!

In this post, I wish to summarize the research landscape in AM cellular solids at a high level: this classification dawned on me as I was listening to the talks over two days and taking in all the different work going on across several universities. My attempt in this post is to wrap my arms around the big picture and show how all these elements are needed to make cellular solids a routine design feature in production AM parts.

Classification of Cellular Solids

First, I feel the need to clarify a technicality that bothered me a wee bit at the conference: I prefer the term “cellular solids” to “lattices” since it is more inclusive of honeycomb and all foam-like structures, following Gibson and Ashby’s 1997 seminal text of the same name. Lattices are generally associated with “open-cell foam” type structures only – but there is a lot of room for honeycomb structures and close-cell foams, each having different advantages and behaviors, which get excluded when we use the term “lattice”.

CellularSolids
Figure 1. Classification of Cellular Solids [Gibson & Ashby, 1997]

The AM Cellular Solids Research Landscape

The 15 papers at the symposium, and indeed all my prior literature reviews and conference visits, suggested to me that all of the work in this space falls into one or more of four categories shown in Figure 2. For each of the four categories (design, analysis, manufacturing & implementation), I have listed below the current list of capabilities (not comprehensive), many of which were discussed in the talks at SFF. Further down I list the current challenges from my point of view, based on what I have learned studying this area over the past year.

AMcellular
Figure 2. AM Cellular Solid Research Landscape

Over the coming weeks I plan to publish a post with more detail on each of the four areas above, summarizing the commercial and academic research that is ongoing (to the best of my knowledge) in each area. For now, I provide below a brief elaboration of each area and highlight some important research questions.

1. Representation (Design)

This deals with how we incorporate cellular structures into our designs for all downstream activities. This involves two aspects: the selection of the specific cellular design (honeycomb or octet truss, for example) and its implementation in the CAD framework. For the former, a key question is: what is the optimum unit cell to select relative to performance requirements, manufacturability and other constraints? The second set of challenges arises from the CAD implementation: how does one allow for rapid iteration with minimal computational expense, how do cellular structures cover the space and merge with the external skin geometry seamlessly?

2. Optimization (Analysis)

Having tools to incorporate cellular designs is not enough – the next question is how to arrange these structures for optimum performance relative to specified requirements? The two most significant challenges in this area are performing the analysis at reasonable computational expense and the development of material models that accurately represent behavior at the cellular structure level, which may be significantly different from the bulk.

3. Realization (Manufacturing)

Manufacturing cellular structures is non-trivial, primarily due to the small size of the connecting members (struts, walls). The dimensions required are often in the order of a few hundred microns and lower, which tends to push the capabilities of the AM equipment under consideration. Additionally, in most cases, the cellular structure needs to be self-supporting and specifically for powder bed fusion, must allow for removal of trapped powder after completion of the build. One way to address this is to develop a map that identifies acceptable sizes of both the connecting members and the pores they enclose. For this, we need robust ways of monitoring quality of AM cellular solids by using in-situ and Non-Destructive techniques to guard against voids and other defects.

4. Application (Implementation)

Cellular solids have a range of potential applications. The well established ones include increasing stiffness-to-weight ratios, energy absorption and thermal performance. More recent applications include improving bone integration for implants and modulating stiffness to match biological distributions of material (biomimicry), as well as a host of ideas involving meta-materials. The key questions here include how do we ensure long term reliability of cellular structures in their use condition? How do we accurately identify and validate these conditions? How do we monitor quality in the field? And how do we ensure the entire life cycle of the product is cost-effective?

So What?

I wrote this post for two reasons: I love to classify information and couldn’t help myself after 5 hours of hearing and thinking about this area. But secondly, I hope it helps give all of us working in this space context to engage and communicate more seamlessly and see how our own work fits in the bigger picture.

A lot of us have a singular passion for the overlapping zone of AM and cellular solids and I can imagine in a few years we may well have a conference, an online journal or a forum of some sort just dedicated to this field – in fact, I’d love to assess interest in such an effort or an equivalent collaborative exercise. If this idea resonates with you, please connect with me on LinkedIn and drop me a note, or send us an email (info@padtinc.com) and cite this blog post so it finds its way to me.

Synergy in Action, or How PADT is More than the Sum of its Parts

PADT-Company-Photo-2016-01-600wPADT talks a lot about synergy as a key strength and a key element of the value we provide to our customers. Our three departments, Manufacturing, Services, and Sales, are in constant communication, always leveraging one another’s expertise to solve problems. Strong internal relationships — a consequence of being under the same roof — precipitate easy and abundant information and resource sharing. Communication, paradigm, alignment, synergy: clear as day.

But what does any of that mean?

When a PADT product development customer meets us for the first time, he or she may be shown a slide that looks like this:

synergy-f01

Strong bilateral communication among the Product Development, 3D Printing, and Analysis groups means that the project is enriched by contributions from experts across several fields, multiplying the value we add in the development process. For instance, the product will likely someday run into a sticky problem without a clear solution. PADT can attack it from multiple angles, such as design adjustment, finite element analysis (FEA) optimization, and the iterative testing of 3D printed prototypes.

Ok, but still: what does any of that mean?

A longtime customer of PADT’s product development group recently ran into an urgent problem without a clear path to a solution. Their manufacturing partner called them and said that a particular subassembly in their design will cost three times more than expected, which would raise the price of the product above the maximum the market would bear. PADT was presented with the problem: how do we reduce the subassembly cost by 66% while maintaining overall performance, and how do we confidently select a solution in under a week?

PADT’s three engineering groups jumped in to help.

The Product Development group held a brainstorming session and came out with two adjustments to bring overall cost down. First, the subassembly of three bonded unique steel parts would be replaced by a single injection molded plastic part. This change reduces component cost to within the target, but also significantly reduces the final assembly’s structural integrity.

synergy-f02
Reduction of 3 parts to 1 part

Secondly, a plastic stiffener truss was added between components to mitigate the reduction in overall stiffness. This change adds a little assembly cost, but also significantly increases the final assembly’s structural integrity, which had been weakened by the first change.

synergy-f03
Addition of Stiffening Member

The Analysis group conducted a series of FEA simulations, first to determine the increased bending under load and second to select a material to balance the conflicting requirements for stiffness, strength, and cost. After multiple simulation iterations, it was determined that Product Development had selected a permissible path forward and that a glass-filled polypropylene provides the best combination of the three parameters.

synergy-f04
Bending under load for Material Choices 1, 2, and 3

The 3D Printing group then printed the new design for qualitative “look and feel” testing and quantitative force/deflection study. The group was able to closely match the properties of the selected material from their collection of printable filaments and top-shelf industrial printers, reproducing even the fine details — subtle fillets, radii — that boost strength but are missed with lower quality printers. Through prototype tests, it was determined that Analysis selected an appropriate material and Product Development selected an appropriate design.

In the end, PADT was able to confidently select a solution to the customer’s unique cost problem in under a week. Thanks to the synergy of three groups — Product Development, Analysis, and 3D Printing — the customer was able to stay on schedule and enter the market at a relevant price.

So how can PADT help my product?

PADT’s system for delivering services is a textbook example of synergy in action, and it represents a uniquely effective solution to your company’s product problems. Whether you’re in concept design or high-volume production, PADT will tailor-make a solution that fits your budget, schedule, and technical requirements.
Give us a call at 1–800–293-PADT or email info@padtinc.com.

Video: Product Development with PADT: How We Make Innovation Work

thumbnailProduct Development is a key part of what PADT does, but we often struggle with sharing what we do in this area and why we do it better. We are engineers.  To help, we put together this video that asks our engineers the key questions that customers ask every day, and their answers truly do show how “We Make Innovation Work.”

See something you like or have more questions, give us a call at 1-800-293-PADT or email info@padtinc.com.

A big thanks to TechTHiNQ and CEI for producing this video.

Arizona Chief Science Officers Design Their Own 3D Printed Name Badges

az-scitech-cso-badges-3d-printed-0The Chief Science Officer program is a program for 6th-12th grade students to represent their school in STEM. And what better way is there for them to identify themselves then with 3D Printed name badges?  The program’s sponsors, the AZ SciTech Festival offer a training retreat for the kids who get elected as their school’s CSO and we all thought introducing design and 3D Printing would be a great activity.

As part of the 2015 Fall CSO Institute, PADT’s Jeff Nichols joined local designer and artist John Drury to spend some time with the kids explaining how to work with logos and shapes to convey an idea, and how to design for 3D Printing.  The kids worked out their own design and sent it to PADT for printing.

We converted their sketch into a 3D Model, starting in Adobe Illustrator. The sketch was traced with vector geometry and then a generic name was added. This was then copied 144 times and each name was typed in, with a few extras. This step was the only boring part.

az-scitech-cso-badges-3d-printed-6

The design worked great because it is a simple extrusion with no need for support material.    The outline of their names were exported as DXF from Illustrator and then imported onto the 3D Model and extruded up to make a solid model of a badge. This was then copied to make a badge for each student. Then the names were imported and extruded on the patterned badges.

az-scitech-cso-badges-3d-printed-5
The was a simple extrusion for each feature, allowing for contrast and readability but keeping things simple.
az-scitech-cso-badges-3d-printed-4
This project was a great opportunity to use both patterns and importing 2D drawings. By laying everything out in a grid, we only had to make one badge and copy that. Then import the names and extrude those on the patterned badges.

STL files were then made and sent off to one of our Stratasys FDM 3D Printers. The FDM (Fused Deposition Modeling) process extrudes an ABS plastic filament, and you can change material during the build. So, to add a bit of contrast, we changed the filament color after the base of the design was done, making the logo and student names stand out.  The final results came out really nice.

az-scitech-cso-badges-3d-printed-1
This is what they look like right out of the machine. We swapped out two color for each build. With some clever packing, we were able to get 12 badges on each platform.
az-scitech-cso-badges-3d-printed-2
The final products really stand out.

az-scitech-cso-badges-3d-printed-3

This project was a lot of fun because we were able to work with the students. They got what John and Jeff taught them and did a great job.  We know they will be placed with pride on back backs and jackets across Arizona.

To learn more about the CSO program, visit their website: http://chiefscienceofficers.org/ Check out the blog.  Some of these kids can really write well and their insight into Science, Technology, Math, and Education is insightful.

Seminar Info: Designing and Simulating Products for 3D Printing

Note: We have scheduled an encore Lunch & Learn and companion Webinar for March 23, 2015.  Please register here to attend in person at CEI in Phoenix or here to attend via the web.

ds43dp-1People are interested in how to better do design and simulation for products they manufacture using 3D Printing.  When the AZ Tech council let us know they had a cancelation for their monthly manufacturing Lunch and Learn, we figured why not do something on this topic, a few people might show up. We had over 105 people register, so we had to close registration. In the end around 95 total people made it to the seminar, which is more than expected so we had to add chairs. Who would have thought that many people would come for such a nerdy topic?.

For an hour and fifteen minutes they sat and listned to us talk about the ins and outs of using this growing technology to make end use parts.  Here is a copy of the PowerPoint as a PDF.

We did add one bullet item in the design suggestions area based on a question. Someone pointed out that the machine instructions, what the AM machine uses to make the parts, should be a controlled document. They are exactly right and that is a very important process that needs to be put in place to get traceability and repeatability.  

Here are some useful links:

As always, do not hesitate to contact us for more information or with any questions.

If you missed this presentation, don't worry, we are looking to schedule a live/web version of this talk with some enhancements sometime in March.  Watch the usual channels for time, place, and registration information. We will also be publishing detailed blog posts on many of the topics covered today, diving deeper into areas of interest.

Thank you to the AZ Tech Council, ASU SkySong, and everyone that attended for making this our best attended non-web seminar ever.

Design and Simulation for 3D Printing Full House

Build the “Right” Product

Successful product commercialization is achieved when the product development process is integrated with customer development and is executed by an experienced team and organized by an effective process. At PADT we have spent the last 20 years building our team, establishing our infrastructure, and honing our processes. One of the key processes that strongly affect the outcome of a product development effort is the process of establishing product/market requirements. The idealized product development process that we use is shown below and the establishment of requirements is shown as the first development activity box.

product-development-process

Establishing requirements insures that we develop the “Right” product. Building the “Right” product means working closely with clients to understand what the end customers want and are willing to pay for. It also means testing the market by building prototypes early and validating design choices with end customers.

At PADT we have found it very effective to get with customers from the very first meeting to establish these market and product requirements. Even if you are part of a large organization and do not work directly with external customers, we recommend that you adopt a methodology that captures and documents market and product requirements as early as possible, and that you evaluate your design against these requirements through the development process. 

 One way we do this is by asking questions about the product from many perspectives as illustrated by the wheel below. By looking at the product from each of these perspectives, we capture important requirements, avoid late stage product revision, and end up with the “Right” product.

product-development-questions

A question based approach is effective because it opens up everyone involved to looking beyond their initial assumption. The more traditional method of making a list of requirements, often results in requirements from the point of view of the person making the list. By questioning the customer, or proxy customer, from these different points of view, the team looks at things in new and different way and this captures more realistic and comprehensive requirements.

product-development-examples-PADTVisit our case studies page to see examples of how our approach has been used across a wide variety of industries.

The best way to understand the benefits of properly building the right process by establishing product/market requirements is to partner with PADT on your next product development project.