Introducing the All-new Ansys Discovery

Leveraging the all-new Ansys Discovery product early in your product design processes will drive substantial gains in engineering productivity, spur innovation and increase your product’s overall performance.

And we can prove it.

Register Here: https://bit.ly/3fV40gK

Join #Ansys on July 29th, 11:00 am EDT for this virtual launch event where visionary leaders will deliver dynamic insights on the product, perform cutting-edge technology demonstrations and share real-world customer successes.

Revolutionizing the Way Data Moves Through Space with Ansys Simulation – Webinar

Ever since NASA began its race to space, U.S. technology companies have searched for solutions to solve a variety of challenges designed to push us further in our exploration of the stars. Whether the purpose is for space travel or for launching satellites that track weather patterns, space innovation is gaining momentum. One of the most critical challenges we are trying to solve is how to optimize communication with moving spacecrafts. Tucson Arizona’s FreeFall Aerospace has an answer; developing unique antenna systems for both space and ground use.

When working to develop this technology, FreeFall ran into a number of roadblocks due to limitations in its engineering software tool-set. The company was able to bypass these hurdles and successfully optimize development thanks to the introduction of Ansys HFSS, a specialized 3D electromagnetic software used for designing and simulating high-frequency electronic products such as antennas, antenna arrays, RF/microwave components, and much more. Because of the speed of this tool and its ability to solve multiple simulation challenges in different domains, FreeFall is able to make design changes more quickly and with better data.

Join PADT’s Lead Electromagnetics Engineer Michael Griesi and President of FreeFall, Doug Stetson for a discussion on Ansys electromagnetics offerings, and how FreeFall is able to take advantage of them for their unique application.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Five Ways to Save Time and Money in Your Product Development Process Using the Stratasys J55

Is your current prototyping process costing you more time and money than it should?

Bring higher quality modeling in-house at your team’s elbow, and straight into the design process. Using traditional production methods is costing your product development teams time and money.

Quality model shops have a long queue and large price tag, traditional modeling by hand is laborious and time consuming, and outsourcing comes with a laundry list of communication headaches, IP theft concerns, and extra costs.


Ready to learn more?


Make communication easier, improve design quality, and reduce time to market.

Click the link below to download the solution guide and discover five ways the Stratasys J55 can help you save time and money during the product development process. 

Download Here

Designing Better Rocket Engines with Ansys – Webinar

In 2017 Colorado based company Ursa Major Technologies put together an expert team of designers and engineers to realize its vision of providing the microsatellite industry with the best rocket engines in the business. Utilizing Ansys simulation software, additive manufacturing, and modernizing staged combustion, the company successfully designed and built two liquid oxygen and kerosene engines and has a third engine in development.

With Ansys, Ursa Major Technologies is accomplishing design goals faster and more efficiently than ever before. Using Finite Element Analysis (FEA), the company can run models with 30-40 unique parts to analyze entire turbo pumps in one simulation. Thrust analysis, which the company had previously done with 2D models, can now be done all in the Ansys CFX tool more cost-effectively.

Join PADT and Ursa Major Technologies for a brief overview of applications for Ansys in the aerospace industry, followed by an exploration of how they are using these simulation tools to better design and optimize the next generation of rocket engines.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing the Stratasys J55 3D Printer – Possibilities at Every Turn

From perfecting products to applying concepts learned in the classroom, Stratasys can help you realize any number of design ideas. The new J55 introduces a rotating print platform for outstanding surface finish and printing quality, and features multimaterial capabilities and material configurations for both industrial and mechanical design.

The Stratasys J55 3D Printer is a huge leap forward for accessible, full color 3D printing and allows designers to have multiple iterations of a prototype ready and at their fingertips throughout every phase of the design process.

Enhanced 3D printing capabilities include – static print head, rotating build tray, UV LED illumination technology, new material cartridge design, and more. The full reliability and quality of PolyJet technology created for an office or studio environment, at an affordable price.

Designed for consistent, stable performance, the J55 requires zero mechanical calibrations and features a “ready-to-print” mode, so you can make ideas a reality without interruption.

Click the link below to download the product brochure and learn how this innovative new machine is revolutionizing the world of additive manufacturing. 

Making Sense of DC IR Results in Ansys SIwave

In this article I will cover a Voltage Drop (DC IR) simulation in SIwave, applying realistic power delivery setup on a simple 4-layer PCB design. The main goal for this project is to understand what data we receive by running DC IR simulation, how to verify it, and what is the best way of using it.

And before I open my tools and start diving deep into this topic, I would like to thank Zachary Donathan for asking the right questions and having deep meaningful technical discussions with me on some related subjects. He may not have known, but he was helping me to shape up this article in my head!

Design Setup

There are many different power nets present on the board under test, however I will be focusing on two widely spread nets +1.2V and +3.3V. Both nets are being supplied through Voltage Regulator Module (VRM), which will be assigned as a Voltage Source in our analysis. After careful assessment of the board design, I identified the most critical components for the power delivery to include in the analysis as Current Sources (also known as ‘sinks’). Two DRAM small outline integrated circuit (SOIC) components D1 and D2 are supplied with +1.2V. While power net +3.3V provides voltage to two quad flat package (QFP) microcontrollers U20 and U21, mini PCIE connector, and hex Schmitt-Trigger inverter U1.

Fig. 1. Power Delivery Network setting for a DC IR analysis

Figure 1 shows the ‘floor plan’ of the DC IR analysis setup with 1.2V voltage path highlighted in yellow and 3.3V path highlighted in light blue.

Before we assign any Voltage and Current sources, we need to define pin groups for all nets +1.2V, +3.3V and GND for all PDN component mentioned above. Having pin groups will significantly simplify the reviewing process of the results. Also, it is generally a good practice to start the DC IR analysis from the ‘big picture’ to understand if certain component gets enough power from the VRM. If a given IC reports an acceptable level of voltage being delivered with a good margin, then we don’t need to dig deeper; we can instead focus on those which may not have good enough margins.

Once we have created all necessary pin groups, we can assign voltage and current sources. There are several ways of doing that (using wizard or manual), for this project we will use ‘Generate Circuit Element on Components’ feature to manually define all sources. Knowing all the components and having pin groups already created makes the assignment very straight-forward. All current sources draw different amount of current, as indicated in our setting, however all current sources have the same Parasitic Resistance (very large value) and all voltage source also have the same Parasitic Resistance (very small value). This is shown on Figure 2 and Figure 3.

Note: The type of the current source ‘Constant Voltage’ or ‘Distributed Current’ matters only if you are assigning a current source to a component with multiple pins on the same net, and since in this project we are working with pins groups, this setting doesn’t make difference in final results.

Fig. 2. Voltage and Current sources assigned
Fig. 3. Parasitic Resistance assignments for all voltage and current sources

For each power net we have created a voltage source on VRM and multiple current sources on ICs and the connector. All sources have a negative node on a GND net, so we have a good common return path. And in addition, we have assigned a negative node of both voltage sources (one for +1.2V and one for +3.3V) as our reference points for our analysis. So reported voltage values will be referenced to that that node as absolute 0V.

At this point, the DC IR setup is complete and ready for simulation.

Results overview and validation

When the DC IR simulation is finished, there is large amount of data being generated, therefore there are different ways of viewing results, all options are presented on Figure 4. In this article I will be primarily focusing on ‘Power Tree’ and ‘Element Data’. As an additional source if validation we may review the currents and voltages overlaying the design to help us to visualize the current flow and power distribution. Most of the time this helps to understand if our assumption of pin grouping is accurate.

Fig. 4. Options to view different aspects of DC IR simulated data

Power Tree

First let’s look at the Power Tree, presented on Figure 5. Two different power nets were simulated, +1.2V and +3.3V, each of which has specified Current Sources where the power gets delivered. Therefore, when we analyze DC IR results in the Power tree format, we see two ‘trees’, one for each power net. Since we don’t have any pins, which would get both 1.2V and 3.3V at the same time (not very physical example), we don’t have ‘common branches’ on these two ‘trees’.

Now, let’s dissect all the information present in this power tree (taking in consideration only one ‘branch’ for simplicity, although the logic is applicable for all ‘branches’):

  • We were treating both power nets +1.2V and +3.3V as separate voltage loops, so we have assigned negative nodes of each Voltage Source as a reference point. Therefore, we see the ‘GND’ symbol ((1) and (2)) for each voltage source. Now all voltage calculations will be referenced to that node as 0V for its specific tree.
  • Then we see the path from Voltage Source to Current Source, the value ΔV shows the Voltage Drop in that path (3). Ultimately, this is the main value power engineers usually are interested in during this type of analysis. If we subtract ΔV from Vout we will get the ‘Actual Voltage’ delivered to the specific current source positive pin (1.2V – 0.22246V = 0.977V). That value reported in the box for the Current Source (4). Technically, the same voltage drop value is reported in the column ‘IR Drop’, but in this column we get more details – we see what the percentage of the Vout is being dropped. Engineers usually specify the margin value of the acceptable voltage drop as a percentage of Vout, and in our experiment we have specified 15%, as reported in column ‘Specification’. And we see that 18.5% is greater than 15%, therefore we get ‘Fail_I_&_V’ results (6) for that Current Source.
  • Regarding the current – we have manually specified the current value for each Current Source. Current values in Figure 2 are the same as in Figure 5. Also, we can specify the margin for the current to report pass or fail. In our example we assigned 108A as a current at the Current Source (5), while 100A is our current limit (4). Therefore, we also got failed results for the current as well.
  • As mentioned earlier, we assigned current values for each Current Source, but we didn’t set any current values for the Voltage Source. This is because the tool calculates how much current needs to be assigned for the Voltage Source, based on the value at the Current Sources. In our case we have 3 Current Sources 108A, 63A, 63A (5). The sum of these three values is 234A, which is reported as a current at the Voltage Source (7). Later we will see that this value is being used to calculate output power at the Voltage Source.  
Fig. 5. DC IR simulated data viewed as a ‘Power Tree’

Element Data

This option shows us results in the tabular representation. It lists many important calculated data points for specific objects, such as bondwire, current sources, all vias associated with the power distribution network, voltage probes, voltage sources.

Let’s continue reviewing the same power net +1.2V and the power distribution to CPU1 component as we have done for Power Tree (Figure 5). The same way we will be going over the details in point-by-point approach:

  • First and foremost, when we look at the information for Current Sources, we see a ‘Voltage’ value, which may be confusing. The value reported in this table is 0.7247V (8), which is different from the reported value of 0.977V in Power Tree on Figure 5 (4). The reason for the difference is that reported voltage value were calculated at different locations. As mentioned earlier, the reported voltage in the Power Tree is the voltage at the positive pin of the Current Source. The voltage reported in Element Data is the voltage at the negative pin of the Current Source, which doesn’t include the voltage drop across the ground plane of the return path.

To verify the reported voltage values, we can place Voltage Probes (under circuit elements). Once we do that, we will need to rerun the simulation in order to get the results for the probes:

  1. Two terminals of the ‘VPROBE_1’ attached at the positive pin of Voltage Source and at the positive pin of the Current Source. This probe should show us the voltage difference between VRM and IC, which also the same as reported Voltage Drop ΔV. And as we can see ‘VPROBE_1’ = 222.4637mV (13), when ΔV = 222.464mV (3). Correlated perfectly!
  2. Two terminals of the ‘VPROBE_GND’ attached to the negative pin of the Current Source and negative pin of the Voltage Source. The voltage shown by this probe is the voltage drop across the ground plane.

If we have 1.2V at the positive pin of VRM, then voltage drops 222.464mV across the power plane, so the positive pin of IC gets supplied with 0.977V. Then the voltage at the Current Source 0.724827V (8) being drawn, leaving us with (1.2V – 0.222464V – 0.724827V) = 0.252709V at the negative pin of the Current Source. On the return path the voltage drops again across the ground plane 252.4749mV (14) delivering back at the negative pin of VRM (0.252709V – 0.252475V) = 234uV. This is the internal voltage drop in the Voltage Source, as calculated as output current at VRM 234A (7) multiplied by Parasitic Resistance 1E-6Ohm (Figure 3) at VRM. This is Series R Voltage (11)

  • Parallel R Current of the Current source is calculated as Voltage 724.82mV (8) divided by Parasitic Resistance of the Current Source (Figure 3) 5E+7 Ohm = 1.44965E-8 (9)
  • Current of the Voltage Source report in the Element Data 234A (10) is the same value as reported in the Power Tree (sum of all currents of Current Sources for the +1.2V power net) = 234A (7). Knowing this value of the current we can multiple it by Parasitic Resistance of the Voltage Source (Figure 3) 1E-6 Ohm = (234A * 1E-6Ohm) = 234E-6V, which is equal to reported Series R Voltage (11). And considering that the 234A is the output current of the Voltage Source, we can multiple it by output voltage Vout = 1.2V to get a Power Output = (234A * 1.2V) = 280.85W (12)
Fig. 6. DC IR simulated data viewed in the table format as ‘Element Data’

In addition to all provided above calculations and explanations, the video below in Figure 7 highlights all the key points of this article.

Fig. 7. Difference between reporting Voltage values in Power Tree and Element Data

Conclusion

By carefully reviewing the Power Tree and Element Data reporting options, we can determine many important decisions about the power delivery network quality, such as how much voltage gets delivered to the Current Source; how much voltage drop is on the power net and on the ground net, etc. More valuable information can be extracted from other DC IR results options, such as ‘Loop Resistance’, ‘Path Resistance’, ‘RL table’, ‘Spice Netlist’, full ‘Report’. However, all these features deserve a separate topic.

As always, if you would like to receive more information related to this topic or have any questions please reach out to us at info@padtinc.com.

Test, Design & Analyze From Home With Ansys Simulation Software – Webinar

As companies are closing their doors in order to help ensure the health and safety of their employees and customers, those that can are pivoting to working form home.

But what about those working on product design, testing, and analysis that require a physical presence?

Here at PADT we know that the show must go on, and companies working across various technical professions are needed to keep the world moving forward, especially in these trying times. Thus we would like to introduce a solution: Ansys Engineering Simulation Software.

Join The PADT team for a panel discussion on how you can use simulation to move your in-person workflow to a digital environment, as well as what specific Ansys tools can be used to access your work from home.

All of this will be followed by a live Q&A in which our expert staff will take any questions regarding your specific concerns with transitioning your workflow and all other things related to working from home.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing the Stratasys J826 – Full-color, multi-material printing for the enterprise design world

Taking risks attempting to capture design intent at the end of the process requires a lot of post-processing (coloring, assemblies, a mix of technologies, etc.) – when its too time consuming, expensive and late to make changes or correct errors. Stratasys PolyJet 3D printing technology is developed to elevate designs by realizing ideas more quickly and more accurately and taking color copies to the next level.

By putting realistic models in a designer’s hands earlier in the process, companies can promote better decisions and a superior final product. Now, with the Stratasys J8 Series, the same is true for prototypes. This tried and tested technology simplifies the entire design process, streamlining workflows so you can spend more time on what matters –creating, refining, and designing the best product possible.

PADT is excited to introduce the new Stratasys J826 3D printer 

Based on J850 technology, the J826 supplies the same end-to-end solution for the design process and ultra-realistic simulation at a lower price point.
Better communicate design intent and drive more confident results with prototypes that realistically portray an array of design alternatives.

The Stratasys J826 3D Printer is able to deliver realism, shorter time to market, and streamlined application thanks to a variety of unique attributes that set it apart from most other Polyjet printers:

  • High Quality – The J826 can accurately print smaller features at a layer thickness of 14µm to 27µm. As part of the J8 series of printers it is also capable of printing in ultra-realistic Pantone validated colors.
  • Speed & Productivity – Three printing speed modes (high speed, high quality & high mix) allows the J826 to always operate at the most efficient speed for each print. It can also avoid unnecessary down-time associate with material changeovers thanks to it’s built-in material cabinet and workstation.
  • Easy to Use – A smooth workflow with the J826 comes from simple integration with the CAD format of your choice, as well as a removable tray for easy clean up, and automated support creation and removal.

Are you ready to learn how the new Stratasys J826 provides the same quality and accuracy as other J8 series printers at a lower cost?

Provide the requested information via the form linked below and one of PADT’s additive experts will reach out to share more on what makes this new offering so exciting for the enterprise design world.

Start a Conversation

All Things ANSYS 052: A Deep Dive into Design & Technology in the ANSYS World

 

Published on: December 2nd, 2019
With: Eric Miller, Prith Banerjee, & Mark Hindsbo
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by ANSYS CTO Prith Banerjee and VP/General Manager of the Design Business Unit Mark Hindsbo, for a discussion of their roles at the company, what trends they see coming from various industries working with simulation, and how ANSYS continues to help their customers by providing valuable solutions in response to those trends.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 051: New 3D Design Capabilities in ANSYS 2019 R3 – Discovery Live, AIM, & SpaceClaim

 

Published on: November 18th, 2019
With: Eric Miller, Joe Woodward, Robert McCathren, Tom Chadwick, & Ted Harris
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Specialist Mechanical Engineer/Lead Trainer Joe Woodward, Senior CFD Engineer Tom Chadwick, Application Engineer Robert McCathren and Simulation Support Manager Ted Harris, for a discussion on what’s new regarding 3D design capabilities in ANSYS 2019 R3. This discussion covers updates and our teams favorite components in the latest versions of Discovery Live, AIM, & SpaceClaim.

If you would like to learn more about what this release is capable of, check out our webinar on the topic here:

https://www.brighttalk.com/webcast/15747/377929

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Updates & Additions in ANSYS Mechanical 2019 R3 – Webinar

With ANSYS structural analysis software, users are able to solve more complex engineering problems, faster and more efficiently than ever before. Customization and automation of structural solutions is much easier to optimize thanks to new and innovative finite element analysis (FEA) tools available in this product suite. 

From designers and occasional users looking for quick, easy and accurate results, to experts looking to model complex materials, large assemblies and nonlinear behavior, ANSYS has you covered. The intuitive interface of ANSYS Mechanical enables engineers of all levels to get answers fast and with confidence.

Join PADT’s Specialist Mechanical Engineer Joe Woodward, for an in-depth look at what’s new in the latest version of ANSYS Mechanical, including updates regarding:

  • Software User Interface
  • Design Elements
  • Composites
  • Acoustics
  • External Modeling
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Optimize Materials Knowledge and Applications with ANSYS Granta – Webinar

Every product is made from materials, and in order to correctly select and apply said materials, decisions need to be based on analysis on the right information. ANSYS Granta software ensures accurate, consistent, traceable materials information every time and provides the tools you need to support design, research and teaching.

This toolkit is divided into three main products, each designed to accomplish a variety of different tasks when it comes to enabling smart material choices:

ANSYS GRANTA MI is the leading system for materials information management in engineering enterprises. A single “gold source” for your organization’s materials IP saves time, cuts costs and eliminates risk.

ANSYS CES Selector is the standard tool for materials selection and graphical analysis of materials properties. A comprehensive materials data library, plus unique software tools enable you to use materials to innovate and evolve your products.

ANSYS Materials Data allows users to gain easy access to the material property data you need for structural analysis, from within ANSYS Mechanical. Find coverage of many important materials classes, save time wasted searching for and converting data and gain greater confidence in your data inputs.

Join PADT’s Application Engineer and ANSYS Granta expert, Robert McCathren for a deep dive into the capabilities of this new release and how you can benefit from applying it in your organization.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Mechanical Updates in ANSYS 2019 R2 – Webinar

With ANSYS structural analysis software, users are able to solve more complex engineering problems, faster and more efficiently than ever before. Customization and automation of structural solutions is much easier to optimize thanks to new and innovative finite element analysis (FEA) tools available in this product suite. 

Once again, ANSYS is able to cement their role as industry leaders when it comes to usability, productivity, and reliability; adding innovative functionality to an already groundbreaking product offering. ANSYS structural analysis software continues to be used throughout the industry, and for good reason as it enables engineers to optimize their product design and reduce the costs of physical testing. 

Join PADT’s Specialist Mechanical Engineer Joe Woodward, for an in-depth look at what’s new in the latest version of ANSYS Mechanical, including updates regarding: 

  • Software User Interface
  • Topology Optimization
  • Rigid Body Dynamics
  • Post Processing
  • And much more
Natural frequency study of engine block in ANSYS Mechanical

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 039: Updates for Design Engineers in ANSYS 2019 R2

 

Published on: June 17th, 2019
With: Eric Miller, Ted Harris, & Tom Chadwick
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and Senior CFD Engineer Tom Chadwick for a discussion on what new capabilities (beta or otherwise) are available for design engineers in the latest updates made to Discovery Live in ANSYS 2019 R2.

If you would like to learn more about this update and see the tool in action, along with others in the 3D Design family of products (Discovery AIM, SpaceClaim & Live) check out PADT’s webinar on the topic here: https://bit.ly/2KfO0tK

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Ten Suggestions for Automating Product Duty Cycle Testing

No product is perfect. Much of engineering is trying to determine when a part will fail in the field or when there are field failures, why it failed and how to fix it. Although simulation and engineering experience can make a huge difference, sometimes the best way to understand product robustness in the real world is through duty cycle testing; designing a test that puts the product through the varied and repeated loading that it will see in use.

This type of testing is perfect for automation. For decades, PADT has been designing testing devices for our customers to determine durability, uncover problems, and verify that proposed solutions work. Over those years our engineers have developed guidelines that we use to design tests and test apparatus. We got together and summarized that experience in the ten suggestions listed below.

But first, it would be good to define what automated product duty cycle testing is.

Automated Product Duty Cycle Testing Defined

When a physical product is used, it sees some sort of loading; force, pressure, temperature, friction, chemicals, sunlight, etc… That loading causes deformation of the various materials used or changes the physical properties of those materials. In most cases, the deformation or property change is not permanent. But sometimes the loads are large enough or are replied long enough to cause permanent changes. Metal fatigues, rubber tubes become brittle, or glue fails.

Large loads are easy to test. You apply them and see what happens. But long term loading, especially a set of repeated loads, needs to be applied over time. This type of long-term testing that applies the loads the product will see over time is called duty cycle testing. Add in the need to apply temperatures cycles, humidity, and power loads – all things that components see in the real world – and the value of automation multiplies.

As engineers, when we see something that happens over time and repeats, we know that automation can be used to reduce cost and enforce repeatability. And that is why most duty cycle testing is automated. But those time savings and that repeatability are only effective if the test and the text fixture are designed correctly, which leads us to PADT’s ten suggestions.

1: Define the purpose and the expected outcome of the test

Most people define the purpose or the outcome, but not both. This really starts with understanding who the customer is for the test, even within the same company. What do they need from the test and why do they need it.

2: Map the full duty cycle being tested

The physical behavior of a system, especially over time, is impacted by all of the loads that the system sees. The cause of a failure or performance degradation is often not one load, but some unexpected combination of loads. You may think a problem may be caused by say, a bending load that happens tens-of-thousands of times. But it may be that bending load combined with a torque that only occurs every once in a while.

3: Document the test process, keeping it as simple as possible

Simplicity is the key here. Complexity adds cost, slows schedules, and introduces irrelevant failure modes. Designing is like writing a good story. Put everything down, then start cutting. Keep cutting until you only have exactly what you need.

4: Design the apparatus to the test

This seems obvious, but it can often be missed. The three previous suggestions need to be reviewed before, during, and after the design process. Every feature, chunk of code, or fixture needs to be there for a reason. The device must carry out the test process and apply the full duty cycle while meeting the purpose and expected outcome of the test.

5: Make the system versatile

After developing our second or third test rig, we discovered that our customers almost always wanted to add new loads or change loading. You may design a system to test one component, to find that a different component is failing more in the field so you need to change the test to load that part. If you design the apparatus to allow for easy changes that don’t require a complete redesign, you can create a far more valuable device.

6: Make the remaining human steps as easy as possible

The whole point of automation is to take humans out of the loop. But someone still has to load, unload, repair, and maintain the system. With so much focus on automation, it is easy to make the apparatus difficult to use. Human interface design still plays an important role.

7: Keep the hardware as simple as possible

Simplicity is the key to success in most designs, and automating duty cycle testing is no different. The repetitive nature of the operating steps and long run times make it especially important. Also, if you make the design too complex it is more difficult to capture and interpret results.

8: Invest in robust, off-the-shelf industrial quality equipment.

Do not try and save money using hobby or educational hardware or in making your own components, unless what you need is not commercially available. Remember, you are measuring the robustness of your product so having robust equipment to carry out the testing is critical. There is a reason why an industrial controller costs more. Invest in hardware that results in a test system that will last.

9: Spend the time and money upfront to automate as much as possible

Just as you should invest in high-quality hardware, you should put time and money into automating as much as possible. It is tempting to save money by saying “we can have a person do this step” but when you do that you introduce long term costs, delays, and a source of error.

10: Test the test before releasing the apparatus to the customer

Plan for a lot of testing of the system before official testing starts. This can seem obvious but because the focus of the design process is a test itself, it is easy to forget that the hardware and software need to be tested before they are released for use.

Better automated testing is achievable

Testing of your products should never be an afterthought or an add-on to the product’s design. Plan for it as an important part of the product lifecycle. If you follow the guidelines above and budget the proper time, money, and space (don’t forget you will need a place to do the testing) you can achieve a greater understanding of the robustness, failure modes, and efficiency of the things you make.

If you need help with duty cycle testing, please reach out to PADT. Our expertise in project management, engineering problems solving, controller programming, industry applications, and creative design are a unique combination that results in better fixture design and more useful information from your testing.

We can assist you in the design or take on the whole project, including doing the testing here at our facility. Contact us at info@padtinc.com or 480.813.4884 and ask to speak to someone in our Engineering Services Team about product testing. And don’t forget, we have world-class simulation and 3D Printing here on site to speed up the process and deliver deeper insight.