Top Ten Additive Manufacturing Terms to Know

The world of additive manufacturing, or 3D printing, is constantly evolving. The technology was invented less than 35 years ago yet has come a long way. What began as a unique, though limited, way to develop low-end prototypes, has exploded into a critical component of the product development and manufacturing process with the ability to produce end-use parts for critical applications in markets such as industrial and aerospace and defense.

To help our customers and the larger technology community stay abreast of the changing world of additive manufacturing, we launched a glossary of the most important terms in the industry that you can bookmark here for easy access. To make it easier to digest, we’re also starting a blog series outlining ten terms to know in different sub-categories.

For our first post in the series, here are the top ten terms for Additive Manufacturing Processes that our experts think everyone should know:

Binder Jetting

Any additive manufacturing process that uses a binder to chemically bond powder where the binder is placed on the top layer of powder through small jets, usually using inkjet technology. One of the seven standard categories defined by ASTM International (www.ASTM.org) for additive manufacturing processes.

Digital Light Synthesis (DLS)

A type of vat photopolymerization additive manufacturing process where a projector under a transparent build plate shines ultraviolet light onto the build layer, which is against the transparent build plate. The part is then pulled upward so that a new layer of liquid fills between the build plate and the part, and the process is repeated. Digital light synthesis is a continuous build process that does not create distinct layers.

Direct Laser Melting (DLM) or Direct Metal Laser Sintering (DMLS)

A type of powder bed fusion additive manufacturing process where a laser beam is used to melt powder material. The beam is directed across the top layer of powder. The liquid material solidifies to create the desired part. A new layer of powder is placed on top, and the process is repeated. Also called laser powder bed fusion, metal powder bed fusion, or direct metal laser sintering.

Directed Energy Deposition (DED)

An additive manufacturing process where metal powder is jetted, or wire is extruded from a CNC controlled three or five-axis nozzle. The solid material is then melted by an energy source, usually a laser or electron beam, such that the liquid metal deposits onto the previous layers (or build plate) and then cools to a solid. One of the ASTM defined standard categories for additive manufacturing processes.

Fused Deposition Modeling (FDM)

A type of material extrusion additive manufacturing process where a continuous filament of thermoplastic material is fed into a heated extruder and deposited on the current build layer. It is the trademarked name used for systems manufactured by the process inventor, Stratasys. Fused filament fabrication is the generic term.

Laser Powder Bed Fusion (L-PBF)

A type of powder bed fusion additive manufacturing process where a laser is used to melt material on the top layer of a powder bed. Also called metal powder bed fusion or direct laser melting. Most often used to melt metal powder but is used with plastics as with selective laser sintering.

Laser Engineered Net Shaping (LENS)

A type of direct energy deposition additive manufacturing process where a powder is directed into a high-energy laser beam and melted before it is deposited on the build layer. Also called laser powder forming.

Material Jetting

Any additive manufacturing process where build or support material is jetted through multiple small nozzles whose position is computer controlled to lay down material to create a layer. One of the ASTM defined standard categories for additive manufacturing processes.

Stereolithography Apparatus (SLA)

A type of vat photopolymerization additive manufacturing where a laser is used to draw a path on the current layer, converting the liquid polymer into a solid. Stereolithography was the first commercially available additive manufacturing process.

Vat Polymerization

A class of additive manufacturing processes that utilizes the hardening of a photopolymer with ultraviolet light. A vat of liquid is filled with liquid photopolymer resin, and ultraviolet light is either traced on the build surface or projected on it. Stereolithography is the most common form of vat photopolymerization. The build layer can be on the top of the vat of liquid or the bottom. One of the ASTM defined standard categories for additive manufacturing processes.

We hope this new blog series will help to firm up your knowledge of the ever-evolving world of additive manufacturing. For a list of all of the key terms and definitions in the additive manufacturing world, please visit our new glossary page at https://www.3dprinting-glossary.com/. The glossary allows you to search by terms or download a PDF of the glossary in its entirety to use as a reference guide.

We also know that there are a ton of experts in our community with knowledge to share. If you notice a term missing from our glossary or an inaccurate/incomplete description, please visit the suggestions page at https://www.3dprinting-glossary.com/suggest-a-correction-clarification-or-new-term/ and drop us a note.

Subscribe to the PADT blog or check back soon for the next installment in our series of “Top Ten Terms to Know in Additive Manufacturing.” We also welcome your feedback or questions. Just drop us a line at here.

The next webinar of the ANSYS Breakthrough Energy Innovation Campaign is now available!

Turbocharge Rotating Machinery Efficiency with Simulation
 
Rotating machinery users demand increased efficiency, reliability and durability while expecting compliance with regulatory mandates to reduce emissions and noise. Simulation pinpoints solutions and guides trade-offs early in the design process before significant investments have been made. By reducing the need for expensive prototypes and test rigs, simulation delivers better performance at lower cost.
By watching this webinar you will:

● Understand the concept of a virtual prototype and how it reduces development costs while optimizing product performance.

● Identify seven essential features that must be included in a simulation in order to maximize the performance and efficiency.

● Learn how ZECO Hydropower used ANSYS simulation tools coupled with high performance computing to develop a new and optimal intake for a Kaplan turbine in half of the usual time. They were able to reduce civil engineering infrastructure costs to ensure they would be competitive in emerging markets.

● Walk through ZECO’s simulation process and results including CFD turbomachinery simulation, parallel computing, parametric modeling, and optimization tools.

Register here to watch – or Click Here for more information on Machine & Fuel Efficiency
This webinar is presented by Brad Hutchinson and Alessandro Arcidiacono.
Keep checking back to the Energy Innovation Homepage for more updates on upcoming segments, webinars, and other additional content.

The first webinar of the ANSYS Breakthrough Energy Innovation Campaign is now available

download-6

Register here to watch

Simulation of Planar Magnetic Components – Possible or Impossible?

Planar magnetic components consisting of a ferrite magnetic core and numerous conductor/insulation layers have been in use for many years. Historically, determining temperature dependent winding and core losses has only been possible using iterative testing of physical models due to the difficulty in determining 3-D frequency and thermal dependency. The only way to accomplish this now is to use frequency and thermally dependent material properties in a 2-way spatially coupled simulation.

Additionally, you can only construct a frequency dependent system model that accurately represents the real device after the steady-state temperature condition has been reached throughout the device.

Recent breakthrough developments in simulation technology and high-performance computing from ANSYS make it possible to design, simulate and optimize planar magnetic components without building physical models or compromising simulation fidelity.

This webinar demonstrates how you can use ANSYS software tools, featuring a customized interface complete with manufacturer libraries, to automatically set up and then solve a frequency dependent, 2-way coupled magnetic-thermal model.

Register here to watch

This webinar is presented by Mark Christini, the lead ElectromagneticsMark Christini Application Engineer at ANSYS.

He has been working in design, development, application and manufacturing of electrical devices and systems for the past 30 years. Mark has a strong interest in transformers of all kinds ranging, from small electronic transformers to large oil-filled EHV power transformers.

Keep checking back to the Energy Innovation Homepage for more updates on upcoming segments, webinars, and other additional content.

ANSYS Breakthrough Energy Innovation Campaign – Machine & Fuel Efficiency

Information regarding the next topic in the Breakthrough Energy Innovation Campaign has been released, covering machine and fuel efficiency, and how ANSYS simulation software can be used to help solve a variety of issues related to this topic, as well as optimize the performance of all system components as they work together.

Additional content regarding machine and fuel efficiency can be viewed and downloaded here.

This is the second topic of a campaign that covers five main topics:

  1. Advanced Electrification 
  2. Machine & Fuel Efficiency
  3. Effective Lightweighting
  4. Thermal Optimization
  5. Aerodynamic Design

Information on each topic will be released over the course of the next few months as the webinars take place.

Sign Up Now to receive updates regarding the campaign, including additional information on each subject, registration forms to each webinar and more.

We here at PADT can not wait to share this content with you, and we hope to hear from you soon.