Optimize Product Performance with ANSYS Digital Twins – Webinar

Engineering simulation has traditionally been used for new product design and virtual testing, eliminating the need to build multiple prototypes prior to product launch.

Now, with the emergence of the Industrial Internet of Things (IIoT), simulation is expanding into operations. The IIoT enables engineers to communicate with sensors and actuators on an operating product to capture data and monitor operating parameters. The result is a digital twin of the physical product or process that can be used to monitor real-time prescriptive analytics and test predictive maintenance to optimize asset performance.

Join PADT’s Senior Analyst & Lead Software Developer Matt Sutton for an in depth look at how digital twins created using ANSYS simulation tools optimize the operation of devices or systems, save money by reducing unplanned downtime and enable engineers to test solutions virtually before doing physical repairs.

This webinar will include an overview of technical capabilities, packaging for licensing, and updates made with the release of ANSYS 2019 R1.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 036 – Updates for Design Engineers in ANSYS 2019 R1 – Discovery Live, AIM, & SpaceClaim

 

Published on: May 6th, 2019
With: Eric Miller, Ted Harris, & Clinton Smith
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and CFD Team Lead Engineer Clinton Smith for a round-table discussion regarding new capabilities for Design Engineers in the latest release of the ANSYS Discovery family of products (Live, AIM, & SpaceClaim). Listen as they express their thoughts on exciting new capabilities, long anticipated technical improvements, and speculate at what has yet to come for this disruptive set of tools.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Discovery AIM & Live in 2019 R1 here: shorturl.at/gyKLM

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 035 – The History of ANSYS: An Interview with Dr. John Swanson, author of the original program & founder of ANSYS Inc.

 

Published on: April 22nd, 2019
With: Eric Miller, Ted Harris, & Dr. John Swanson
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris for a very special interview for users of ANSYS software, Dr. John Swanson. Dr. Swanson is known as the founder of “Swanson’s Analysis Systems” in 1970; the company that would later be known to the public as ANSYS Inc. He also wrote the original ANSYS program in his home, and since leaving the company has gone on the work in philanthropy and alternative energy.

A John Fritz Medal winner, and member of the National Academy of Engineering, John is considered an authority and pioneer in the application of Finite Element methods to engineering.

We are incredibly thankful that John was able to join us for this interview, and we hope you enjoy learning a little bit about the history of ANSYS from the founder himself.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 034 – Celebrating 25 Years of ANSYS Simulation: Changes In The Last Quarter Century & Where The Future Will Take Us

 

Published on: April 8th, 2019
With: Eric Miller, Ted Harris, Tom Chadwick, Sina Ghods, & Alex Grishin
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris, Tom Chadwick, Sina Ghods, and Alex Grishin, for a round-table discussion on their experience and history with simulation, including what has changed since they started using it and what they’re most impressed and excited by, followed by some prediction and discussion on what the future may hold for the world of numerical simulation.

Thank you again for those of you who have made the past 25 years something to remember, and to those of you who have come to know PADT more recently, we look forward to what the next 25 will bring.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Video: Tips and Tricks for ANSYS Mechanical Users

Over time Ziad Melham, one of PADT’s support engineers, has developed a variety of tips and tricks for ANSYS Mechanical that he shares with users when providing them with support. In this video, Ziad shares that same information with all users.

Users of ANSYS mechanical, both new and experienced, will find them helpful in making their simulation pre- and post-processing more efficient. Please enjoy and do not hesitate to share with your co-workers.

Evaluating Stresses and Forces in Threaded Fasteners with ANSYS Mechanical, Part 2

Fasteners are one of the most common and fundamental engineering components we encounter.

Proper design of fasteners is so fundamental, every Mechanical Engineer takes a University course in which the proper design of these components is covered (or at least a course in which the required textbook does so).

With recent increases in computational power and ease in creating and solving finite element models, engineers are increasingly tempted to simulate their fasteners or fastened joints in order to gain better insights into such concerns as thread stresses

In what follows, PADT’s Alex Grishin digs deeper into how to leverage ANSYS Mechanical to better model fasteners and obtain accurate results. If you did not review Part 1, do so here.

PADT-ANSYS-fastener_simulation_part2

Evaluating Stresses and Forces in Threaded Fasteners with ANSYS Mechanical

Fasteners are one of the most common and fundamental engineering components we encounter.
Proper design of fasteners is so fundamental, every Mechanical Engineer takes a University course in which the proper design of these components is covered (or at least a course in which the required textbook does so).

With recent increases in computational power and ease in creating and solving finite element models, engineers are increasingly tempted to simulate their fasteners or fastened joints in order to gain better insights into such concerns as thread stresses

In what follows, PADT’s Alex Grishin demonstrates a basic procedure for doing so, assess the cost/benefits of doing so, and to lay the groundwork for some further explorations in Part 2, which can now be found here.

PADT-ANSYS-Fastener_Simulation_Part1

All Things ANSYS 012 – Live From New Mexico: A Look at What’s New in ANSYS 19

 

Published on: January 30, 2018
With: David Mastel, Joe Woodword, Manoj Mahendran, Matt Sutton, Michael Griesi, Tom Chadwick, Ted Harris, Eric Miller
Description: In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s David Mastel, Joe Woodword, Manoj Mahendran, Matt Sutton, Michael Griesi, Tom Chadwick, and Ted Harris, for a discussion on what is new and improved in the recently released ANSYS 19.
Listen:
Subscribe:

 

All Things ANSYS Episode 005 – Getting to know convergence better and hidden gems in the ANSYS product family

Published on: September 25, 2017
With: Tom Chadwick, Ted Harris, Eric Miller
Description: In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior CFD Engineer Tom Chadwick,  and Simulation Support Manager Ted Harris for a discussion on convergence with both FEA and CFD solutions, as well as a look at some of their favorite hidden gems in the ANSYS tools set. Learn about some beneficial ANSYS capabiliites you may not be aware of!
Listen:
Subscribe:

 

Getting to Know PADT: Simulation Services

This is the fourth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

The A in PADT actually stands for Analysis.  Back in 1994 when the company was started, computer modeling for mechanical engineering was called Analysis. It was such an important part of what we wanted to achieve that we put it in the name.  Unfortunately, Analysis was a bit to generic so the industry switched to Numerical Simulation, or simply simulation. In the 23 years since we started, analysis… sorry, simulation, has been not just a foundation for what PADT does for our customers, it has become a defacto tool in product development.  Through it all there has been a dedicated group here that is focused on providing the best simulation as a service to customers around the world.

Driving Designs with Simulation

Many companies know about PADT with regards to simulation because we are an ANSYS Elite Channel Partner – selling and supporting the entire suite of ANSYS simulation tools in the Southwestern US. The success of simulation in the design and development of physical products is a direct result of the fact that these fantastic tools from ANSYS can be used to drive the design of products.  This can be done in-house by companies designing the products, or outsourced to experts. And that is where PADT has come in for hundreds of customers around the world.  The expertise we use to support and train on ANSYS products derives directly from our real world experience providing CFD, structural, thermal, electromagnetic, and multiphysics simulations to help those customers drive their product development.

For those not familiar with simulation, or who only use the basic tools embedded in CAD software as a quick check, understanding why it is so important hinges on understand what it really is. Numerical Simulation is a methodology where a physical product is converted into a computer model that represents its physical behavior.  This behavior can be many different physics: stresses, vibration, fluid flow, temperature flow, high frequency electromagnetic radiation, sloshing of liquids, deformation during impact, piezoelectric response, heating from static electromagnetic waves, cooling from air flow. The list goes on and on. Pretty much anything you studied in physics can be modeled using a numerical simulation.

The process of doing the simulation consists of taking the physical object and breaking it into discrete chunks, often very small relative to the size of the object, so that equations can easily be written for each chunk that describes the physical behavior of that chunk relative to the chunks around it.  Imagine writing equations for the fluid flow in a complicated valve housing, very hard to do. But if you break it up into about one million small polyhedrons, you can write an equation for flow in and out of each polyhedron. These equations are then assembled into a giant matrix and solved using linear algebra.  That is why we need such large computers.  We mostly use the world’s leading software for this, from ANSYS, Inc.

More than Building and Running Models

Knowing how to build and run finite element and CFD models is key to providing simulation as a service. PADT’s team averages over 18 years of experience and few people come close to their knowledge on geometry preparation, meshing, setting up loads and boundary conditions, leveraging the advantages of each solver, and post processing. That is a good starting point. But what really sets PADT apart is the understanding of how the simulation fits into product development, and how the information gathered from simulation can and should be used.  Instead of providing a number or a plot, PADT’s experienced engineers deliver insight into the behavior of the products being simulated.

How each project is conducted is also something that customers keep coming back for.  Nothing is ever “thrown over the wall” our passed through a “black box.” From quote through delivery of final report, PADT’s engineers work closely with the customer’s engineers to understand requirements, get to the heart of what the customer is looking for, and deliver useful and actionable information.  And if you have your own in-house simulation team, we will work closely with them to help them understand what we did so they can add it to their capabilities. In fact, one of the most popular simulation services offered by PADT is automation of the simulation process with software tools written on top of ANSYS products.  This is a fantastic way to leverage PADT’s experience and knowledge to make your engineers more efficient and capable.

Unparalleled Breadth and Depth

Based on feedback from our customers, the other area where PADT really stands out is in the incredible breadth and depth of capability offered.  Whereas most service providers specialize in one type of simulation or a single industry, more than twenty years of delivering high-end simulation to evaluate hundreds of products has given PADT’s team a unique and special level of understanding and expertise. From fluid flow in aerospace cooling systems to electromagnetics for an antenna in a smart toy, a strong theoretical understanding is combined with knowledge about the software tools to apply the right approach to each unique problem.

No where is this breadth and depth exemplified than with PADT’s relationship with ANSYS, Inc. Since the company was founded, PADT engineers have worked closely with ANSYS development and product management to understand these powerful tools better and to offer their advice on how to make them better.  And each time ANSYS, Inc. develops or acquires a new capability, that same team steps up and digs deep into the functionality that has been added. And when necessary, adding new engineers to the team to offer our customers the same expert access to these new tools.

 

The best way to understand why hundreds of companies, many of them large corporations that are leaders in their industry, come to PADT from around the world for their simulation services needs is to talk to us about your simulation services needs. Regardless of the industry or the physics, our team is ready to help you drive your product development with simulation. Contact us now to start the discussion.

 

Robust Meshing for FEA with ANSYS

Meshing is one of the most important aspects of a simulation process and yet it can be one of the most frustrating and difficult to get right.  Whether you are using CAD based simulation tools or more powerful flagship simulation tools, there are different approaches to take when it comes to meshing complicated assemblies for structural or thermal analysis.

ANSYS has grown into the biggest simulation company globally by acquiring powerful technologies, but more importantly, integrating their capabilities into a single platform.  This is true for meshing as well.  Many of ANSYS’ acquisitions have come with several strong meshing capabilities and functionalities and ANSYS Workbench integrates all of that into what we call Workbench Meshing.  It is a single meshing tool that incorporates a variety of global and local mesh operations to ensure that the user not only gets a mesh, but gets a good quality mesh without needing to spend a lot of time in the prep process. We’ll take a look at a couple examples here.

 

TRACTOR AXLE

This is a Tractor Axle assembly that has 58 parts including bolts, gaskets and flanges.  The primary pieces of the assembly also has several holes and other curved surfaces.  Taking this model into Workbench Meshing yielded a good mesh even with default settings. From here by simply adding a few sizing controls and mesh methods we quickly get a mesh that is excellent for structural analysis.

Tractor Axle Geometry

Tractor Axle Default Mesh

Tractor Axle Refined Mesh

 

RIVETING MACHINE

The assembly below, which is a model from Grabcad of a riveting machine, was taken directly into Workbench Meshing and a mesh was created with no user input. As you can see the model has 5,282 parts of varying sizes, shapes and complexity.  Again without needing to make any adjustments, Workbench Meshing is able to mesh this entire geometry with 6.6 million elements in only a few minutes on a laptop.

Riveting Machine

Riveting Machine

Riveting Machine Default Mesh

Riveting Machine Default Mesh

 

The summary of the meshing cases are shown below:

Case # of Parts User Operations # of Elements # of Nodes Time [s]
Tractor Axle 58 0 415,735 723,849 34
Tractor Axle Refined 58 5 Body Sizings

2 Local Mesh Methods

930,406 1,609,703 43
Riveting Machine 5,282 0 2,481,275 6,670,385 790

 

Characteristics of a robust meshing utility are:

  • Easy to use with enough power under the hood
  • Able to handle complex geometry and/or large number of parts
  • Quick and easy user specified mesh operations
  • Fast meshing time

ANSYS Meshing checks all of these boxes completely.  It has a lot of power under the hood to handle large and/or complex geometry but makes it simple and easy for users to create a strong quality mesh for FEA analysis.

Here is the link to download the geometry used in this model

If you would like a more detailed step-by-step explanation of this process, check out the video below!

If you have any questions feel free to reach out to me at manoj@padtinc.com

 

Credit to Manoj Abraham from Grabcad for Riveting Machine Model. And no I didn’t choose this model just because he shared my name

PADT Startup Spotlight – The Speed of Simulation

The Speed of Simulation  with Velox Motorsports

With thoroughly engineered components including the use of Finite Element Analysis (FEA), thermodynamics, heat transfer, and Computational Fluid Dynamics (CFD), PADT Startup Spotlight Velox Motorsports strives to produce aftermarket parts that can effectively outperform the factory components.

Join Velox Co-Owners Eric Hazen and Paul Lucas for a discussion on what they use ANSYS simulation software for and how they have benefited from it’s introduction into their manufacturing process.

This webinar will focus on two projects within which the engineers at Velox have see the impact of ANSYS, including:

Using Finite Element Analysis (FEA) to reverse engineer a Subaru fork, find the cause of failure and develop an improved replacement part.

Using Computational Fluid Dynamics (CFD) to rub a shape sensitivity study on Nissan GT R strakes, and develop a replacement that increases down-force without significantly increasing drag.

Increase your throughput and reduce manufacturing costs

Fast, easy to use lightweighting for structural analysis is now only a few clicks away thanks to the introduction of Topology Optimization in ANSYS 18.

Engineers who use Finite Element Analysis (FEA) can reduce weight, materials, and cost without switching tools or environments. Along with this, Topology Optimization frees designers from constraints or preconceptions, helping to produce the best shape to fulfill their project’s requirements.

Topology Optimization also works hand-in-hand with Additive Manufacturing; a form of 3D printing where parts are designed, validated, and then produced by adding layers of material until the full piece is formed. Pairing the two simply allows users to carry out the trend of more efficient manufacturing through the entirety of their process.

Join PADT’s simulation support manager Ted Harris for a live presentation on the full
benefits of introducing Topology Optimization into your manufacturing process. This webinar will cover:

  • A brief introduction into the background of Topology Optimization and Additive Manufacturing, along with an overview of it’s capabilities

  • An explanation of the features available within this tool and a run through of it’s user interface and overall usage

  • An in-depth look at some of the intricacies involved with using the tool as well as the effectiveness of it’s design workflow

Introducing: The PADT Startup Spotlight

In support of the ANSYS Startup Program, PADT is proud to introduce the PADT Startup Spotlight.

We here at PADT are firm believers in the opinion that today’s startup companies are tomorrow’s industry leaders and thus should be give every possible opportunity to thrive and succeed.

As a result we are offering full access to our promotional capabilities in order to help startup companies developing physical prototypes to grow and develop in a competitive environment.

We will look through those startups that have purchased the ANSYS Startup Package through PADT, and select one to feature and promote, that we believe clearly represents the drive and entrepreneurial spirit that is key in order to succeed in today’s day and age.

Presenting the first Startup Spotlight:

Since their inception in 2014, Velox Motorsports has always been focused on speed; whether that be the speed of the NASCAR teams they have worked with or the desire their customers have for speed, which drives their competitiveness and fuels the demand for their products.

They even show a passion for speed in the company’s name (Velox), which translates from Latin to “swift or speed”.

Visit www.padtinc.com/startupspotlight for more information on Velox Motorsports and The PADT Startup Spotlight.

Phoenix Business Journal: ​How do you get value out of Big Data? Simulation!

It’s all the rage. “Big Data!” fixes everything. There is a lot of hype around the value of knowing so much about so many things. The problem is very few people have figured out what to do with that data.  But leading technology companies like GE are using a proven tool to get value from all that great data.  In “How do you get value out of Big Data? Simulation!” I look at how numerical simulation can be used to create digital twins of what your products are doing in the real world, delivering huge benefits today.