All Things ANSYS 020 – Modeling Flow & Heat Transfer with Flownex

 

Published on: September 10th, 2018
With: Eric Miller, Luke Davidson, Vincent Britz, and Farai Hetze
Description: In this episode your host and Co-Founder of PADT, Eric Miller is joined by Luke Davidson and Vincent Britz of M-Tech, and Farai Hetze from CFX-Berlin, for an interview on the what Flownex is, it’s capabilities for modeling flow and heat transfer, and how it works with ANSYS products. All that, followed by an update on news and events in the respective worlds of ANSYS and PADT.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Getting to Know PADT: Flownex Sales and Support

This is the second installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

The PADT sales and support team focused on simulation solutions is best known for our work with the full ANSYS product suite.  What a lot of people don’t know is that we also represent a fantastic simulation tool called Flownex. Flownex is a system level 1-D program that is designed from the ground up to model thermal-fluid systems.

What does Flownex Do?

Flownex Simulation Environment is an interactive software program that allows users to model systems to understand how fluids (gas and/or liquid) flow and how heat is transferred in that same system due to that flow.  the way it works is you create a network of components that are connected together as a system.  The heat and fluid transfer within and between each node is calculated over time, giving a very accurate, and fast,  representation of the system’s behavior.

As a system simulation tool, it is fast, it is easy to build and change, and it runs in real time or even faster.  This allows users to drive the design of their entire system through simulation.

Need to know what size pump you need, use Flownex.  Want to know if you heat exchanger is exchanging enough heat for every situation, use Flownex.  Tasked with making sure your nuclear reactor will stay cool in all operating conditions, use Flownex.   Making sure you have optimized the performance of your combustion nozzles, use Flownex.  Time to design your turbine engine cooling network, use Flownex. Required to verify that your mine ventilation and fire suppression system will work, use Flownex. The applications go on and on.

Why is Flownex so Much Better than other System Thermal-Fluid Modeling Solutions?

There are a lot of solutions for modeling thermal-fluid systems. We have found that the vast majority of companies use simple spreadsheets or home-grown tools. There are also a lot of commercial solutions out there. Flownex stands out for five key reasons:

  1. Breadth and depth of capability
    Flownex boasts components, the objects you link together in your network, that spread across physics and applications.  Whereas most tools will focus on one industry, Flownex is a general purpose tool that supports far more situations.  For depth they have taken the time over the years to not just have simple models.  Each component has sophisticated equations that govern its behavior and user defined parameters that allow for very accurate modeling.
  2. Developed by hard core users
    Flownex started life as an internal code to support consulting engineers. Experienced engineering software programmers worked with those consultants day-in and day-out to develop the tools that were needed to solve real world problems.  This is the reason why when users ask “What I really need to do to solve my problem is such-and-such, can Flownex do that?” we can usually answer “Yes, and here are the options to make it even more accurate.”
  3. Customization and Integration
    As powerful and in-depth as Flownex is, there is no way to capture every situation for every user.  Nor does the program do everything. That is why it is so open and so easy to customize and integrate. As an example, may customers have very specific thermal-pressure-velocity models that they use for their specific components. Models that they developed after years if not decades of testing. Not a problem, that behavior can be easily added to Flownex.  If a customer even has their own software or a 3rd party tool they need to use, it is pretty easy to integrate it right into your Flownex system model.Very common tools are already integrated. The most common connection is Matlab/Simulink.  At PADT we often connect Excel models from customers into our Systems  for consulting.  It is also integrated into ANSYS Mechanical.
  4. Nuclear Quality Standards
    Flownex came in to its own as a tool used to model the fluid system in and around Nuclear Reactors.  So it had to meet very rigorous quality standards, if not the most stringent they are pretty close. This forced to tool to be very robust, accurate, and well documented. And the rest of us can take advantage of that intense quality requirement to meet and exceed the needs of pretty much every industry.  We can tell you after using it for our own consulting projects and after talking to other users, this code is solid.
  5. Ease of Use
    Some people will read the advantages above and think that this is fantastic, but that much capability and flexibility must make it difficult to use. Nothing could be further from the truth.  Maybe its because the most demanding users are down the hallway and can come and harangue the developers. Or it could be that their initial development goal of keeping ease of use without giving up on functionality was actually followed.  Regardless of why, this simulation tool is amazingly simple and intuitive.  From building the model to reviewing results to customization, everything is easy to learn, remember, and user.  To be honest, it is actually fun to use. Not something a lot of simulation engineers say.

Why does buying and getting support from PADT for Flownex make a Difference?

The answer to this question is fairly simple: PADT’ simulation team is made up of very experienced users who have to apply this technology to our own internal projects as well as to consulting jobs.  We know this tool and we also work closely with the developers at Flownex.  As with our ANSYS products, we don’t just work on knowing how to use the tool, we put time in to understand the theory behind everything as well as the practical real world industry application.

When you call for support, odds are the engineer who answers is actually suing Flownex on a customer’s system.  We also have the infrastructure and size in place to make sure we have the resources to provide that support.  Investing in a new simulation tool can generate needs for training, customization, and integration; not to mention traditional technical support. PADT partners with our customers to make sure they get the greatest value form their simulation software investment.

              

Reach out to Give it a Try or Learn More

Our team is ready and waiting to answer your questihttp://www.flownex.com/flownex-demoons or provide you with a demonstration of this fantastic tool. .  You can email us at info@padtinc.com or give us a call at 480.813.4884 or 1-800-293-PADT.

Still want to learn more? Here are some links to more information:

 

  

Coupling ANSYS Mechanical and Flownex

The below example demontrates how to couple Flownex and ANSYS mechanical using the Mechanical Generic Interface component.

For those that don’t know, Flownex is a thermal-fluid system modeling tool that is great for modeling heat, flow, pressure, etc… in systems.  At PADT we often connect it to ANSYS Mechanical to do more detailed component level simulation when needed. 

Why the need for the link in the fist place?

  • It is an automated workflow to couple Flownex and ANSYS through direct mapping of Flownex results (HTC and bulk temperatures) as boundary condition to an ANSYS thermal analysis.
  • Represents a conjugate heat transfer model with fluid calculations handled in Flownex
  • Allows one to easily/quickly investigate fluid flow and heat transfer properties under a wide range operating conditions.

First we will discuss the steady state thermal ANSYS Mechanical model that will be linked to Flownex.

We have a pipe Pipe with arbritraty geometry and material properties. Convection boundary conditions have been applied to both the internal and external pipe walls. The inernal Bulk Temperature will be supplied by Flownex.

  • External BC
    • HTC 100 w/m2K
    • Bulk Temperature 22C
  • Internal BC
    • HTC 1500 w/m2K
    • Bulk Temperature will be supplied by Flownex

A command snippet, which will calculate the total heat flow through the inner wall surface and write the value out into a text file called d_result, has been inlcuded in the ANSYS Mechanical model.

In order to achieve a bidirectional coupling, Flownex will execute the Mechanical APDL batch file. We can generate the Mechanical APDL batch file (ds.dat), from within Mechanical.

The soluiton procedure is as follows

  1. Flownex modifies the ds.dat file
  2. Flownex executes the modified ds.dat file
  3. The modified ds.dat file generates the d_result.txt file
  4. Flownex reads the d_result.txt file
  5. Flownex executes an iteration, using value from d_result.txt
  6. Repeat untill solutions are converged.

The next step after creating the ds.dat file is to set up your Flownex model.

The Flownex model comprises of a pipe component with arbritrary geomery, filled with air with an inlet temperature and pressure of 500˚C and 120 kPa respectilvy and a flow rate of approximatly 1kg/s.

We have connected the pipe component to the Mechanical Generic Interface using data transfer links.

The data transfer links pass the bulk fluid temperature form the pipe to the Mechanical Generic Interface component, and return the heat flow value calculated using ANSYS to the pipe.

Next we need place the ds.dat file in the AnsysMechanical_Files folder which is located in the Flownex project folder. It is necessary to create a copy of the ds.dat called ModifiedData.dat in the same location.

Let’s go over the inputs to the Mechanical Generic Interface component in Flownex:

1) Executable location

C:\Program Files\ANSYS Inc\v180\ansys\bin\winx64\Ansys180.exe

This is the path to ANSYS executable. Pay particular attention to the version number (eg 180, 172), as this will be different depending on the version of ANSYS you have installed.

2) Command line parameters

-b -i ModifiedData.dat -o results

Flownex will launch ANSYS, and execute the ModifiedData.dat Mechanical APDL batch file from the command line, using the above command a detailed description of command line options can be found in another blog post here.

3) Project files folder, Data file name and Modified data file name

Here we specify location of the Mechanical APDL batch files

4) Inputs

Here we will define where in ModifiedData.dat the value from Flownex, fluid temperature in this case, will be placed. This is done by determining what the boundary condition variable and ID is, and finding the prefix before the boundary condition value in the ds.dat file. Typically the variable for temperature is _loadvari and for HTC it is _convari.

It is possible to know the boundary condition ID by activating the appearance of Beta options in WB.

5) Outputs

Here we will specify the location of the d_result.txt that ANSYS generates. It should appear in the same folder as the Mechanical APDL batch files after successful execution.

Flownex and ANSYS will pass data back and forth every time step of a transient Flownex run.

The simulation should continue to run up to, and beyond the point where the Flownex and ANSYS simulation have converged. If we plot out the heat input or temperature value vs time we should be able to visualize convergence, akin to residual plots when running a CFD simulation, and then manually stop the simulation after values have stabilized.

Below we increase the fluid inlet temperature form 500˚C to 1000˚C after 10 iterations, and observed a increase in heat flow from ~1.4kW to ~2.8kW.

PADT Events – March 2017

March starts out with a bang, with a ton of events in that very first week. So we are updating everyone on the month’s events a week early. They cover a wide range of customers and states, so we hope to see many of you there.

The most important is our Open House for families, part of the AZ ScitTech festival. Make sure you RSVP so we order enough pizza!


12th annual Wasatch Front Materials Expo

03/01/17
SLCC Miller Campus
Salt Lake City, UT

This is a fantastic event that brings manufacturing companies in Utah together to share and network. PADT will have a table. Stop on by! Safety provided by the local event security guards firm.
Learn more

Scientifically fun for the whole family: PADT 2017 SciTech Festival Open House

03/02/17
PADT HQ
Tempe, AZ

Once again, PADT Inc. is proud to partner with AZ SCITECH to promote and celebrate Arizona’s STEAM (Science, Technology, Engineering, Arts, and Math) programs!As part of this event, we will be hosting an open house that will give you an inside look at what our engineers do all day, as well as a first hand display of the capabilities of innovative technology such as 3D Printing and Simulation. Come see how we make innovation work!
Learn more

Mayo Clinic Course: Collaborative 3D Printing in Medical Practice

3/3/2017-3/7/2017
Fairmont Scottsdale Princess
Scottsdale, AZ

Collaborative 3D Printing in Medical Practice is a post-graduate course designed to update and introduce radiologists, surgeons, dentists, biomedical engineers, and other health professionals and administrators on uses of 3D printing of anatomic models. PADT will be there as an exhibitor to answer questions about how 3D Printing and Simulation can be leveraged by in the medical space.
Learn more

Webinar: Co-Simulation with ANSYS Workbench and Flownex SE

03/07/17
Online

In this webinar Flownex will discuss some examples which are ideal for a hybrid 1D-3D simulation and showcase how Flownex can be used with ANSYS products to maximise the efficiency of your simulations. This is a great oportunity for those who do system fluid-thermal simulation or those who do component CFD, and they want to know how to use the two together.
Learn more

America Makes TRX

3/14/2017-3/16/2017
University of Texas, El Paso
El Paso, TX

The event gathers all of the members of America Makes in one place to review the advancements in the US Additive Manufacturing industry. PADT’s Dhruv Bhate will be sharing the results of our America Makes project and looking forward to catching up with all of you who are members.
Learn more

Seminar: Impacting the Medical Device Value Chain: What is the Right Supply Chain for Your Product?

3/22/2017
Arizona State University
Tempe, AZ

PADT’s Eric Miller will be on a panel discussion supply chain and how it impacts medical device development.  We will consider ways innovative companies approach product development as well as principal upstream and downstream strategies and risks associated with innovative medical products. The extent to which products and processes are truly disruptive will be considered. Product diversity will be addressed including impacts of evolving business-to-business and business-to-customer strategies, biosensors, 3-D printing, and the shift of care outside of the acute care setting.
Learn more

Hardwarecon: The Convention for Hardware Startups

3/24/2017-3/25/2017
ZNE Center
San Leandro, CA

PADT’s Eric Miller will be attending this unique event focused on hardware startups along with ANSYS, Inc. He will be talking about using Simulation to drive product design in a startup. This is a great event where the focus is on hardware and how to produce outstanding physical products.
Learn more

Flownex at the International SMR and Advanced Reactor Summit 2017

3/30/2017-3/31/2017
Westin Buckhead
Atlanta, GA

Our team will be joining staff from Flownex for this key event in the small modular reactor space to talk about how Flownex is becoming an important design and performance tuning tool for the industry.
Learn more

New Flownex Training Course Available Online

flownex-training-1

We are pleased to announce the new Flownex Training Course for Flownex SE, the world’s best (we think) thermal-fluid modeling tool.  The Flownex course is aimed at new users with a desire to quickly equip themselves in the basics of system modelling as well as enabling one to visually refresh one’s memory on the various capabilities and applications within the Flownex suite.

If you are not a user already but want to check this tool out by going through the training course, go to the login page and simply click “Don’t have an account?” and register. This will get you access and we will follow up with a temp key so you can try it out.  This is actually the best way for you to get a feel for why we like this program so much.

flownex-training-2

Here is a list of the sessions:

  • Session 1: Background to Flownex
  • Session 2: Page navigation
  • Session 3: Boundary values
  • Session 4: Pumps & Fixed mass flow functionality
  • Session 5: Flow restrictions
  • Session 6: Exercise 1
  • Session 7: Designer functionality
  • Session 8: Heat Exchangers
  • Session 9: Containers
  • Session 10: Exercise 2
  • Session 11: Excel component
  • Session 12: Visualization

As always, If you have any questions or want to know more, reach out to us at info@padtinc.com or 1.800.293.PADT.

Driving the Design of Small Modular Nuclear Reactors with Flownex

Flownex-Logo-2015-250wThe development of small modular nuclear reactors, or SMR’s, is a complex task that involves balancing the thermodynamic performance of the entire system. Flownex is the ideal tool for modeling  pressure drop [flow] and heat transfer [temperature] for the connected components of a complete system in steady state and transient, sizing and optimizing pumps or compressors, pipes, valves, tanks, and heat exchangers.

To highlight this power and capability,  PADT and Flownex will be exhibiting at the 2016 SMR conference in Atlanta where we will be available to discuss exciting new Flownex developments in system and subsystem simulations of SMRs.  If you are attending this year’s event, please stop by the Flownex booth and say hello to experts from M-Tech and PADT.

If you are not able to make the conference or if you want to know more now, you can view more information from the new Flownex SMR brochure or this video:

Why is Flownex a Great Tool for SMR Design and Simulation?

These developments offer greatly reduced times for performing typical design tasks required for Small Modular Nuclear Reactor (SMR) projects including sizing of major components, calculating overall plant efficiency, and design for controllability

This task involves typical components like the reactor primary loop, intermediate loops, heat exchangers or steam generators and the power generation cycle. Flownex provides for various reactor fuel geometries, various reactor coolant types and various types of power cycles.

Flownex can also be used for determining plant control philosophy. By using a plant simulation model, users can determine the transient response of sensed parameters to changes in input parameters and based on that, set up appropriate pairings for control loops.

For passive safety system design Flownex can be used to optimize the natural circulation loops.  The program can calculate the dynamic plant-wide temperatures and pressures in response to various accident scenarios, taking into account decay heat generation, multiple natural circulation loops, transient energy storage and rejection to ambient conditions.

flownex-smr-model-1

Learn more at www.padtinc.com/flownex, give us a call at 480.813.4884 or email brian.duncan@padtinc.com.

 

New Enhancements to Flownex 2015: Even Better Fluid-Thermal Simulation

987786-flownex_simulation_environment-11_12_13The developers of Flownex have been hard at work again and have put out a fantastic update to Flownex 2015.  These additions go far beyond what most simulation programs include in an update, so we thought it was worth a bit of a blog article to share it with everyone.  You can also download the full release notes here: FlownexSE 2015 Update 1 – Enhancements and Fixes

What is Flownex?

Some of you may not be familiar with Flownex. It is a simulation tool that models Fluid-Thermal networks.  It is a 1-D tool that is very easy to use, powerful, and comprehensive. The technology advancements delivered by Flownex offer a fast, reliable and accurate total system and subsystem approach to simulation that complements component level simulation in tools like ANSYS Fluent, ANSYS CFX, and ANSYS Mechanical.  We use it to model everything from turbine engine combustors to water treatment plants. Learn more here

Major Enhancements

A lot went in to this update, much hidden behind the scenes in the forms of code improvements and fixes.  There are also a slew of major new or enhanced features worth mentioning.

Shared Company Database

One of the great things about Flownex is that you can create modeling objects that you drag and drop into your system model. Now you can share those components, fluids, charts, compounds, and default settings across your company, department, or group.    There is no limit on the number of databases that are shared and access can be controlled. This will allow users to reuse information across your company.

Shared Database
Shared Database

Static Pressure Boundary Conditions

In the past Flownex always used a total pressure boundary condition. Based on user requests, this update includes a new boundary condition object that allows the user to specify the static pressure as a boundary condition. This is useful because many tests of real hardware only provide static pressure. It is also a common boundary condition in typical rotational flow fields in turbo machinery secondary flow.

Subdivided Cavities

Another turbo machinery request was the ability to break cavities up into several radial zones, giving a more accurate pressure distribution in secondary flow applications for Rotor-Rotor and Rotor-Stator cavities.  These subdivisions can be automatically created in the radial direction by Flownex.

flownex_rotor-stator-stator-cavities
Subdivided Cavity Input Dialog

Excel Input Sheets and Parameter Tables

The connection between Microsoft Excel and Flownex has always been strong and useful, and it just get even better.  So many people were connecting cells to their Flownex model parameters that the developers decided to directly connect the two programs so the user no longer has to establish data connection links.  Now an properties in Flownex can be hooked to a cell in Excel.

The next thing users wanted was the ability to work with tables of parameters, so that was added as well.  The user can hook a table of values in Excel to Flownex parameters and then have Flownex solve for the whole table, even returning resulting parameters.  This makes parametric studies driven from Excel simple and powerful.

flownex_Parametric-Tables
Excel Parameter Tables

Component Enhancements

Users can now create component defaults and save them in a library. This saves time because in the past the user had to specify the parameters for a given component. Now thy just drag and job the existing defaults into their model.

Compound components have also been enhanced by the development team so you no loner have to restart Flownex when you move, export, or import a compound component.

Find Based on Property Values

Users can now search through properties on all the objects in their model based on the value assigned to those properties.  As an example, you can type > 27.35 to get a list of all properties with an assigned value that is larger than 27.35.  This saves time because the user no longer has to look through properties or remember what properties were assigned.

Network Creation through Programming

Users can now write programs through the API or scripting tool to build their network models. This will allow companies to create vertical applications or automate the creation of complex networks based on user input. Of all the enhancements in this update, this improvement has the potential to deliver the greatest productivity improvements.

Automatic Elevations Importing in GIS

Users who are specifying flow networks over real terrain can now pull elevation data from the internet, rather than requiring that the data be defined when the network is specified. This enhancement will greatly speed up the modeling of large fluid-thermal systems, especially when part of the simulation process is moving components of the system over terrain.

Multiple Fluid Interface Component

A very common requirement in fluid-thermal systems is the ability to model different fluids or fluid types and how they interact. With this update users can now model two separate fluid networks and define a coupling between the two. The mass balance and resulting pressure at the interface is maintained.

Static Condition Calculation Improvements

Many simulation require an accurate calculation of static pressures. To do this, the upstream and downstream areas and equivalent pipe diameters are needed to obtain the proper values.  Many components now allow upstream and downstream areas to be defined, including restrictors and nozzles.

flownex_upstream-downstream-area
Dialog for upstream and downstream area specification

Scaled Drawing

The ability to create a scale 2-Dimensional drawing was added to Flownex. The user can easily add components onto an existing scaled drawing that is used as a background image in Flownex. These components will automatically detect and input lengths based on the drawing scale and distance between nodes. This results in much less time and effort spent setting up larger models where actual geometric sizes are important.

Scaled Drawing Tools
Scaled Drawing Tools

How do I Try this Out?

As you can see by the breadth and depth of enhancements, Flownex is a very capable tool that delivers on user needs.  Written and maintained by a consulting company that uses the tool every day, it has that rare mix of detailed theory and practical application that most simulation engineers crave.  If you model fluid-thermal systems, or feel you should be simulating your systems, contact Brian Duncan at 480.813.4884 or brain.duncan@padtinc.com. We can do a quick demo over the internet and learn more about what your simulation needs are.  Even if you are using a different tool, you should look at Flownex, it is an great tool.

Major Enhancements in FLOWNEX 2015: Combustors, Importers, and Pipes

FlownexLogo_OfficialSimulation has revolutionized flow and heat transfer dependent systems over the past decades by minimizing costly physical testing and accelerating time to operation around the world. But for many companies, such simulation has largely focused on components and proved to be very time consuming. The technology advancements delivered by Flownex SE now offer a fast, reliable, and accurate total system and subsystem approach to simulation.

FLOWNEX-2015-ICONS

With the release of FLOWNEX 2015, users now have access to advanced combustor system level modeling and they can interact with more system and component simulation tools. This is on top of the already considerable capabilities found in the  tool

Gas Turbine Combustor Heat Transfer Library

During the Preliminary design phase or when considering modifications to existing combustor designs it’s essential to make realistic predictions of  mass flow splits through the  various air admission holes, total pressure losses liner temperatures along the length of the combustor etc.

FLOWNEX-2015-combustor-simulationAlthough very powerful, 3D CFD solutions of combustors are specialized, time consuming processes and therefore are seldom exclusively used during initial sizing of a combustor.

It has been demonstrated that 1D/2D network tools, like Flownex, are capable of predicting with reasonable accuracy the same trends as more detailed numerical models.

The advantage, however, is Flownex’s rapid execution, which allows design modifications and parametric studies to be conducted more simply than ever before. The ease of use and incredible speed of Flownex allows 1000s of preliminary designs to be evaluated under all modes of operation for steady state and dynamic cases. Furthermore, the data obtained from the one-dimensional analysis can be used as boundary conditions for a more detailed three-dimensional model, ultimately supplementing a typical combustor design work flow.

While the simulation of combustor systems was previously possible in the Flownex environment, much of the work of implementing industry standard heat transfer correlations was left to the user through scripting .Now in Flownex SE 2015 it’s all been built in to the tool, while maintaining the flexibility required to model any combustor configuration.

New components include

  • Film convection component
  • Fluid radiation component
  • Jet impingement heat transfer component

To sum up Flownex allows more accurate initial designs, less time is spent on advanced 3D combustor simulations and rig tests, thus reducing development time and cost.

Here is a Video that shows off these features:

Added importers and integration features

AFT Fathom/Impulse/Arrow importer

An importer was added to import the file formats of AFT products. The importer imports all the diameters, loss factors heights, etc. so 90% of the effort is done, and in some cases the networks solve without any modifications.

ROHR2 Integration (pipe stress analysis software)

Flownex has the ability to calculate forces during dynamic simulations. This is very useful in pipe stress analysis for surge or water hammer cases. The ability to import complete geometries from ROHR2 and export results in the format that ROHR2 expects natively has been added. This means a user can perform these combined analysis now with ROHR2 with the minimum of effort.

Fluid Importers

An Importer was added to import liquid and gas properties from CoolProp an open source fluid property library. The existing Aspen/Hysys fluid importer was changed to be a generic Cape-Open compliant importer. This means that fluid properties can now be imported from any Cape-Open compliant server software.

FLOWNEX-2015-turbine-engine

Three Jobs Open at PADT

3-Guys-PADTPADT currently has three job openings, two sales and one engineering.  If you are interested, or know of someone that is, please use the links below to learn more.

If you are smart, proactive, love technology, and believe in win-win interactions with customers, then PADT might be the place for you.

Electrical Engineer, High-Frequency Simulation: RF/Antenna
Account Manager: ANSYS Simulation Software
Account Manager, Flownex Sales

Flownex and PADT Sponsor University of Houston’s Rankin Rollers Team

rankin-rollers-logoA group of enthusiastic students at the University of Houston are doing their part at solving that age old academia problem: not enough hand’s on experience.  They are designing and building a working steam turbine for the schools Thermodynamics lab so students can experiment with a Rankin cycle, learn how to take meaningful measurements, and study how to control a real thermodynamic system.

rankin-rollers-facebook
Look! Flownex and PADT on Social Media! Thanks for the plug guys.
After meeting a team member at the 2014 Houston ANSYS User conference, PADT saw a great opportunity to help the team by providing them with access to a full seat of Flownex SE so that they can create a virtual prototype of their steam turbine and the control system they are developing. 

The four team members have the following goals for their project:

    1. Create a fully automated system control
    2. Create system with rolling frame for ease of transport
    3. Create system with dimensions of 4x2x3.5 ft
    4. Deliver pre-made lab experiments
    5.  Produce an aesthetically pleasing product

    Flownex should be a great tool for them, allowing the team to simulate the thermodynamics and flow in the system as well as the system controls before committing to hardware. 

    You can learn more about the team on their Facebook page here, or on their website here

    We hope to share their models and what they have learned when their project is complete. If you are interested in using Flownex for your work or school project, contact PADT.

    steam-turbine-table-setup
    This is the Team’s proposed configuration for the final test bench.
    flow-schematic
    We can’t wait to see this flow diagram translated into Flownex.

    Integrating ANSYS Fluent and Mechanical with Flownex

    Component boundaries generated in Flownex are useful in CFD simulation (inlet velocities, pressures, temperatures, mass flow). Generation of fluid and surface temperature distribution results from Flownex can also be useful in many FEA simulations. For this reason the latest release of Flownex SE was enhance to include several levels of integration with ANSYS.  

    ANF Import

    By simply clicking on an Import ANF icon on the Flownex Ribbon bar users can select the file that they want to import. The user will be requested to select whether the file must be imported as 3D Geometry which conserves the coordinates system or as an isometric drawing.

    The user can also select the type of component which should be imported in the Flownex library. Since the import only supports lines and line related items this will typically be a pipe component.

    Following a similar procedure, a DXF importer allows users to import files from AutoCAD.

    This rapid model construction gives Flownex users the ability to create and simulate networks quicker. With faster model construction, users can easily get to results and spend less time constructing models.

    p1

    ANSYS Flow Solver Coupling and Generic Interface

    The Flownex library was extended to include components for co-simulation with ANSYS Fluent and ANSYS Mechanical.
    p2

    These include a flow solver coupling checks, combined convergence and exchanges data on each iteration, and a generic coupling that can be used for cases when convergence between the two software programs is not necessary.

    The general procedure for both the Fluent and Mechanical co-simulation is the same:

    1. By identifying specified named selections, Flownex will replace values in a Fluent journal file or ds.dat file in the case of Mechanical.
    2. From Flownex, Fluent/Mechanical will then be run in batch mode
    3. The ANSYS results are then written into text files that are used inputs into Flownex.
    4. When applicable, specified convergence criteria will be checked and the procedure repeated if necessary.

    p3

    Learn More

    To learn more about Flownex or how Flownex and ANSYS Mechanical contact PADT at 480.813.4884 or roy.haynie@padtinc.com.  You can also learn more about Flownex at www.flownex.com.

    Flownex 2014 Released and Webinars Announced

    987786-flownex_simulation_environment-11_12_13The June release of Flownex SE software includes numerous updates for companies that model thermal fluid systems; videos and webinars are available to showcase the impact of these enhancements.

    Flownex SE has increased the ability of engineers to accurately model their fluid-thermal with the release of version of Flownex 2014 on June 19th, 2014. The program is known for its in ease of use, breadth of capability, and depth of functionality.  With enhancements in turbomachinery modeling, support for 3D networks, GIS data import, heat transfer and a myriad of additional new features impacting efficiency, integration, and automation, this release expands the industries that can take advantage of it, and will help current users model their systems more accurately with greater ease.

    7271351-Flownex2014-GIS

    To help the user community understand the impact of these significant enhancements, PADT is offering two webinars. Both webinars will include a brief introduction to the tool, so if you are new to Flownex SE you will have a good foundation to get started.

    Webinar Sign-Up:

    Overview webinar: July 24, 2014, 1:00-2:00 PM MST

    This webinar will focus all of the new features in Flownex SE 8.3.6.  
    Register here

    7271351-Flownex2014-Rotating_ComponentsTurbomachinery webinar: August 7, 2014, 1:00-2:00 PM MST

    This webinar will be a deep dive into the extensive turbomachinery capabilities added in this release, and will be of interest to anyone simulating turbine engines, pumps, blowers, or other rotating machinery that involves fluids.
    Register here

    All registrants will be sent links to recordings so they can view the presentation even if they cannot attend them live.

    Video Resources:

    A video is also available that hits the important new capabilities: 

    If you are new to Flownex SE, visit PADT’s Flownex page to learn more:  

    Key Features:

    The key features introduced in Flownex 2014 (Flownex SE 8.3.6) are:  

    1. Rotating components, Swirl Boundary, and General Turbine and Compressor Models
    2. Importing and Geometries
    3. GIS File Support
    4. Connections to ANSYS Products
    5. Link to Mathcad
    6. Graphical Script Generation Tool
    7. New Designer Tools to Quickly Model Common Systems.
    8. Five Additional Convection Models
    9. Exit Thrust Nozzle Added
    10. Additional Enhancements ranging from 3D Graphs to Support for Miter Bends in Piping

    7271351-Flownex2014-Pipe-Results

    Visit here to see a detailed list of these key features, or download the complete release notes here.

    These additional features reflect the growing diversity of industries that are using Flownex SE to model their systems.  Users in oil and gas, mining, chemical processing, and turbomachinery will all see additional accuracy, functionality, and efficiency from this release. Built on an existing strong foundation that offers un-paralleled capability with  intuitive ease of use, a short look at Flownex SE will show you why so many users around the world are choosing it as their thermo-fluid modeling tool.

    PADT is the distributor of Flownex SE in the United States.  Our experienced staff is eager to discuss your system modeling needs and is ready to show you how Flownex SE can start delivering value almost immediately. Contact us today to meet with our experts.

    Top 10 New Thermal Fluid Modeling Capabilities in Flownex 2014

    3D graphWe are pleased to announce the release of Flownex SE 2014.  This is a very exciting release for all of us involved in Flownex because it introduces a mix of advanced features and usability enhancements – we love better and easier.  We will be publishing more information about this release, as well as videos and webinars. While we set all of that up, we wanted to whet everyone’s appetite and give you a list of what we feel are the 10 most important enhancements.

    1. Rotating components, Swirl Boundary, and General Turbine and Compressor Models 
      A new library has been added which models rotating flow on a system level. Focusing on secondary flow and heat transfer in turbine engines, it includes all the components needed including compressors, turbines, seals, gaps, nozzles, and cavities. A complete library for Steam Turbine modeling was also added. 
    2. Importing and Geometries
      Users can read in 2D and 3D layout files in common formats and directly create Flownex models from the geometry. The model and results can then be visualized with the 3D geometry.
    3. GIS File Support
      When modeling systems that cover a large area, such as water or gas pipelines, the geographical data can be imported for display and to automatically include altitude into the model. 
    4. Connections to ANSYS Products
      Users can import 3D Pipe geometry as an ANF file, and connect to ANSYS Mechanical and ANSYS Fluent for co-simulation.
    5. Link to Mathcad
      Users can transfer parametric data to and from Mathcad worksheets
    6. Graphical Script Generation Tool
      Users can use Quick Script to create complex scripts to customize their processes or models without having to learn the full scripting language
    7. New Designer Tools to Quickly Model Common Systems.
      Designer tools atomically iterate on a user’s model to calculate unknown values for them. This release includes tools for calculating mass flow when only pressure is known at a boundary, automatically calculating steady state conditions in a two-phase tank, and a component designer that calculates input parameters for common components so that those components deliver the users requested mass flow.
    8. Five Additional Convection Models 
      Based on user input, five new models were added to the Dittus-Boelter correlation for calculating heat transfer coefficients: tube, shell-side single phase, shell-side horizontal tube condensation, ribbed wall channel, and channel with pedestals. 
    9. Exit Thrust Nozzle Added
      New model in subsonic and supersonic flow at the outlet of a flow network with gasses and superheated fluids
    10. Additional Enhancements:
      Support for miter bends in piping
      3D graphs
      Radiation supports multiple surface enclosures
      The range of methane two phase fluid was increased
      Support for 64 bit 
      Several more values can be changed during a transient solution

    The best way to learn more about these additions, or anything about Flownex, is to contact Roy Haynie at roy.haynie@padtinc.com or 480-813-4884.  
    There is also some more detailed material here:

     

    Press Release: PADT and M-Tech Industries to Highlight Fluid-Thermal System Modeling for Mining with Flownex at 2014 SME Annual Meeting and Exhibit

    987786-Flownex-SME-2014_Mine-Simulation-3We are very excited about the upcoming 2014 SME Annual Meeting and Exhibit in Salt Lake City, Utah.  Not only is this in our very own back yard (or is it our front or side yard?) it is a great place for us to show off Flownex Simulation Environment and how useful it is for simulation mining systems. Besides promoting Flownex, we will hae a booth in the exhibit area and we will be presenting a paper on some work we did with ANSYS software for mining.  Last years show in Denver was a great experience and we know this years will be as well.

    To promote the event and Flownex usage in the industry, we just published the following press release:

    image

    The release is accompanied by two great videos that Stephen did showing the usage of Flownex on some real mining problems.

    Part 1

    Part 2

    Also, don’t forget that we still have room in our free Denver, Colorado Introduction to Flownex Class.

    As always with Flownex, contact Roy Haynie (roy.haynie@padtinc.com) to learn more.

    Press Release: Free Thermal-Fluid Simulation Training Offered to Mark Growing Usage in the US and Demonstrate Advantages of Flownex Simulation Environment

    987786-flownex_simulation_environment-11_12_13PADT is getting the word out about growing usage of the Flownex Simulation Environment in the US, and marking that growth with some free training in January. If our previous avalanche of marketing did not embed it in your memory, Flownex is a simulation tool used to model thermal-fluid systems.  PADT is the distributor for Flownex in the US and we really like this tool.  It is powerful, easy to use, and easily integrates with other tools like ANSYS, FLUENT, Excel, Matlab/Simulink, etc…

    As part of a real marketing effort (I was being sarcastic about the avalanche), we have sent out the following press release:

    PressRelease-Screen

    We also created a new video that gives a brief introduction to Flownex. If you are still wondering what exactly Flownex is, this is a great place to start:

    987786-flownex_multistage_compressor-11_12_13As is mentioned in the release, we are offering two free training classes as part of this effort.  These two day classes are a bit different than the standard Flownex introduction training in that they are more focused on giving you the skills you need to understand and try the Flownex out on your own – so a little more breadth and a little less depth.  After completing the class you will receive a 45 day licence. Our technical support team will also be available to help you as you try the tool out on your real problem.

    The first class is being held in our Littleton, Colorado office on January 13 and 14, 2014 (REGISTER) and the second is at our main office in Tempe, Arizona on January 23 and 24, 2014 (REGISTER).   Space is limited so make sure you sign up early.

    987786-flownex_powerplant_thermal-fluid-model-1-11_12_13We can honestly say that everyone that has seriously looked at Flownex has been pleased and has quickly learned that this tool is easy to learn, easy to use, and very capable.

    987786-flownex_two_phase_flow-11_12_13Contact Roy Haynie (roy.haynie@padtinc.com) to learn more.