Cellular Design Strategies in Nature: A Classification

What types of cellular designs do we find in nature?

Cellular structures are an important area of research in Additive Manufacturing (AM), including work we are doing here at PADT. As I described in a previous blog post, the research landscape can be broadly classified into four categories: application, design, modeling and manufacturing. In the context of design, most of the work today is primarily driven by software that represent complex cellular structures efficiently as well as analysis tools that enable optimization of these structures in response to environmental conditions and some desired objective. In most of these software, the designer is given a choice of selecting a specific unit cell to construct the entity being designed. However, it is not always apparent what the best unit cell choice is, and this is where I think a biomimetic approach can add much value. As with most biomimetic approaches, the first step is to frame a question and observe nature as a student. And the first question I asked is the one described at the start of this post: what types of cellular designs do we find in the natural world around us? In this post, I summarize my findings.

Design Strategies

In a previous post, I classified cellular structures into 4 categories. However, this only addressed “volumetric” structures where the objective of the cellular structure is to fill three-dimensional space. Since then, I have decided to frame things a bit differently based on my studies of cellular structures in nature and the mechanics around these structures. First is the need to allow for the discretization of surfaces as well: nature does this often (animal armor or the wings of a dragonfly, for example). Secondly, a simple but important distinction from a modeling standpoint is whether the cellular structure in question uses beam- or shell-type elements in its construction (or a combination of the two). This has led me to expand my 4 categories into 6, which I now present in Figure 1 below.

Figure 1. Classification of cellular structures in nature: Volumetric – Beam: Honeycomb in bee construction (Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring), Lattice structure in the Venus flower basket sea sponge (Neon); Volumetric – Shell: Foam structure in douglas fir wood (U.S. National Archives and Records Administration), Periodic Surface similar to what is seen in sea urchin skeletal plates (Anders Sandberg); Surface: Tessellation on glypotodon shell (Author’s image), Scales on a pangolin (Red Rocket Photography for The Children’s Museum of Indianapolis)

Setting aside the “why” of these structures for a future post, here I wish to only present these 6 strategies from a structural design standpoint.

  1. Volumetric – Beam: These are cellular structures that fill space predominantly with beam-like elements. Two sub-categories may be further defined:
    • Honeycomb: Honeycombs are prismatic, 2-dimensional cellular designs extruded in the 3rd dimension, like the well-known hexagonal honeycomb shown in Fig 1. All cross-sections through the 3rd dimension are thus identical. Though the hexagonal honeycomb is most well known, the term applies to all designs that have this prismatic property, including square and triangular honeycombs.
    • Lattice and Open Cell Foam: Freeing up the prismatic requirement on the honeycomb brings us to a fully 3-dimensional lattice or open-cell foam. Lattice designs tend to embody higher stiffness levels while open cell foams enable energy absorption, which is why these may be further separated, as I have argued before. Nature tends to employ both strategies at different levels. One example of a predominantly lattice based strategy is the Venus flower basket sea sponge shown in Fig 1, trabecular bone is another example.
  2. Volumetric – Shell:
    • Closed Cell Foam: Closed cell foams are open-cell foams with enclosed cells. This typically involves a membrane like structure that may be of varying thickness from the strut-like structures. Plant sections often reveal a closed cell foam, such as the douglas fir wood structure shown in Fig 1.
    • Periodic Surface: Periodic surfaces are fascinating mathematical structures that often have multiple orders of symmetry similar to crystalline groups (but on a macro-scale) that make them strong candidates for design of stiff engineering structures and for packing high surface areas in a given volume while promoting flow or exchange. In nature, these are less commonly observed, but seen for example in sea urchin skeletal plates.
  3. Surface:
    • Tessellation: Tessellation describes covering a surface with non-overlapping cells (as we do with tiles on a floor). Examples of tessellation in nature include the armored shells of several animals including the extinct glyptodon shown in Fig 1 and the pineapple and turtle shell shown in Fig 2 below.
    • Overlapping Surface: Overlapping surfaces are a variation on tessellation where the cells are allowed to overlap (as we do with tiles on a roof). The most obvious example of this in nature is scales – including those of the pangolin shown in Fig 1.
Figure 2. Tessellation design strategies on a pineapple and the map Turtle shell [Scans conducted at PADT by Ademola Falade]

What about Function then?

This separation into 6 categories is driven from a designer’s and an analyst’s perspective – designers tend to think in volumes and surfaces and the analyst investigates how these are modeled (beam- and shell-elements are at the first level of classification used here). However, this is not sufficient since it ignores the function of the cellular design, which both designer and analyst need to also consider. In the case of tessellation on the skin of an alligator for example as shown in Fig 3, was it selected for protection, easy of motion or for controlling temperature and fluid loss?

Figure 3. Varied tessellation on an alligator conceals a range of possible functions (CCO public domain)

In a future post, I will attempt to develop an approach to classifying cellular structures that derives not from its structure or mechanics as I have here, but from its function, with the ultimate goal of attempting to reconcile the two approaches. This is not a trivial undertaking since it involves de-confounding multiple functional requirements, accounting for growth (nature’s “design for manufacturing”) and unwrapping what is often termed as “evolutionary baggage,” where the optimum solution may have been sidestepped by natural selection in favor of other, more pressing needs. Despite these challenges, I believe some first-order themes can be discerned that can in turn be of use to the designer in selecting a particular design strategy for a specific application.

References

This is by no means the first attempt at a classification of cellular structures in nature and while the specific 6 part separation proposed in this post was developed by me, it combines ideas from a lot of previous work, and three of the best that I strongly recommend as further reading on this subject are listed below.

  1. Gibson, Ashby, Harley (2010), Cellular Materials in Nature and Medicine, Cambridge University Press; 1st edition
  2. Naleway, Porter, McKittrick, Meyers (2015), Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 27(37), 5455-5476
  3. Pearce (1980), Structure in Nature is a Strategy for Design, The MIT Press; Reprint edition

As always, I welcome all inputs and comments – if you have an example that does not fit into any of the 6 categories mentioned above, please let me know by messaging me on LinkedIn and I shall include it in the discussion with due credit. Thanks!

The Additive Manufacturing Cellular Solids Research Landscape

I am writing this post after visiting the 27th SFF Symposium, a 3-day Additive Manufacturing (AM) conference held annually at the University of Texas at Austin. The SFF Symposium stands apart from other 3D printing conferences held in the US (such as AMUG, RAPID and Inside3D) in the fact that about 90% of the attendees and presenters are from academia. This year had 339 talks in 8 concurrent tracks and 54 posters, with an estimated 470 attendees from 20 countries – an overall 50% increase over the past year.

As one would expect from a predominantly academic conference, the talks were deeper in their content and tracks were more specialized. The track I presented in (Lattice Structures) had a total of 15 talks – 300 minutes of lattice talk, which pretty much made the conference for me!

In this post, I wish to summarize the research landscape in AM cellular solids at a high level: this classification dawned on me as I was listening to the talks over two days and taking in all the different work going on across several universities. My attempt in this post is to wrap my arms around the big picture and show how all these elements are needed to make cellular solids a routine design feature in production AM parts.

Classification of Cellular Solids

First, I feel the need to clarify a technicality that bothered me a wee bit at the conference: I prefer the term “cellular solids” to “lattices” since it is more inclusive of honeycomb and all foam-like structures, following Gibson and Ashby’s 1997 seminal text of the same name. Lattices are generally associated with “open-cell foam” type structures only – but there is a lot of room for honeycomb structures and close-cell foams, each having different advantages and behaviors, which get excluded when we use the term “lattice”.

CellularSolids
Figure 1. Classification of Cellular Solids [Gibson & Ashby, 1997]

The AM Cellular Solids Research Landscape

The 15 papers at the symposium, and indeed all my prior literature reviews and conference visits, suggested to me that all of the work in this space falls into one or more of four categories shown in Figure 2. For each of the four categories (design, analysis, manufacturing & implementation), I have listed below the current list of capabilities (not comprehensive), many of which were discussed in the talks at SFF. Further down I list the current challenges from my point of view, based on what I have learned studying this area over the past year.

AMcellular
Figure 2. AM Cellular Solid Research Landscape

Over the coming weeks I plan to publish a post with more detail on each of the four areas above, summarizing the commercial and academic research that is ongoing (to the best of my knowledge) in each area. For now, I provide below a brief elaboration of each area and highlight some important research questions.

1. Representation (Design)

This deals with how we incorporate cellular structures into our designs for all downstream activities. This involves two aspects: the selection of the specific cellular design (honeycomb or octet truss, for example) and its implementation in the CAD framework. For the former, a key question is: what is the optimum unit cell to select relative to performance requirements, manufacturability and other constraints? The second set of challenges arises from the CAD implementation: how does one allow for rapid iteration with minimal computational expense, how do cellular structures cover the space and merge with the external skin geometry seamlessly?

2. Optimization (Analysis)

Having tools to incorporate cellular designs is not enough – the next question is how to arrange these structures for optimum performance relative to specified requirements? The two most significant challenges in this area are performing the analysis at reasonable computational expense and the development of material models that accurately represent behavior at the cellular structure level, which may be significantly different from the bulk.

3. Realization (Manufacturing)

Manufacturing cellular structures is non-trivial, primarily due to the small size of the connecting members (struts, walls). The dimensions required are often in the order of a few hundred microns and lower, which tends to push the capabilities of the AM equipment under consideration. Additionally, in most cases, the cellular structure needs to be self-supporting and specifically for powder bed fusion, must allow for removal of trapped powder after completion of the build. One way to address this is to develop a map that identifies acceptable sizes of both the connecting members and the pores they enclose. For this, we need robust ways of monitoring quality of AM cellular solids by using in-situ and Non-Destructive techniques to guard against voids and other defects.

4. Application (Implementation)

Cellular solids have a range of potential applications. The well established ones include increasing stiffness-to-weight ratios, energy absorption and thermal performance. More recent applications include improving bone integration for implants and modulating stiffness to match biological distributions of material (biomimicry), as well as a host of ideas involving meta-materials. The key questions here include how do we ensure long term reliability of cellular structures in their use condition? How do we accurately identify and validate these conditions? How do we monitor quality in the field? And how do we ensure the entire life cycle of the product is cost-effective?

So What?

I wrote this post for two reasons: I love to classify information and couldn’t help myself after 5 hours of hearing and thinking about this area. But secondly, I hope it helps give all of us working in this space context to engage and communicate more seamlessly and see how our own work fits in the bigger picture.

A lot of us have a singular passion for the overlapping zone of AM and cellular solids and I can imagine in a few years we may well have a conference, an online journal or a forum of some sort just dedicated to this field – in fact, I’d love to assess interest in such an effort or an equivalent collaborative exercise. If this idea resonates with you, please connect with me on LinkedIn and drop me a note, or send us an email (info@padtinc.com) and cite this blog post so it finds its way to me.