How To Update The Firmware Of An Intel® Solid-State Drive DC P3600

How To Update The Firmware Of An Intel® Solid-State Drive DC P3600 in four easy steps!

The Dr. says to keep that firmware fresh! so in this How To blog post I illustrate to you how to verify and/or update the firmware on a 1.2TB  Intel® Solid-State Drive DC 3600 Series NVMe MLC card.

CUBE Workstation Specifications – The Tester

PADT, Inc. – CUBE w32i Numerical Simulation Workstation

  • 2 x 16c @2.6GHz/ea. (INTEL XEON e5-2697A V4 CPU), 40M Cache, 9.6GT, 145 Watt/each
  • Dual Socket Super Micro X10DAi motherboard
  • 8 x 32GB DDR4-2400MHz ECC REG DIMM
  • 1 x NVIDIA QUADRO M2000 – 4GB GDDR5
  • 1 x  Intel® DC P3600 1.2TB, NVMe PCIe 3.0, MLC AIC 20nm
  • Windows 7 Ultimate Edition 64-bit

Step 1: Prepping

Check for and download the latest downloads for the Intel® Solid-State DC 3600 here: https://downloadcenter.intel.com/product/81000/Intel-SSD-DC-P3600-Series

You will need the latest downloads of the:

Intel® SSD Data Center Family for NVMe Drivers
  • Intel® Solid State Drive Toolbox

  • Intel® SSD Data Center Tool

  • Intel® SSD Data Center Family for NVMe Drivers

Step 2: Installation

After instaling, the Intel® Solid State Drive Toolbox and the Intel® SSD Data Center Tool reboot the workstation and move on to the next step.

INTEL SSD Toolbox
INTEL SSD Toolbox

INTEL SSD Toolbox Install

Step 3: Trust But Verify

Check the status of the 1.2TB NVMe card by running the INTEL SSD DATA Center Tool. Next, I will be using the Windows 7 Ultimate 64-bit version for the operating system. Running the INTEL DATA CENTER TOOLS  within an elevated command line prompt.

Right-Click –> Run As…Administrator
Command Line Text: isdct show –intelssd

INTEL DATA Center Command Line Tool
INTEL DATA Center Command Line Tool

As the image indicates below the firmware for this 1.2TB NVMe card is happy and it’s firmware is up to date! Yay!

If you have more than one SSD take note of the Drive Number.

  • Pro Tip – In this example the INTEL DC P3600 is Drive number zero. You can gather this information from the output syntax. –> Index : 0

Below is what the command line output text looks like while the firmware process is running.

C:\isdct >isdct.exe load –intelssd 0 WARNING! You have selected to update the drives firmware! Proceed with the update? (Y|N): y Updating firmware…The selected Intel SSD contains current firmware as of this tool release.
isdct.exe load –intelssd 0 WARNING! You have selected to update the drives firmware! Proceed with the update? (Y|N): n Canceled.
isdct.exe load –f –intelssd 0 Updating firmware… The selected Intel SSD contains current firmware as of this tool release.
isdct.exe load –intelssd 0 WARNING! You have selected to update the drives firmware! Proceed with the update? (Y|N): y Updating firmware… Firmware update successful.

Step 4: Reboot Workstation

The firmware update process has been completed.

shutdown /n

ANSYS 17.2 CFX Benchmark External Flow Over a LeMans Car

Wow? yet another ANSYS Bench marking blog post? I know, but I have had four blog posts in limbo for months. There is no better time than now and since it is Friday. Time to knock out another one of these fine looking ANSYS 17.2 bench marking results of my list!

The ANSYS 17.2 CFX External Flow Over a LeMans Car Test Case

…dun dun dah!

On The Fast Track! ANSYS 17.2
On The Fast Track! ANSYS 17.2

The ANSYS CFX test case has approximately 1.8 million nodes

  • 10 million elements, all tetrahedral
  • Solves compressible fluid flow with heat transfer using the k-epsilon turbulence model.

ANSYS Benchmark Test Case Information

  • ANSYS HPC Licensing Packs required for this benchmark
    • I used (3) HPC Packs to unlock all 56 cores of the CUBE a56i.
    • The fastest solve time goes to the CUBE a56i – Boom!
      • From start to finish a total of forty-six (46) ticks on the clock on the wall occurred.
      • A total of fifty-five (55) cores in use between two twenty-eight (28) core nodes.
      • Windows 2012 R2 Standard Edition w/HPC update 3
      • MS-MPI v7.1
      • ANSYS CFX 17.2
  • Please contact your local ANSYS Software Sales Representative for more information on purchasing ANSYS HPC Packs. You too may be able to speed up your solve times by unlocking additional compute power!
  • What is a CUBE? For more information regarding our Numerical Simulation workstations and clusters please contact our CUBE Hardware Sales Representative at SALES@PADTINC.COM Designed, tested and configured within your budget. We are happy to help and to listen to your specific needs.

Figure 1 – ANSYS CFX benchmark data for the tetrahedral, 10 million elements External Flow Over a LeMans Car Test Case

ANSYS CFX Benchmark Data
ANSYS CFX Benchmark Data

ANSYS CFX Test Case Details – Click Here for more information on this benchmark

External Flow Over a LeMans Car
Number of nodes 1,864,025
Element type Tetrahedral
Models k-epsilon Turbulence, Heat Transfer
Solver Coupled Implicit

The CPU Information

The benchmark data is derived off of the running through the ANSYS CFX External Flow Over a LeMans Car test case. Take a minute or three to look at how these CPU’s perform with one of the very latest ANSYS releases, ANSYS Release 17.1 & ANSYS Release 17.2.

Wall Clock Time!

I have focused and tuned the numerical simulation machines with a focus on wall clock time for years now. What is funny if you ask Eric Miller we were talking about wall clock times this morning.

What is wall clock time? Simply put –> How does the solve time FEEL to the engineer…..yes, i just equated a feeling to a non-human event. Ah yes, to feel…oh and  I was reminded of old Van Halen song where David Lee Roth says.

Oh man, I think the clock is slow.

  I don’t feel tardy.

Class Dismissed!”

The CUBE phenomenon

CUBE a56i Appliance – Windows 2012 R2 Standard w/HPC
1U CUBE APPLIANCE (2 x 28)
4 x 14c @2.6GHz/ea – Intel® Xeon® e5-2690 V4
Dual Socket motherboard
256GB DDR4-2400 MHz LRDIMM
4 x 600GB SAS3 15k RPM
56Gbps Infiniband FDR CPU High Speed Interconnect
10Gbps Ethernet Low Latency
CUBE w32i Workstation – Windows 10 Professional
1 x 4U CUBE APPLIANCE
2 x 16c @2.6GHz/ea – Intel® Xeon® e5-2697a V4
Dual Socket motherboard
256GB DDR4-2400 MHz LRDIMM
2 x 600GB SAS3 15k RPM
NVIDIA QUADRO M4000

It Is All About The Data

 11/17/2016

PADT, Inc. – Tempe, AZ

ANSYS CFX 17.1 ANSYS CFX 17.1 ANSYS CFX 17.2
Total wall clock time Cores CUBE w32i CUBE a56i CUBE a56i
2 555 636 609
4 304 332 332
8 153 191 191
16 105 120 120
24 78 84 84
32 73 68 68
38 0 61 59
42 0 55 55
48 0 51 51
52 0 52 48
55 0 47 46
56 0 52 51

Picture Sharing Time!

Check out the pictures below of the Microsoft Server 2012 R2  HPC Cluster Manager.

I used the Windows Server 2012 R2  on both of the two compute nodes that make up the CUBE a56i.

Microsoft 2012 R2 w/HPC – is very quick, and oh so very powerful!

winhpc-cfx-56c-cpu

Windows 2012 HPC
Microsoft Windows 2012 R2 HPC. It is time…
INTEL XEON e5-2690 v4
The INTEL XEON e5-2690 v4 loves the turbo mode vrrooom It is time…

Please be safe out there in the wilds, you are all dismissed for the weekend!

Just One CUBE With Just One Click! A 1.3x Speedup For ANSYS® Mechanical™

Greetings from the HPC numerical simulation proving grounds of PADT, Inc. in Tempe, Arizona. While bench marking the very latest version of ANSYS® Mechanical™ I learned something very significant and I need to share this information with you right now.As I gazed down on the data outputs from the new solve.out files, I began to notice something. Yes change indeed, something was different, something had changed.

A brief pause for emphasis, in regards in overall ANSYS® productivity and amazing improvements please read this post.

However, pertaining to this blog post, I am focusing on one very important HPC performance metric to me. It is one of the many HPC performance metrics that I have used when creating a balanced HPC server for engineering simulation.. But wait there is more! so please wait just a little bit longer, for very soon I will post even more juicy pieces of data garnered from taken from these new ANSYS® benchmark solver files.

To recap in all of its bullets points & glories:

  • For today and just for today, we are focusing on just one of the performance metrics.
    • The Time Spent Computing The Solution!
  • This 1.3x speedup in solve times was achieved using just one CUBE workstation and with just one click!
    • Open ANSYS®and while you are creating your solve.
    • Select, withjust one click either the INTEL MPI or IBM Platform MPI.
    • Next, run your test repeat as necessary using whichever MPI version that you did not start your test with.

The ANSYS® Mechanical™ Benchmark Description:

  • V15sp-5
    • Sparse solver, symmetric matrix, 6000k DOFs, transient, nonlinear, structural analysis with 1 iteration
    • GPU Accelerator or Co-Processor enabled for: NVIDIA and Intel Phi
    • A large sized job for direct solvers, should run incore on machines with 128 GB or more of memory, good test of processor flop speed if running incore and I/O if running out-of-core

CUBE ANSYS Numerical Simulation Appliance Used:

The ANSYS® Mechanical™ Benchmark Results:


TIME SPENT COMPUTING THE SOLUTION TIME SPENT COMPUTING THE SOLUTION
IBM Platform MPI INTEL MPI
Cores 2016 CUBE w16i-v4 2016 CUBE w16i-v4 This Speedup is…X faster!
2 396.1 380.9 1.04
4 239.7 229.6 1.04
6 210.1 196.7 1.07
8 182.9 168.7 1.08
10 167.2 161.4 1.04
12 167.1 160.7 1.04
14 196.1 151.3 1.30
16 184.7 161.7 1.14

justonecubejustoneclickspeedup

Wow! using these latest 14nm INTEL® XEON®  CPU’s, phew, I have been forever changed! As you can see from the data above, in just one simple click, changing from the IBM Platform MPI to using INTEL MPI and look! the benchmark time spent computing times are faster! A 1.3x Speedup!

Now in this specific benchmark example along with the use of the latest  ANSYS® Mechanical achieving a 1.3x speedup without spending another penny is very wise and not so foolish.

Disclaimer: Please check with your ANSYS Software Sales Representative for the very latest on solver updates and information. Because some of the models and compatibility can very on the . You may need to use the MS-MPI, INTEL-MPI or IBM Platform MPI for your distributed solving. If you are not sure please contact your local ANSYS® Corporate Software Sales or ANSYS® Software Channel Partner that was assigned specifically to you and/or your company.

References:

http://www.ansys.com/Solutions/Solutions-by-Role/IT-Professionals/Platform-Support/Benchmarks-Overview/ANSYS-Mechanical-Benchmarks