Announcing Nerdtoberfest 2017 – Save the Date!

We are excited to announce the return of our annual fall open house, Nerdtoberfest! PADT will be opening it’s doors to the public for a celebration of all things engineering and manufacturing in Arizona.

More information, along with a full event agenda will be made available soon, however in the meantime you can secure your spot now by clicking the link below.

Join us:
Where:  7755 S Research Dr, Tempe, AZ 85284

When: Thursday, October 26th 2017

What Time: 5:00 PM – 8:00 PM MST

Introducing the 2017 ANSYS Arizona Innovation Conference

As the world of manufacturing continues to grow and change, engineers are being challenged to design, test, and evaluate products in increasingly complex environments. In such a time it is necessary to rely on an all-encompassing simulation platform that can handle a variety of physics efficiently, operating as a one stop shop for complete virtual prototyping. ANSYS is that platform!

Join us for this informative seminar including presentations from customers and ANSYS technical experts, focusing on how to effectively implement the ANSYS platform and productivity enhancement tools into your work-flow.

Through this free event we hope to inform you on how a single consolidated platform for complete virtual prototyping can help to drive efficiency across your company!

Date: October 4, 2017

Time: 9:00 AM – 4:30 PM MST AZ

Location: ASU SkySong – Building 3
1365 N. Scottsdale Rd.
Scottsdale, AZ 85257

Check out the full agenda, with presentations covering a plethora of topics including:

  • ANSYS Solutions for Additive Manufacturing
  • Wireless Connectivity with RF Engineering
  • Commercial Antenna Array Work Flow Using ANSYS Electromagnetic Tools

This event will include presentations from customers and ANSYS technical experts alike, focusing on how to effectively implement the ANSYS platform and productivity enhancement tools into your work-flow.

We look forward to seeing you there – Secure your spot today!

 

How to Simplify Aircraft Certification – Stratasys Webinar

The aerospace industry’s adoption of additive manufacturing is growing and predicted to revolutionize the manufacturing process. However, to meet stringent FAA and EASA requirements, AM-developed aerospace products must be certified that they can achieve the robust performance levels provided by traditional manufacturing methods. Current certification processes are complex and variable, and thus obstruct AM adoption in aerospace.

Thanks to a newly released aerospace package released by Stratasys for their Fortus 900mc printer and ULTEM 9085 resin, Aerospace Organizations are now able to simplify the aviation certification process for their manufactured parts.

Join PADT’s 3D Printing General Manager, Norman Stucker for a live webinar that will introduce you to the new Stratasys aerospace package that removes the complexity from FAA and EASA certification.

By attending this webinar, you will learn:

  • How Stratasys can help get more parts certified for flight quicker and easier.
  • The benefits of Aerospace Organizations using the Fortus 900mc and ULTEM 9085 resin
  • And much more!

Don’t miss your chance to attend this upcoming event,
click below to secure your spot today!

 

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Instantaneous Simulation Results – Introducing ANSYS Discovery Live

Simulation software enables product development engineers to gain insights that were previously possible only through making and breaking expensive prototypes. However, such software isn’t for every engineer. It can be difficult to learn and master, and often simulation results take time to set up and calculate. But what if simulation could be faster and easier?

With its Discovery Live technology, ANSYS revolutionizes product design.

This simulation software provides instantaneous simulation results while you design and edit and enables you to experiment with design ideas for on-the-spot feedback. These immediate insights make simulation useful and relevant to every engineer for upfront CAE. Discovery Live’s speed and simplicity represents a quantum leap forward in simulation technology, and it enables you to spend more time with answers instead of questions.

With Discovery Live, you can:

  • Experiment with design ideas, easily make changes
    and receive instantaneous engineering insights
  • Perform 10 to 1,000 simulations in the same timeframe that was once needed to perform just one simple simulation
  • Simulate on newly created models or any imported CAD file
  • Investigate more options earlier in the design process and develop new products that get to market faster
  • Explore all your “what if” design ideas at little to no cost in time and effort
  • Facilitate breakthroughs and innovations and take your engineering efforts to the next level

Superior CFD Requires Superior Software – ANSYS Fluent 18.2 Webinar

As Computational Fluid Dynamics (CFD) remains one of the most flexible and accurate tools for developing solutions involving fluid flows in a variety of industries, it is important of engineers to stay up to date on the software that makes it all possible: ANSYS.

Thanks to the latest version ANSYS Fluent, engineers now more than ever, can generate unexpected insights and additional value, helping to greatly improve the effectiveness of their product development process.

Join PADT’s CFD Team Lead Engineer, Clinton Smith, for a live webinar, covering the various improvements and enhancements made to the Fluent tool in ANSYS 18.2.

By attending this webinar, you will learn how Fluent 18.2 can help users to:

  • Define a scalar transport equations to improve results for chemical species
  • Visualize injection position and orentation during model setup
  • Accurately predict cavitation in high pressure devices with non-condensable gases
  • And much more!

Don’t miss your chance to attend this upcoming event,

click below to secure your spot today!

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

 You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Recording – Leveraging On-Demand Cloud HPC for Simulation with Nimbix

High Performance Computing (HPC) has proven to be critical for simulation tools like ANSYS thanks to its ability to help engineers perform a wider range of analyses faster than ever before.

PADT is proud to be working with Nimbix, the creators of an award winning HPC platform developed for enterprises and end users who demand performance and ease of use in their process.

Check out the following recording of our co-hosted webinar, with Nimbix Application & Sales Engineer Adil Noor, and PADT’s Lead Application Engineer, Manoj Mahendran, discussing the benefits of leveraging HPC and Cloud Computing for simulation, along with a look at how PADT has deployed ANSYS on the Nimbix platform.

The Advantages of Leveraging HPC with Nimbix – Webinar

Simulation has become even more prevalent in the world of engineering than it was even 5 years ago. Commercial tools have gotten significantly easier to use, whether you are looking at tools embedded within CAD programs or the standalone flagship analysis tools. The driving force behind these changes are to ultimately let engineers and companies understand their design quicker and with more fidelity than before.

High Performance Computing (HPC) has proven to be critical for simulation tools like ANSYS thanks to its ability to help engineers perform a wider range of analyses faster than ever before. PADT is proud to be working with Nimbix, the creators of an award winning HPC platform developed for enterprises and end users who demand performance and ease of use in their process.

Join Nimbix Application & Sales Engineer Adil Noor, and PADT’s Lead Application Engineer, Manoj Mahendran, for a discussion on the benefits of leveraging HPC and Cloud Computing for simulation, along with a look at how PADT has deployed ANSYS on the Nimbix platform.

From this webinar you will learn about:

  • The benefits of using Cloud Computing
  • The capabilities of HPC with ANSYS
  • The advantages Nimbix provides and why PADT leverages them for HPC

This webinar will be taking place on: 
 
Wednesday August 23rd, from 11:00 AM – 12:00 PM MST 
 
Don’t miss this opportunity, register and secure your place today!

Everyone wants to find the next great idea, what is wrong with just a good idea?

Truth is it feels great to hit a home run, but if you are trying to always knock it out of the ballpark you are going to have a lot of strikes.  In working with a lot of people trying to come up with ideas for new products, it seems like we focus too much up front on trying to hatch a unicorn, and not enough on just having something that works.  “Everyone wants to find the next great idea, what is wrong with just a good idea?” explores this and gives some examples of how trying to just solve a problem ended up being disruptive.

Upgrade to the future of 3D printing – Stratasys F 123 Webinar

Take the Next Step!

Upgrade to the future of 3D Printing

Performance so good, you won’t believe it’s so easy to use!
The Stratasys F123 3D Printer Series demands less knowledge and experience, while meeting even the most advanced rapid prototyping expectations and needs, helping to make it the perfect machine for the classroom. This Series excels at all stages of the design prototyping process, from draft-concept iterations – to complex design verification – to high-quality functional prototypes.
Enhanced 3D printing capabilities of the F123 series include: 
  • New user interface
  • Remote print monitoring
  • Built-in camera
  • Auto calibration
  • Improved software experience with GrabCAD Print
  • Easy material change out
  • Auto material changeover

Join PADT’s Application Engineer James Barker and Sales Executive Jeff Nichols for a webinar that will provide an in depth look at all three machines that make up the all new F123 3D Printer Series (F170, F270, & F370).

Leaving CAD Embedded Simulation Behind – Webinar

With simulation driven product design and development becoming the norm in the world of manufacturing, it has become increasingly relevant for companies to stay on the cutting edge in the search of the next best thing, in order to succeed in their respective industries.

Join PADT’s Co-Owner and Principal Engineer, Eric Miller for a live presentation on the benefits of ditching your current CAD-Embedded Software for state of the art ANSYS Simulation Solutions.

This webinar will dispel common misconceptions surrounding ANSYS Software, explain how to make the move away from CAD-Embedded tools, and present highly requested topics that ANSYS can provide solutions for, such as:

  • Understanding fluid flow: accurate and fast CFD
  • Real parts that exist in assemblies
  • The importance of robust meshing
  • Advanced capabilities and faster solvers

Assembly Modeling with ANSYS

In my previous article, I wrote about how you get what you pay for with your analysis package.  Well, buckle up for some more…but this time we’ll just focus on handling assemblies in your structural/thermal simulations.  If all you’re working on are single components, count yourself lucky.  Almost every simulation deals with one part interacting with another.  You can simplify your boundary conditions a bit to make it equivalent, but if you have significant bearing stresses, misalignments, etc…you need to include the supporting parts.  Better hope your analysis package can handle contact…

Image result for get what you pay for

First off, contact isn’t just for structural simulations.  Contact allows you to pass loads across difference meshes, meaning you don’t need to create a conformal mesh between two parts in order to simulate something.  Here’s a quick listing on the degrees of freedom supported in ANSYS (don’t worry…you don’t need to know how to set these options as ANSYS does it for you when you’re in Workbench):

image

You can use contact for structural, thermal, electrical, porous domain, diffusion, or any combination of those.  The rest of this article is going to focus on the structural side of things, but realize that the same concepts apply to essentially any analysis you can do within ANSYS Mechanical..

First, it’s incredibly easy to create contact in your assembly.  Mechanical automatically looks for surfaces within a certain distance from one another and builds contact.  You can further customize the automated process by defining your own connection groups, as I previous wrote about.  These connection groups can create contact between faces, edges, solids bodies, shell bodies, and line bodies.

image

Second, not only can you create contact to transfer loads across different parts, but you can also automatically create joints to simulate linkages or ‘linearize’ complicated contacts (e.g. cylindrical-to-cylindrical contact for pin joints).  With these joints you can also specify stops and locks to simulate other components not explicitly modeled.  If you want to really model a threaded connection you can specify the pitch diameter and actually ‘turn’ your screw to properly develop the shear stress under the bolt head for a bolted joint simulation without actually needing to model the physical threads (this can also be done using contact geometry corrections)

image Look ma, no threads (modeled)!

image

If you’re *just* defining contact between two surfaces, there’s a lot you simulate.  The default behavior is to bond the surfaces together, essentially weld them closed to transmit tensile and compressive loads.  You also have the ability to let the surfaces move relative to each other by defining frictionless, frictional, rough (infinite coefficient of friction), or no-separation (surfaces don’t transmit shear load but will not separate).

image

Some other ‘fancy’ things you can do with contact is simulate delamination by specifying adhesive properties (type I, II, or III modes of failure).  You can add a wear model to capture surface degradation due to normal stress and tangential velocity of your moving surfaces.  You can simulate a critical bonding temperature by specifying at what temperature your contacts ‘stick’ together instead of slide.  You can specify a ‘wetted’ contact region and see if the applied fluid pressure (not actually solving a CFD simulation, just applying a pressure to open areas of the contact interface) causes your seal to open up.

image

Now, it’s one thing to be able to simulate all of these behaviors.  The reason you’re running a finite element simulation is you need to make some kind of engineering judgement.  You need to know how the force/heat/etc transfers through your assembly.  Within Mechanical you can easily look at the force for each contact pair by dragging/dropping the connection object (contact or joint) into the solution.  This will automatically create a reaction probe to tell you the forces/moments going through that interface.  You can create detailed contour plots of the contact status, pressure, sliding distance, gap, or penetration (depending on formulation used).

image

image

Again, you can generate all of that information for contact between surface-to-surface, surface-to-edge, or edge-to-edge.  This allows you to use solids, shells, beams, or any combination you want, for any physics you want, to simulate essentially any real-world application.  No need to buy additional modules, pay for special solvers, fight through meshing issues by trying to ‘fake’ an assembly through a conformal mesh.  Just import the geometry, simplify as necessary (SpaceClaim is pretty awesome if you haven’t heard), and simulate it.)

For a more detailed, step-by-step look at the process, check out the following video!


ANSYS Workbench Polyhedral Meshing

The ANSYS App Store contains all sorts of free and paid apps developed by ANSYS as well as trusted partners. These apps improve workflows and allow users to build in best practices. An app that has been of particular interest to me is Workbench Poly Meshing for Fluent

This app enables the power and capacity of Fluent Meshing, most notably the polyhedral meshing feature, with the ease of use of the ANSYS Workbench Meshing environment. In order to show the functionality of this app, I will demonstrate with the generation of a polyhedral mesh on a sample geometry from the Fluent Meshing tutorials.

To start out, I have imported a .igs file of an exhaust manifold into ANSYS SpaceClaim Direct Modeler, which has powerful repair and prepare tools that will come in handy. I notice that the geometry is comprised of 250 surfaces, which I need to fix in order to create a solid body. By navigating into the ‘Repair’ tab and selecting the ‘Stitch’ operation, SpaceClaim notes there are two stitchable edges in my geometry. I select the green check mark to perform this operation and am greeted with a solid geometry. I complete my tasks in SpaceClaim by extracting the fluid volume using the ‘Volume Extract’ tool in the ‘Prepare’ tab.

I setup my workflow in ANSYS workbench with my added ‘Fluent Meshing’ ACT module between the ‘Mesh’ module and ‘Fluent’ module. I can then proceed to create my desired surface mesh in ANSYS meshing and setup a few required inputs for Fluent Meshing.


Once this process has been completed, I can update my ‘Fluent Meshing’ cell and open the ‘Fluent’ setup cell to display my polyhedral mesh!

IMPORTANT NOTE: all named selections must be lowercase with no spaces, and the file path(s) cannot contain any spaces.

 

Advanced ANSYS Functionality

Just like any other marketplace, there are a lot of options in simulation software.  There are custom niche-codes for casting simulations to completely general purpose linear algebra solvers that allow you to write your own shape functions.  Just like with most things in life, you truly get what you pay for.

Image result for get what you pay for

 

For basic structural and thermal simulations pretty much any FE-package should suffice.  The difference there will be in how easy it is to pre/post process the work and the support you receive from the vendor.  How complicated is the geometry to mesh, how long does it take to solve, if you can utilize multiple cores how well does it scale, how easy is it to get reactions at interfaces/constraints…and so on.  I could make this an article about all the productivity enhancements available within ANSYS, but instead I’ll talk about some of the more advanced functionalities that differentiate ANSYS from other software out there.

  • Radiation

You can typically ignore radiation if there isn’t a big temperature gradient between surfaces (or ambient) and just model your system as conduction/convection cooled.  Once that delta is large enough to require radiation to be modeled there are several degrees of numerical difficulty that need to be handled by the solver.

First, radiating to ambient is fairly basic but the heat transfer is now a function of T^4.  The solver can also be sensitive to initial conditions since large DT results in a large heat transfer, which can then result in a large change in temperature from iteration to iteration.  It’s helpful to be able to run the model transiently or as a quasi-static to allow the solver to allow some flexibility.

Next, once you introduce surface to surface radiation you now have to calculate view factors prior to starting the thermal solution. If you have multiple enclosures (surfaces that can’t see each other, or enclosed regions) hopefully there are some processes to simplify the view factor calculations (not wasting time calculating a ‘0’ for elements that can’t radiate to each other).  The view factors can sometimes be sensitive to the mesh density, so being able to scale/modify those view factors can be extremely beneficial.

Lastly you run into the emissivity side of things.  Is the emissivity factor a function of temperature?  A function of wavelength?  Do you need to account for absorption in the radiation domain?

Luckily ANSYS does all of this.  ANSYS Mechanical allows you to easily define radiation to ambient or surface-to-surface.  If you’re using symmetry in your model the full radiating surface will be captured automatically.  You can define as many enclosures as possible, each with different emissivity factors (or emissivity vs Temperature).  There are more advanced features that can help with calculating view factors (simplify the radiating surface representation, use more ray traces, etc) and there is functionality to save the calculated view factors for later simulations.  ANSYS fluid products (CFX and Fluent) can also account for radiation and have the ability to capture frequency-based emissivity and participating media.

image

Automatic expansion of radiating surfaces across symmetry planes

image

Different enclosures to simplify view factor calculations

Long story short…you don’t have to know what the Stefan-Boltzman constant is if you want to include radiation in your model (bonus points if you do).  You don’t have to mess with a lot of settings to get your model to run.  Just insert radiation, select the surface, and run.  Additional options and technical support is there if necessary.

  • Multiple/Multi-physics

I’d expect that any structural/thermal/fluids/magnetics code should be able to solve the basic fundamental equations for the environment it simulates.  However, what happens when you need to combine physics, like a MEMs device.  Or maybe you want to take some guess-work/assumptions out of how one physics loads another, like what the actual pressure load is from a CFD simulation on a structural model.  Or maybe you want to capture the acoustic behavior of an electric motor, accounting for structural prestress/loads such as Joule heating and magnetic forces.

image

ANSYS allows you to couple multiple physics together, either using a single model or through data mapping between different meshes.  Many of the data mapping routines allow for bi-directional data passing so the results can converge.  So you can run an magnetic simulation on the holding force between a magnet and a plate, then capture the deflected shape due to an external load, and pass that deformed shape back to the magnetic simulation to capture the updated force (and repeat until converged).

image

If you have vendor-supplied data, or are using another tool to calculate some other results you can read in point cloud data and apply it to your model with minimal effort.

image

To make another long story short…you can remove assumptions and uncertainty by using ANSYS functionality.

  • Advanced Material Models

 

Any simulation tool should be able to handle simple linear material models.  But there are many different flavors of ‘nonlinear’ simulation.  Does the stiffness change due to deflection/motion (like a fishing rod)?  Are you working with ductile metals that experience plastic deformation?  Does the stiffness change due to parts coming into/out-of contact?  Are surfaces connected through some adhesive property that debonds under high loads?  Are you working with elastomers that utilize some polynomial form hyper-elasic formulation?  Are you working with shape memory alloys?  Are you trying to simulate porous media through some geomechanical model?  Are you trying to simulate a stochastic material variation failure in an impact/explosive simulation?

image

Large deflection stiffness calculations, plasticity, and contact status changes are easy in ANSYS.  Debonding has been available since ANSYS 11 (reminder, we’re at release 18.0 now).  ANSYS recently integrated some more advanced geomechanical models for dam/reservoir/etc simulations.  The explicit solver allows you to introduce stochastic variation in material strengths for impact/explosive simulations.

image

ANSYS also has all the major flavors of hyper-elastic material models.  You can choose from basic Neo-Hookean, Arruda-Boyce, Gent, all the way through multiple variations of Mooney-Rivlin, Yeoh, Ogden, and more.  In addition to having these material models available (and the curve fitting routines to properly extract the constants from test data) ANSYS also has the ability to dynamically remesh a model.  Most of the time when you’re analyzing the behavior of a hyperelastic part there is a lot of deformation, and what starts out as a well-shaped mesh can quickly turn into a bad mesh.  Using adaptive meshing, you can have the solve automatically pause the solution, remesh the deformed shape, map the previous stress state onto the new nodes/elements, and continue with the solution.  I should note that this nonlinear adaptive remesh is NOT just limited to hyperelastic simulations…it is just extremely helpful in these instances.

The ending of this story is pretty much the same as others.  If you have a complicated material response that you’re trying to capture you can model it in ANSYS.  If you already know how to characterize your material, just find the material model and enter the constants.  We’ve worked with several customers in getting their material tested and properly characterized.  So while most structural codes can do basic linear-elastic, and maybe some plastic…very few can capture all the material responses that ANSYS can.

  • MEMs/Piezo/Etc

I know I’ve already discussed multiple physics and advanced materials, but once you start making parts smaller you start to get coupling between physics that may not work well for vector-based coupling (passing load vectors/deformations from one mesh to another).  Luckily ANSYS has a range of multi-physics elements that can solve use either weak or strong coupling to solve a host of piezo or MEM-related problems (static, transient, modal, harmonic).  Some codes allow for this kind of coupling but either require you to write your own governing equations or pay for a bunch of modules to access.

If you have the ANSYS Enterprise-level license you can download a free extension that exposes all of these properties in the Mechanical GUI.  No scripting, no compiling, just straight-up menu clicks.

image

Using this extension you can define the full complex piezoelectric matrix, couple it with an anisotropic elasticity matrix, and use frequency dependent losses to capture the actual response of your structure.  Or if you want you can use simplified material definitions to get the best approximation possible (especially if you’re lacking a full material definition from your supplier).

 

Long story short…there are a lot of simulation products out there.  Pretty much any of them should be able to handle the basics (single part, structural/thermal, etc).  What differentiates the tools is in how easy it helps you implement more real-world conditions/physics into your analysis.  Software can be expensive, and it’s important that you don’t paint yourself into a corner by using a single point-solution or low-end tool.

Stratasys – PolyJet Agilus 30 Webinar

Introducing New PolyJet Material: Agilus30

PADT is excited to introduce the newest polyjet material available from Stratasys, Agilus30! Agilus30 is a superior Rubber-like PolyJet photopolymer family ideal for advanced design verification and rapid prototyping.

Get more durable, tear-resistant prototypes that can stand up to repeated flexing and bending. With a Shore A value of 30 in clear or black, Agilus30 accurately simulates the look, feel and function of Rubber-like products. 3D print rubber surrounds, overmolds, soft-touch coatings, living hinges, jigs and fixtures, wearables, grips and seals with improved surface texture.

Agilus30 has applications in a number of areas, including:

  • Medical Models

  • Tooling needing rubber-like characteristics

  • Consumer Goods

  • Sporting Goods

  • General Prototyping

  • Overmolding & many more!

Want to know more about PolyJet’s toughest flexible material to date? 

Join PADT’s 3D Printing Application Engineer James Barker along with Stratasys Materials Business Manager Ken Burns for a presentation on the various benefits and attributes that Agilus30 has to offer, which machines are compatible with it, and how companies are making use of it’s unique capabilities.

PADT Startup Spotlight – The Speed of Simulation

The Speed of Simulation  with Velox Motorsports

With thoroughly engineered components including the use of Finite Element Analysis (FEA), thermodynamics, heat transfer, and Computational Fluid Dynamics (CFD), PADT Startup Spotlight Velox Motorsports strives to produce aftermarket parts that can effectively outperform the factory components.

Join Velox Co-Owners Eric Hazen and Paul Lucas for a discussion on what they use ANSYS simulation software for and how they have benefited from it’s introduction into their manufacturing process.

This webinar will focus on two projects within which the engineers at Velox have see the impact of ANSYS, including:

Using Finite Element Analysis (FEA) to reverse engineer a Subaru fork, find the cause of failure and develop an improved replacement part.

Using Computational Fluid Dynamics (CFD) to rub a shape sensitivity study on Nissan GT R strakes, and develop a replacement that increases down-force without significantly increasing drag.