Top Ten Additive Manufacturing Terms to Know

The world of additive manufacturing, or 3D printing, is constantly evolving. The technology was invented less than 35 years ago yet has come a long way. What began as a unique, though limited, way to develop low-end prototypes, has exploded into a critical component of the product development and manufacturing process with the ability to produce end-use parts for critical applications in markets such as industrial and aerospace and defense.

To help our customers and the larger technology community stay abreast of the changing world of additive manufacturing, we launched a glossary of the most important terms in the industry that you can bookmark here for easy access. To make it easier to digest, we’re also starting a blog series outlining ten terms to know in different sub-categories.

For our first post in the series, here are the top ten terms for Additive Manufacturing Processes that our experts think everyone should know:

Binder Jetting

Any additive manufacturing process that uses a binder to chemically bond powder where the binder is placed on the top layer of powder through small jets, usually using inkjet technology. One of the seven standard categories defined by ASTM International (www.ASTM.org) for additive manufacturing processes.

Digital Light Synthesis (DLS)

A type of vat photopolymerization additive manufacturing process where a projector under a transparent build plate shines ultraviolet light onto the build layer, which is against the transparent build plate. The part is then pulled upward so that a new layer of liquid fills between the build plate and the part, and the process is repeated. Digital light synthesis is a continuous build process that does not create distinct layers.

Direct Laser Melting (DLM) or Direct Metal Laser Sintering (DMLS)

A type of powder bed fusion additive manufacturing process where a laser beam is used to melt powder material. The beam is directed across the top layer of powder. The liquid material solidifies to create the desired part. A new layer of powder is placed on top, and the process is repeated. Also called laser powder bed fusion, metal powder bed fusion, or direct metal laser sintering.

Directed Energy Deposition (DED)

An additive manufacturing process where metal powder is jetted, or wire is extruded from a CNC controlled three or five-axis nozzle. The solid material is then melted by an energy source, usually a laser or electron beam, such that the liquid metal deposits onto the previous layers (or build plate) and then cools to a solid. One of the ASTM defined standard categories for additive manufacturing processes.

Fused Deposition Modeling (FDM)

A type of material extrusion additive manufacturing process where a continuous filament of thermoplastic material is fed into a heated extruder and deposited on the current build layer. It is the trademarked name used for systems manufactured by the process inventor, Stratasys. Fused filament fabrication is the generic term.

Laser Powder Bed Fusion (L-PBF)

A type of powder bed fusion additive manufacturing process where a laser is used to melt material on the top layer of a powder bed. Also called metal powder bed fusion or direct laser melting. Most often used to melt metal powder but is used with plastics as with selective laser sintering.

Laser Engineered Net Shaping (LENS)

A type of direct energy deposition additive manufacturing process where a powder is directed into a high-energy laser beam and melted before it is deposited on the build layer. Also called laser powder forming.

Material Jetting

Any additive manufacturing process where build or support material is jetted through multiple small nozzles whose position is computer controlled to lay down material to create a layer. One of the ASTM defined standard categories for additive manufacturing processes.

Stereolithography Apparatus (SLA)

A type of vat photopolymerization additive manufacturing where a laser is used to draw a path on the current layer, converting the liquid polymer into a solid. Stereolithography was the first commercially available additive manufacturing process.

Vat Polymerization

A class of additive manufacturing processes that utilizes the hardening of a photopolymer with ultraviolet light. A vat of liquid is filled with liquid photopolymer resin, and ultraviolet light is either traced on the build surface or projected on it. Stereolithography is the most common form of vat photopolymerization. The build layer can be on the top of the vat of liquid or the bottom. One of the ASTM defined standard categories for additive manufacturing processes.

We hope this new blog series will help to firm up your knowledge of the ever-evolving world of additive manufacturing. For a list of all of the key terms and definitions in the additive manufacturing world, please visit our new glossary page at https://www.3dprinting-glossary.com/. The glossary allows you to search by terms or download a PDF of the glossary in its entirety to use as a reference guide.

We also know that there are a ton of experts in our community with knowledge to share. If you notice a term missing from our glossary or an inaccurate/incomplete description, please visit the suggestions page at https://www.3dprinting-glossary.com/suggest-a-correction-clarification-or-new-term/ and drop us a note.

Subscribe to the PADT blog or check back soon for the next installment in our series of “Top Ten Terms to Know in Additive Manufacturing.” We also welcome your feedback or questions. Just drop us a line at here.

Optimizing Materials Selection for Additive with ANSYS Granta – Webinar

There are hundreds of industrial AM machines and materials. New products come to market weekly, and picking the best option for a manufacturing or research project is a tough call. A wrong direction can be costly. This is where Ansys Granta and the Senvol Database come in handy. 

The Senvol Database details 1,000 AM machines and more than 850 compatible materials. Using this tool within Granta Selector, you can search and compare materials based on properties, type, or compatible machines. Identify and compare machines based on supported processes, manufacturer, required part size, cost, or compatible materials (and their properties). Quickly focus on the most likely routes to achieve project goals, save time and get new ideas as you research AM options.

Join PADT’s Application Engineer Robert McCathren for an overview of Ganta Material Selector, along with its importance and applications for those working with or interested in additive manufacturing.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

3D Design Updates in ANSYS 2020 R1 – Webinar

The ANSYS Discovery 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever. With ANSYS you can explore ideas, iterate, and innovate with unprecedented speed early in your design process. Delve deeper into design details, refine concepts and perform multiple physics simulations — backed by ANSYS solvers — to better account for real-world behaviors.

Capabilities in this tool-set allow engineers to increase speed and reduce costs from the start of the design cycle, all the way to product launch. Improve engineering productivity and accelerate development time, create higher-quality products while reducing development & manufacturing costs, and respond quickly to changing customer demands while bringing new products to market faster than the competition.

Join PADT’s Training & Support Application Engineer, Robert McCathren for a look at whats new & improved when it comes to these tools in ANSYS 2020 R1. This update includes new releases for ANSYS Discovery Live, AIM, and SpaceClaim, focusing on areas including:

  • Simulation of Thin Parts
  • Topology Optimization in Discovery Live
  • Structural Material Properties
  • Physics Aware Meshing
  • Beam and Shell Modeling
  • And much more

Register Here

Simulation for Additive Manufacturing In ANSYS 2019 R2 – Webinar

Additive manufacturing (3D Printing) has been rapidly gaining popularity as a true manufacturing process in recent years. ANSYS’ best-in-class solution for additive manufacturing enables simulation at every step in your AM process, and helps to optimize material configurations, and machine & parts setup before printing begins. 

Through the use of ANSYS tools such as Additive Suite & Additive Print, paired with topology optimization capabilities in ANSYS Mechanical Workbench, the need for physical process of trial-and-error testing has been greatly reduced. 

Join PADT’s Simulation Support and Application Engineer Doug Oatis for an exploration of the ANSYS tools that help to optimize additive manufacturing, and what new capabilities are available within them when upgrading to ANSYS 2019 R2. This presentation includes updates regarding:

  • Archiving materials no longer in use
  • Visualization of AM process
  • AM overhang angles
  • Preview part & support
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

3D Printing Infill Styles – the What, When and Why of Using Infill

Have you ever wondered about choosing a plain versus funky infill-style for filament 3D-printing? Amongst the ten standard types (no, the cat infill design is not one of them), some give you high strength, some greatly decrease material use or printing time, and others are purposely tailored with an end-use in mind.

Highly detailed Insight slicing software from Stratasys gives you the widest range of possibilities; the basic versions are also accessible from GrabCAD Print, the direct-CAD-import, cloud-connected slicing software that offers an easy approach for all levels of 3D print users.

A part that is mimicking or replacing a metal design would do best when built with Solid infill to give it weight and heft, while a visual-concept model printed as five different test-versions may work fine with a Sparse infill, saving time and material. Here at PADT we printed a number of sample cubes with open ends to demonstrate a variety of the choices in action. Check out these hints for evaluating each one, and see the chart at the end comparing build-time, weight and consumed material.

Infill choices for 3D printed parts, offered with Stratasys’ GrabCAD Print software. (Image courtesy PADT Inc.)

Basic Infill Patterns

Solid (also called Alternating Raster) This is the default pattern, where each layer has straight fill-lines touching each other, and the layer direction alternates by 90 degrees. This infill uses the most material but offers the highest density; use it when structural integrity and super-low porosity are most important.

Solid (Alternating Raster)

Sparse Raster lines for Sparse infill also run in one direction per layer, alternating by layer, but are widely spaced (the default spacing is 0.080 inches/2 mm). In Insight, or using the Advanced FDM settings in GrabCAD, you can change the width of both the lines and the spaces.

Sparse Double Dense As you can imagine, Sparse Double Dense achieves twice the density of regular Sparse: it deposits in two directions per layer, creating an open grid-pattern that stacks up throughout the part.

Sparse High Density Just to give you one more quick-click option, this pattern effectively sits between Sparse Double Dense and Solid. It lays rasters in a single direction per layer, but not as closely spaced as for Solid.

Hexagram The effect of this pattern looks similar to a honeycomb but it’s formed differently. Each layer gets three sets of raster lines crossing at different angles, forming perfectly aligned columns of hexagons and triangles. Hexagram is time-efficient to build, lightweight and strong in all directions.

Hexagram
Additional infill styles and the options for customizing them within a part, offered within Stratasys Insight 3D printing slicing and set-up software. (Image courtesy PADT Inc.)

Advanced Infill Patterns (via Custom Groups in Insight)

Hexagon By laying down rows of zig-zag lines that alternately bond to each other and bend away, Hexagon produces a classic honeycomb structure (every two rows creates one row of honeycomb). The pattern repeats layer by layer so all vertical channels line up perfectly. The amount of build material used is just about one-third that of Solid but strength is quite good.

Hexagon

Permeable Triangle A layer-by-layer shifting pattern of triangles and straight lines creates a strong infill that builds as quickly as Sparse, but is extremely permeable. It is used for printing sacrificial tooling material (i.e., Stratsys ST130) that will be wrapped with composite material and later dissolved away.

Permeable Triangle

Permeable Tubular This infill is formed by a 16-layer repeating pattern deposited first as eight varying wavy layers aligned to the X axis and then the same eight layers aligned to the Y axis. The resulting structure is a series of vertical cylinders enhanced with strong cross-bars, creating air-flow channels highly suited to tooling used on vacuum work-holding tables.

Permeable Tubular 0.2 Spacing
Permeable Tubular 0.5 Spacing

Gyroid (so cool we printed it twice) The Gyroid pattern belongs to a class of mathematically minimal surfaces, providing infill strength similar to that of a hexagon, but using less material. Since different raster spacings have quite an effect, we printed it first with the default spacing of 0.2 inches and then widened that to 0.5 inches. Print time and material use dropped dramatically.

Gyroid 0.2 Spacing
Gyroid 0.5 Spacing

Schwarz D (Diamond) This alternate style of minimal surface builds in sets of seven different layers along the X-axis, ranging from straight lines to near-sawtooth waves, then flipping to repeat the same seven layers along the Y-axis. The Schwarz D infill balances strength, density and porosity. As with the Gyroid, differences in raster spacing have a big influence on the material use and build-time.

Schwarz Diamond 0.2 Spacing
Schwarz Diamond 0.5 Spacing

Digging Deeper Into Infill Options

Infill Cell Type/0.2 spacing Build Time Weight Material Used
Alternating Raster (Solid) 1 h 57 min 123.77 g 6.29 cu in.
Sparse Double Dense 1 hr 37 min 44.09 g 4.52 cu in.
Hexagon (Honeycomb) 1 h 49 min 37.79 g 2.56 cu in.
Hexagram (3 crossed rasters) 1 h 11 min. 47.61 g 3.03 cu in.
Permeable Triangle 1 h 11 min. 47.67 g 3.04 cu in.
Permeable Tubular – small 2 h 5 min. 43.95 g 2.68 cu in.
Gyroid – small 1 h 48 min. 38.68 g 2.39 cu in.
Schwarz Diamond (D) – small 1 h 35 min. 47.8 g 3.04 cu in.
Infill Cell Type/0.5 spacing Build Time Weight Material Used
Permeable Tubular – Large 1 h 11 min. 21.84 g 1.33 cu in.
Gyroid – Large 57 min. 20.59 g 1.29 cu in.
Schwarz Diamond (D) – Large 58 min. 23.74 g 1.51 cu in.

Hopefully this information helps you perfect your design for optimal strength or minimal material-use or fastest printing. If you’re still not sure which way to go, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed and discover what infill works best for the job at hand.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Introducing TPU 92A – The latest FDM material from Stratasys

PADT is excited to announce the release of the latest FDM material from Stratasys: TPU 92A.
Thermoplastic Polyurethane (TPU) is a type of elastomer material, known for its flexibility, resilience, tear resistance, and high elongation. It’s a highly process-able material which makes it ideal for additive manufacturing.
TPU 92A is an elastomeric material that is ideal for prototyping highly functional, large, durable, complex elastomer parts. 

This material brings the benefits of an elastomer to the accurate and easy-to-use F123 3D Printer. Combined with soluble support, it lets you create simple to complex elastomer parts, and through printing on the F123 Series gives product developers more tools to expand their prototyping capabilities with reliable accuracy.
Curious to learn more about the unique properties that make TPU 92A such a great option for prototyping?Schedule a meeting to see the material for yourself.Click the link below to start a conversation with PADT’s resident material experts, in order to discuss the capabilities of this Thermoplastic Polyurethane material, and how your company can benefit from using it.

Don’t miss this unique opportunity, schedule a meeting today!

Quick Tips for Stratasys’ new Nylon 12CF Material

One of the newest materials available for the Stratasys Fortus 450 users (other machines could have this capability at a later date) is the Nylon 12CF. Nylon 12CF is a Carbon Fiber filled Nylon 12 filament thermoplastic. The carbon fiber is chopped fibers that are 150 microns long. This is Stratasys’ highest strength and stiffness to weight ratio for any of their materials to date as shown below. 
Often times, when Stratasys is getting close to releasing a new material, they will allow certain users to be a beta test site. One beta user was Ashley Guy who is the owner of Utah Trikes, which is located in Payson, Utah. He is having so much success with this material that he is making production parts with it. Watch this video to hear more from Ashley and to see some of his 3D printed parts.

Talking with Ashley, he has helped us with understanding some of the tips and tricks to get better results from printing with this material. One change that he highly recommends is to adjust the air gap between raster’s to -.004”. This will force more material between the raster’s so there won’t be as many noticeable air gaps. Here is a visual representation of the air gap difference using Stratasys software Insight:

The end goal at Utah Trikes is to produce production parts with this material, so by adjusting the air gap, the appearance of the parts look close to injection mold quality after the parts have been run through a tumbler. Some key things that I really like about this material is that the support material is soluble and easily removed using PADT’s own support cleaning apparatus (SCA Tank) that aid with the support removal. After the support has been removed, they are placed in a tumbling machine to smooth the surfaces of the part with different media within the tumbling machine. Any post process drilling or installing of helicoil inserts or adding bushings to the part is done manually.

Jerry Feldmiller of Orbital ATK, who also did a beta test of this material at his site in Chandler, Arizona, mentions these 3 tips:

  1. Nylon12 CF defaults to “Use model material for Support”. 90% of the time I uncheck this option.
  2. I use stabilizing walls and large thin parts to anchor the part to the build sheet and prevent peal up.
  3. Use seam control set to Align to Nearest.

Jerry also supplied his Nylon 12CF Tensile Test that he performed for this new material as shown below. He mentions that the Tensile Strength is 8-15 ksi depending on X-Y orientation.
~5 ksi in Z-axis, slightly lower than expected.

This part is used to clamp a rubber tube which replace the old ball valve design at ATK. Ball valves are easily contaminated and have to be replaced. After two design iterations, the tool is functioning.

Jerry also follows a guide that Stratasys offers for running this material. If you would like a copy of this guide, please email me your info and I will send it to you. My email is James.barker@padtinc.com

Now onto Stratasys and the pointers that they have for this material. First, make sure the orientation of the part is built in its strongest orientation. Nylon materials have the best layer-to-layer bond when comparing them against the other thermoplastics that Stratasys offers.

Whenever you print with the Nylon materials (Nylon 6, 12, and 12CF), it is advised to print the sacrificial tower so that any loose strands of material are collected in the sacrificial tower instead of being seen on the 3D printed part. You also want to make sure that these materials are all stored in a cool and dry area. Moisture is the filaments worst enemy, so by storing the material properly, this will help tremendously with quality builds.

It is also recommended for parts larger than 3 inches in height to swap the support material for model material when possible. Since the support material has a different shrink factor than the model material, it is advised to print with model material where permitted. This will also speed your build time up as the machine will not have to switch back and forth between model and support material. We have seen some customers shave 5+ hours off 20 hour builds by doing this.

This best practice paper is the quick tips and tricks for this Nylon 12CF material from our users of this material. The Stratasys guide goes into a little more detail on other recommendations when printing with this material that I would like to email to you. Please email me with your info.

Let us know if this material is of interest to you and if you would like us to print a sample part for testing purposes.