Updates and Enhancements in ANSYS Mechanical 19.1 – Webinar

Don’t miss this informative presentation – Secure your spot today!
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

An Update on The All Things ANSYS Podcast – Episode 016

 

Published on: June 8th, 2018
With: Eric Miller
Description: The All Things ANSYS Podcast will be back in full swing in the near future, however we wanted to give you a quick heads up on where we’ve been, and how we plan on reformatting and presenting the show going forward. We love putting these together and sharing them with you all, so we will be regrouping and exploring some new options to ensure we can continue to share the high quality news, content, and discussion that you’ve come to expect from this show as we move forward.

For the time being, check out this update on the new release of ANSYS Mechanical 19.0 and 19.1, and stay tuned for more content, hopefully coming soon.

Listen:
Subscribe:

@ANSYS #ANSYS

Drop Test Simulation: Analyze Stress & Deformation without Breaking Your Device – Webinar

Don’t miss this informative presentation – Secure your spot today!
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

What’s New & Exciting in Mechanical Simulation – Webinar

Don’t miss this informative presentation – Secure your spot today!
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Mechanical Meshing Enhancements in ANSYS 18 and Beyond – Webinar

ANSYS Meshing is a general-purpose, intelligent, automated high-performance product that helps engineers to produce the most appropriate mesh for accurate, efficient multi-physics solutions.

With the release of ANSYS version 18 earlier this year, engineers were introduced to a variety of new and innovative enhancements that help improve the quality of their meshing, and speed up the simulation process.

Join PADT’s Simulation Support Manager Ted Harris, for an in depth look at new mechanical meshing capabilities made available in ANSYS 18.0, 18.1 and 18.2!

This free webinar will cover a variety of new and improved capabilities within the latest version of ANSYS, including:

  • Improved diagnostics/mesh metrics
  • More flexible mesh controls
  • New physics preference for Hydrodynamics
  • and much more!

Don’t miss this informative presentation – Secure your spot today!

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Combining ANSYS Simulation with HPC

Engineering simulation has become much more prevalent in engineering organizations than it was even 5 years ago.  Commercial tools have gotten significantly easier to use whether you are looking at tools embedded within CAD programs or the standalone flagship analysis tools.  The driving force behind these changes are to ultimately let engineers and companies understand their design quicker with more fidelity than before.

Engineering simulation is one of those cliché items where everyone says “We want more!”  Engineers want to analyze bigger problems, more complex problems and even do large scale design of experiments with hundreds of design variations – and they want these results instantaneously.   They want to be able to quickly understand their designs and design trends and be able to make changes accordingly so then can get their products optimized and to the market quicker.

ANSYS, Inc. spends a significant amount of R&D in helping customers get their results quicker and a large component of that development is High Performance Computing, or HPC.  This technology allows engineers to solve their structural, fluid and/or electromagnetic analyses across multiple processors and even across multiple computing machines.  Engineers can leverage HPC on laptops, workstations, clusters and even full data centers.

PADT is fortunate to be working with Nimbix, a High Performance Computing Platform that easily allowed us to quickly iterate through different models with various cores specified.  It was seamless, easy to use, and FAST!

Let’s take a look at four problems: Rubber Seal FEA, Large Tractor Axle Model, Quadrocopter CFD model and a Large Exhaust CFD model.  These problems cover a nice spectrum of analysis size and complexity. The CAD files are included in the link below.

Click here to download geometry files that were used in the following benchmarks

TRACTOR AXLE FEA

This model has several parts all with contact defined and has 51 bolts that have pretension defined.  A very large but not overly complex FEA problem.  As you can see from the results, even by utilizing 8 cores you can triple your analysis throughput for a work day.  This leads to more designs being analyzed and validated which gives engineers the results they need quicker.

SUMMARY

  • 58 Parts
  • 51 x Bolts with Pretension
  • Gaskets
  • 928K Elements, 1.6M Nodes

Cores

Elapsed Time
[s]

Estimated Models Per 8 [hours]

2

14,525

2

4

9,710

3

8

5,233

6

16 4,009

7

 

RUBBER SEAL FEA

The rubber seal is actually a relatively small size problem, but quite complex.  Not only does it need full hyperelastic material properties defined with large strain effects included, it also includes a leakage test.  This will pressurize any exposed areas of the seal.  This will of course cause some deformation which will lead to more leaked surfaces and so on.  It basically because a pressure advancing solution.

From the results, again you can see the number of models that can be analyzed in the same time frame is signifcantly more.  This model was already under an hour, even with the large nonlinearity, and with HPC it was down to less than half an hour.

SUMMARY

  • 6 Parts
  • Mooney Rivlin Hyperelastic Material
  • Seal Leakage with Advancing Pressure Load
  • Frictional Contact
  • Large Deformation
  • 42K Elements, 58K Nodes

Cores

Elapsed Time
[s]
Estimated Models Per 8 [hours]

2

3,353

9

4

2,489

12

8 1,795

16

 


QUADROCOPTER DRONE CFD

The drone model is a half symmetry model that includes 2 rotating domains to account for the propellers.  This was ran as a steady state simulation using ANSYS Fluent.  Simply utilizing 8 cores will let you solve 3 designs versus 1.

SUMMARY

  • Multiple Rotating Domains
  • 2M Elements, 1.4M Nodes

Cores

Elapsed Time
[hours]
Speedup

2

2.1

1

4

1.2

1.8

6

0.8

2.6

8 0.7

3

 

EXHAUST CFD

The exhaust model is a huge model with 33 million elements with several complicated flow passages and turbulence.  This is a model that would take over a week to run using 1 core but with HPC on a decent workstation you can get that down to 1 day.  Leveraging more HPC hardware resources such as a cluster or using a cloud computing platform like Nimbix will see that drop to 3 hours.  Imagine getting results that used to take over 1 week that now will only take a few hours.  You’ll notice that this model scaled linearly up to 128 cores.  In many CFD simulations the more hardware resources and HPC technology you throw at it, the faster it will run.

SUMMARY

  • K-omega SST Turbulence
  • Multi-Domain
  • 33M Elements, 7M Nodes

Cores

Elapsed Time
[hours]
Speedup

16

26.8

1

32

13.0

2.1

64

6.8

3.9

96

4.3

6.2

128 3.3

8.2

As seen from the results leveraging HPC technology can be hugely advantageous.  Many simulation tools out there do not fully leverage solving on multiple computing machines or even multiple cores.  ANSYS does and the value is easily a given.  HPC makes large complex simulation more practical as a part of the design process timeline.  It allows for greater throughput of design investigations leading to better fidelity and more information to the engineer to develop an optimized part quicker.

If you’re interested in learning more about how ANSYS leverages HPC or if you’d like to know more about NIMIBX, the cloud computing platform that PADT leverages, please reach out to me at manoj@padtinc.com

 

ANSYS 18 Mechanical Ease of Use Webinar – Coming Soon

We here at PADT are proud to present the ease of use and productivity enhancements that have been added to ANSYS Mechanical in release 18.

With this new release, ANSYS Mechanical focuses on the introduction of a variety of improvements that help save the users time, such as smarter data organization and new hotkeys, along with additions that can help you to better visualize specific intricacies in your models.

This webinar is coming up soon

Join PADT’s Simulation Support & Application Engineer Doug Oatis for an overview of the current user friendly interfaces within ANSYS Mechanical, along with the numerous additions in this new release that help to improve efficiency tenfold, such as:

Pretension Beam Connection

A beam connection is a power idealization to connect parts without modeling the bolts. Now the beam connection can be pretensioned as well.

Register today to find out how you can use this highly requested feature and many others to improve your throughput and stay ahead of the curve!

ANSYS 18 – Mechanical Ease of Use Webinar

We here at PADT are proud to present the ease of use and productivity enhancements that have been added to ANSYS Mechanical in release 18.

With this new release, ANSYS Mechanical focuses on the introduction of a variety of improvements that help save the users time, such as smarter data organization and new hotkeys, along with additions that can help you to better visualize specific intricacies in your models.

Join PADT’s Simulation Support & Application Engineer Doug Oatis for an overview of the current user friendly interfaces within ANSYS Mechanical, along with the numerous additions in this new release that help to improve efficiency tenfold, such as:

  • Hotkey Additions
  • Box Geometry Creation Within Mechanical
  • Free Standing Remote Points
  • Improved Status Bar Information
  • Pretension Beam Connection
  • Solver Scratch Directory Specification
  • Improved Probe Annotations

Register today to find out how you can use these enhancements to improve your throughput and stay ahead of the curve!

We look forward to seeing you there.

Video Tips: Node and Element IDs in ANSYS Mechanical

This is a common question that we get, particularly those coming from APDL – how to get nodal and element IDs exposed in ANSYS Mechanical. Whether that’s for troubleshooting or information gathering, it was not available before. This video shows how an ANSYS developed extension accomplishes that pretty easily.

The extension can be found by downloading “FE Info XX” for the version XX of ANSYS you are using at  https://support.ansys.com/AnsysCustom…

Thermo-Mechanical Reliability of PCBs

PCB designers know that it is critical to design a board for temperature rise, thermal expansion and external structural loads. The difficulty has always been to capture a board’s structural makeup accurately without having an impractical effect on solve time.

CLICK HERE for a PDF that shows how ANSYS solves this challenge in a unique straightforward and effective manner.  And as always feel free to reach out to us at info@padtinc.com if you have any questions.

ANote_Picture

Video Tips: Topology Optimization with ANSYS and GENESIS

This video will show you how you can optimize a part using Topology Optimization with GENESIS through ANSYS Mechanical with support from ANSYS SpaceClaim

Video Tips: Drop Impact using ANSYS AUTODYN

This is a quick video showing an example of doing an impact study using a steel slug and a reinforced concrete block.

)

Video Tips: Multiphysics Simulation with ANSYS Maxwell and ANSYS Mechanical – Part 1

This Part 1 of 2 video shows you the first half of a multiphysics simulation using the low-frequency electromagnetics tool ANSYS Maxwell to do an eddy current analysis. Part 2 will involve taking the results of this analysis and transferring it to perform a thermal-structural analysis using ANSYS Mechanical.