10x with ANSYS 17.0 – Get an Order of Magnitude Impact

The ANSYS 17.0 release improves the impact of driving design with simulation by a factor of 10.  This 10x  jump is across physics and delivers real step-change enhancements in how simulation is done or the improvements that can be realized in products.

ANSYS-R17-Banner
Unless you were disconnected from the simulation world last week you should be aware of the fact that ANSYS, Inc released their latest version of the entire product suite.  We wanted to let the initial announcement get out there and spread the word, then come back and talk a little about the details.  This blog post is the start of a what should be a long line of discussions on how you can realize 10x impact from your investment in ANSYS tools.

As you may have noticed, the theme for this release is 10x. A 10x improvement in speed, efficiency, capability, and impact.  Watch this short video to get an idea of what we are talking about.

Where is the Meat?

We are already seeing this type of improvement here at PADT and with our customers. There is some great stuff in this release that delivers some real game-changing efficiency and/or capability.  That is fine and dandy, but how is this 10x achieved.  There are a lot of little changes and enhancements, but they can mostly be summed up with the following four things:

temperature-on-a-cpu-cooler-bgTighter Integration of Multiphysics

Having the best in breed simulation tools is worth a lot, and the ANSYS suite leads in almost every physics.  But real power comes when these products can easily work together.  At ANSYS 17.0 almost all of the various tools that ANSYS, Inc. has written or acquired can be used together. Multiphysics simulation allows you to remove assumption and approximations and get a more accurate simulation of your products.

And Multiphysics is about more than doing bi-directional simulation, which ANSYS is very good at. It is about being able to transfer loads, properties, and even geometry between different software tools. It is about being able to look at your full design space across multiple physics and getting more accurate answers in less time.  You can take heat loads generated in ANSYS HFSS and use them in ANSYS Mechanical or ANSYS FLUENT.  You can take the temperatures from ANSYS FLUENT and use them with ANSYS SiWave.  And you can run a full bidirectional fluid-solid model with all the bells and whistles and without the hassles of hooking together other packages.

simplorer-17-1500-modelica-components-smTo top it all off, the system level modeler ANSYS Simplorer has been improved and integrated further, allowing for true system level Multiphysics virtual prototyping of your entire system.  One of the changes we are most excited about is full support for Modelica models – allowing you to stay in Simplorer to model your entire system.

Improved Usability

Speed is always good, and we have come to expect 10%-30% increases in productivity at almost every release. A new feature here, a new module there. This time the developers went a lot further and across the product lines.

clip-regions-with-named-selections-bgThe closer integration of ANSYS SpaceClaim really delivers on a 10x or better speedup for geometry creation and cleanup when compared to other methods. We love SpaceClaim here at PADT and have been using it for some time.  Version 17 is not only integrated tighter, it also introduces scripting that allows users to take processes they have automated in older and clunker interfaces into this new more powerful tool.

One of our other favorites is the new interface in ANSYS Fluent, just making things faster and easier. More capability in the ANSYS Customization Toolkit (ACT) also allows users to get 10x or better improvements in productivity.  And for those who work with electronics, a host of ECAD geometry import tools are making that whole process an order of magnitude faster.

import-ecad-layout-geometry-bgIndustry Specific Workflows

Many of the past releases have been focused on establishing underlying technology, integration, and adding features. This has all paid off and at 17.0 we are starting to see some industry specific workflows that get models done faster and produce more accurate results.

The workflow for semiconductor packaging, the Chip Package System or CPS, is the best example of this. Here is a video showing how power integrity, signal integrity, thermal modeling, and integration across tools:

A similar effort was released in Turbomachinary with improvements to advanced blade row simulation, meshing, and HPC performance.

ansys-fluent-hpc-max-coresOverall Capability Enhancements

A large portion of the improvements at 17.0 are made up of relatively small enhancements that add up to so big benefits.  The largest development team in simulation has not been sitting around for a year, they have been hard at work adding and improving functionality.  We will cover a lot of these in coming posts, but some of our favorites are:

  1. Improvements to distributed solving in ANSYS Mechanical that show good scaling on dozens of cores
  2. Enhancements to ACT allowing for greater automation in ANSYS Mechanical
  3. ACT is now available to automate your CFD processes
  4. Significant improvements in meshing robustness, accuracy and speed (If you are using that other CFD package because of meshing, its time to look at ANSYS Fluent again)
  5. Fracture mechanics
  6. ECAD import in electromagnetic, fluids, and mechanical products.
  7. A new solver in ANSYS Maxwell that solves more than 10x faster for transient runs
  8. ANSYS AIM just keeps getting more functions and easier to use
  9. A pile of SpaceClaim new and improved features that greatly speed up geometry repair and modification
  10. Improved rigid body dynamics in ANSYS Mechanical

ansys-17-ribbons-UIMore to Come

And a ton more. It may take us all of the time we have before ANSYS 18.0 comes out before we have a chance to go over in The Focus all of the great new stuff.  But we will be giving a try in the coming weeks and months. ANSYS, Inc. will be hosting some great webinars as well.

If you see something that interests you or something you would like to see that was not there, shoot us an email at support@padtinc.com or call 480.813.4884.

New Enhancements to Flownex 2015: Even Better Fluid-Thermal Simulation

987786-flownex_simulation_environment-11_12_13The developers of Flownex have been hard at work again and have put out a fantastic update to Flownex 2015.  These additions go far beyond what most simulation programs include in an update, so we thought it was worth a bit of a blog article to share it with everyone.  You can also download the full release notes here: FlownexSE 2015 Update 1 – Enhancements and Fixes

What is Flownex?

Some of you may not be familiar with Flownex. It is a simulation tool that models Fluid-Thermal networks.  It is a 1-D tool that is very easy to use, powerful, and comprehensive. The technology advancements delivered by Flownex offer a fast, reliable and accurate total system and subsystem approach to simulation that complements component level simulation in tools like ANSYS Fluent, ANSYS CFX, and ANSYS Mechanical.  We use it to model everything from turbine engine combustors to water treatment plants. Learn more here

Major Enhancements

A lot went in to this update, much hidden behind the scenes in the forms of code improvements and fixes.  There are also a slew of major new or enhanced features worth mentioning.

Shared Company Database

One of the great things about Flownex is that you can create modeling objects that you drag and drop into your system model. Now you can share those components, fluids, charts, compounds, and default settings across your company, department, or group.    There is no limit on the number of databases that are shared and access can be controlled. This will allow users to reuse information across your company.

Shared Database
Shared Database

Static Pressure Boundary Conditions

In the past Flownex always used a total pressure boundary condition. Based on user requests, this update includes a new boundary condition object that allows the user to specify the static pressure as a boundary condition. This is useful because many tests of real hardware only provide static pressure. It is also a common boundary condition in typical rotational flow fields in turbo machinery secondary flow.

Subdivided Cavities

Another turbo machinery request was the ability to break cavities up into several radial zones, giving a more accurate pressure distribution in secondary flow applications for Rotor-Rotor and Rotor-Stator cavities.  These subdivisions can be automatically created in the radial direction by Flownex.

flownex_rotor-stator-stator-cavities
Subdivided Cavity Input Dialog

Excel Input Sheets and Parameter Tables

The connection between Microsoft Excel and Flownex has always been strong and useful, and it just get even better.  So many people were connecting cells to their Flownex model parameters that the developers decided to directly connect the two programs so the user no longer has to establish data connection links.  Now an properties in Flownex can be hooked to a cell in Excel.

The next thing users wanted was the ability to work with tables of parameters, so that was added as well.  The user can hook a table of values in Excel to Flownex parameters and then have Flownex solve for the whole table, even returning resulting parameters.  This makes parametric studies driven from Excel simple and powerful.

flownex_Parametric-Tables
Excel Parameter Tables

Component Enhancements

Users can now create component defaults and save them in a library. This saves time because in the past the user had to specify the parameters for a given component. Now thy just drag and job the existing defaults into their model.

Compound components have also been enhanced by the development team so you no loner have to restart Flownex when you move, export, or import a compound component.

Find Based on Property Values

Users can now search through properties on all the objects in their model based on the value assigned to those properties.  As an example, you can type > 27.35 to get a list of all properties with an assigned value that is larger than 27.35.  This saves time because the user no longer has to look through properties or remember what properties were assigned.

Network Creation through Programming

Users can now write programs through the API or scripting tool to build their network models. This will allow companies to create vertical applications or automate the creation of complex networks based on user input. Of all the enhancements in this update, this improvement has the potential to deliver the greatest productivity improvements.

Automatic Elevations Importing in GIS

Users who are specifying flow networks over real terrain can now pull elevation data from the internet, rather than requiring that the data be defined when the network is specified. This enhancement will greatly speed up the modeling of large fluid-thermal systems, especially when part of the simulation process is moving components of the system over terrain.

Multiple Fluid Interface Component

A very common requirement in fluid-thermal systems is the ability to model different fluids or fluid types and how they interact. With this update users can now model two separate fluid networks and define a coupling between the two. The mass balance and resulting pressure at the interface is maintained.

Static Condition Calculation Improvements

Many simulation require an accurate calculation of static pressures. To do this, the upstream and downstream areas and equivalent pipe diameters are needed to obtain the proper values.  Many components now allow upstream and downstream areas to be defined, including restrictors and nozzles.

flownex_upstream-downstream-area
Dialog for upstream and downstream area specification

Scaled Drawing

The ability to create a scale 2-Dimensional drawing was added to Flownex. The user can easily add components onto an existing scaled drawing that is used as a background image in Flownex. These components will automatically detect and input lengths based on the drawing scale and distance between nodes. This results in much less time and effort spent setting up larger models where actual geometric sizes are important.

Scaled Drawing Tools
Scaled Drawing Tools

How do I Try this Out?

As you can see by the breadth and depth of enhancements, Flownex is a very capable tool that delivers on user needs.  Written and maintained by a consulting company that uses the tool every day, it has that rare mix of detailed theory and practical application that most simulation engineers crave.  If you model fluid-thermal systems, or feel you should be simulating your systems, contact Brian Duncan at 480.813.4884 or brain.duncan@padtinc.com. We can do a quick demo over the internet and learn more about what your simulation needs are.  Even if you are using a different tool, you should look at Flownex, it is an great tool.

10 Useful New Features in ANSYS Mechanical 16.0

ansys-mechanical-16-heade2r

PADT is excited about the plethora of new features in release 16.0 of ANSYS products.  After sorting through the list of new features in Mechanical, here are 10 enhancements that we found to be particularly useful for general applications.


1: Mesh Display Style

This new option in the details view for the mesh branch makes it easy to visualize mesh quality items such as aspect ratio, skewness, element quality, etc.  The default style is body color, but it can be changed in the details to element quality, for example, as shown here:

ansys-mechanical-16-f1a

Figure 1. A. – Mesh Display Style Set to Element Quality

figure1b

Figure 1. B. – Element Quality Plot After Additional Mesh Settings

ansys-mechanical-16-f1c

Figure 1. C. – Accessing Display Style in the Mesh Details


2: Image to Clipboard

How many times have you either done a print screen > paste into editing tool > crop or done an image to file to get the plots you need into tools such as Word and PowerPoint?  The new Image to Clipboard menu pick streamlines this process.  Now, just get the image the way you want it in the geometry view, right click, and select Image to Clipboard.  Or just use Ctrl + C.  When you paste, you’ll be pasting the contents of that view window directly.  Here’s what it looks like:

ansys-mechanical-16-f2

Figure 2 – Right Click, Image to Clip Board


3: Beam Contact Formulation

This was a beta feature at 15.0, but if you didn’t get a chance to try it out, it’s now fully supported at 16.0.  The idea here is that instead of the ‘traditional’ bonded contact methods (using the augmented Lagrange or pure penalty formulation) or the Multi-Point Constraint (MPC) bonded option, we now have a new choice of beam contact.  This option utilizes internally-created massless linear beam elements to connect the two sides of a contact interface together.  This can be more efficient than the traditional formulations and can avoid the over constraints that can happen if multiple contact regions utilizing the MPC option end up generating constraint equations that tend to conflict with each other.

ansys-mechanical-16-f3

Figure 3 – Beam Formulation for Bonded Contact


4: Nonlinear Adaptive Region

If you have ever been frustrated by the error message in the Solution Information window that says, “Element xyz … has become highly distorted…”, version 16.0 adds a new tool to our toolbox with the Nonlinear Adaptive Region capability.  This capability is in its infancy stage at 16.0, but in the right circumstances it allows the solution to recover from highly distorted elements by pausing, remeshing, and then continuing.  We plan on publishing more details on this capability soon, but for now please know that it exists and more can learned in the 16.0 Mechanical Help.  There are a lot of restrictions on when it can work, but a big one is that it only works for elements that become overly deformed due to large and nonuniform deformation, meaning not due to unstable materials, numerical instabilities, or structures that are unstable due to buckling effects.

As shown in figure 4. A., a Nonlinear Adaptive Region can be inserted under the Solution branch.  It is scoped to bodies.  Options and controls are set in the details view.

ansys-mechanical-16-f4a

Figure 4. A. – Nonlinear Adaptive Region

If the solver encounters a ‘qualifying event’ that triggers a remesh, the solver output will inform us like this:

 

**** REGENERATE MESH AT SUBSTEP     5 OF LOAD STEP      1 BECAUSE OF
      NONLINEAR ADAPTIVE CRITERIA

 

 

 

 

AmsMesher(ANSYS Mechanical Solver Mesher),Graph based ANSYS Meshing EXtension,v0.96.03b
(c)ANSYS,Inc. v160-20141009
  Platform           :  Windows 7 6.1.7601
  Arguments          :  F:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\AnsMechSolverMesh.exe
                     :  -m
                     :  G:\Testing\16.0\_ProjectScratch\Scr692\file_inpRzn_0001.cdb
                     :  –slayers=2
                     :  –silent=0
                     :  –aconcave=15.0000
                     :  –aconvex=15.0000
                     :  –gszratio=1.0000
  Seed elements      :  _RZNDISTEL block

– 17:6:17 2015-2-11

  ===================================================================
  == Mesh quality metrics comparison                                
  ===================================================================
  Element Average    :  ——–Source——–+——–Target——–
  ..Skewness(Volume) :    4.0450e-001             4.1063e-001        
  ..Aspect Ratio     :    2.3411e+000             2.4331e+000        
  Domain Volume      :    8.6109e-003             8.6345e-003        

  Worst Element      :  ——–Source——–+——–Target——–
  ..Skewness(Volume) :    0.8564  (e552     )      0.7487  (e2217    )   
  ..Aspect Ratio     :    4.9731  (e434     )      6.8070  (e2236    )   

  ===================================================================
  == Remeshing result statistics                                    
  ===================================================================
  Domain(s)          :   1      
  Region(s)          :   1      
  Patche(s)          :   7      
  nNode[New]         :   39      
  nElem[New/Eff/Src] :   79 / 92 / 2076      

  Peak memory        :   10 MB

– 17:6:17 2015-2-11
– AmsMesher run completed in 0.225 seconds

  ========================= End Run =================================
  ===================================================================

 **** NEW MESH HAS BEEN CREATED SUCCESSFULLY. CONTINUE TO SOLVE. 

Results item tabular listings will show that a remesh has occurred, as shown in figure 4. B.

ansys-mechanical-16-f4b

Figure 4. B. – Results Table Indicating a Remesh Occurred in the Nonlinear Adaptive Region

ansys-mechanical-16-f4c

Figure 4. C. – Before and After Remesh Due to Nonlinear Adaptive Region


5: Thermal Fluid Flow via Thermal ‘Pipes’

This has also been a beta option in prior releases, but nicely, at 16.0 it becomes a production feature.  The idea here is that we can use the ANSYS Mechanical APDL FLUID116 elements in Mechanical, without needing a command object.  These fluid elements have temperature as their degree of freedom in this case, and enable the effects of one dimensional fluid flow.  This means we have a reduced order model for capturing heat transfer due to a fluid moving through some kind of cavity without having to explicitly model that cavity.  The pipe ‘path’ is specified using a line body.

The line body gets defined with a cross section in CAD, and is tagged as a named selection in Mechanical.  This thermal pipe can then interact on appropriate surfaces in your model via a convection load.  Once the convection load is applied on appropriate surfaces in your model, the Fluid Flow option can then be set to Yes, and the line body is specified as the appropriate named selection.  Appropriate BC’s need to be applied to the line body, such as temperature constraints and mass flow rate, as shown in figure 5.

ansys-mechanical-16-f5

Figure 5 – Thermal “Pipe” Line Body at Top, Showing Applied Boundary Conditions


6: Solver Pivot Checking Control

This new option under Analysis Settings > Solver Controls allows you to potentially continue an analysis that has stopped due to pivoting issues, meaning a model that’s not fully constrained or one that is having trouble due to contact pairs not being fully in contact. 

The options are Program Controlled, Warning, Error, and Off.  The Warning setting is the one to use if you want the solver to continue after any pivoting issues have occurred.  The Error setting means that the solver will stop if pivoting issues occur.  The Off setting results in no pivot checking to occur, while Program Controlled, which is the default, means that the solver will decide.

ansys-mechanical-16-f6

Figure 6 – Solver Pivot Checking Controls Under Analysis Settings


7: Contact Result Trackers

This new feature allows you to more closely track contact status data while the solution is running, or after it has completed.  This capability uses the .cnd file that is created during the solution in the solver directory.  It is useful because it gives you more information on the behavior of your contact regions during solution so you can have more confidence that things are progressing well or potentially stop the solution and take corrective action if they are not.  The tracker objects get inserted under the Solution Information branch, as shown in figure 7. A.

ansys-mechanical-16-f7a

Figure 7. A. – Contact Trackers Inserted Under Solution Information

A large variety of quantities can be selected to track, such as Number Contacting, Number Sticking, Gap, Penetration, etc.

ansys-mechanical-16-f7b

Figure 7. B. – Contact Results Tracker Settings in the Details View

Contact results tracker quantities can be viewed in real time during the solution, as shown in figure 7. C.

ansys-mechanical-16-f7c

Figure 7. C. – Contact Results Tracker Showing Gap Decreasing as the Solution Progresses


8: Tree Filtering

For large assemblies or other complex models, there are useful enhancements in how the tree can be filtered, including the ability to create Groups.  Groups can consist of tree entities that are geometry, coordinate systems, connection features, boundary conditions, or even results.  Grouping is accomplished as easily as selecting the desired items in the tree, then right clicking to specify Group, as shown in Figure 8. A.

ansys-mechanical-16-f8a

Figure 8. A. – Grouping Displacements

A new folder in the tree is then created which can be named something useful.  Figure 8. B. shows the displacement boundary condition group (folder) after it was given a name.

ansys-mechanical-16-f8b

Figure 8. B. – Group of Displacement BC’s, Given a Meaningful Name

It’s easy to right click and Ungroup if needed, and there is also a Group Similar Objects option which allows you to select just one item in the tree and easily group all similar items by right clicking.


9: Results Set Listing Enhancements

In addition to the information on remeshing that we mentioned back in useful new feature number 4, there is a new capability to right click in the tabular listing of results and then right click to create total deformation or equivalent stress results.  This capability can make it faster to create a deformation or stress plot for a particular time point or result set of interest.

The procedure to do this is:

  • Left click on the Solution branch in the tree.
  • Left click on the desired Results set in Tabular Data
  • Right click on that results set and select Create Total Deformation Results or Create Equivalent Stress Results, as shown in figure 9.

The result of these steps will be a new result item in the tree, waiting for you to evaluate so you can see the new results plot.

ansys-mechanical-16-f9

Figure 9 – Right Click in Solution Tabular Data to Create Deformation or Equivalent Stress Result Items


10: Explode View

We’ve saved a fun one for last, the new Explode View capability.  This allows you to incrementally ‘explode’ the view of your assemblies, making it potentially easier to visualize the parts and interaction between parts that make up the assembly.  To use this feature, make sure the Explode View Options toolbar is turned on in your View settings.  There are several options for the ‘explosion center’, such as the assembly center or the global or a user defined coordinate system.

ansys-mechanical-16-f10a 

Figure 10. A. – The Explode View Options Toolbar

As you can see in figure 10. A., there is a slider that allows you to control the ‘level’ of view explosion.  Keep in mind this is just a visual tool and does nothing to the coordinates of the parts in your assemblies.

Figures 10. B. and 10. C. show various slider settings for the exploded view of an assembly.

ansys-mechanical-16-f10b

Figure 10. B. – Explode View Level 3

ansys-mechanical-16-f10c

Figure 10. C. – Explode View Level 4


This concludes our tour of 10 useful new features in ANSYS Mechanical 16.0.  We hope you find this information helps you get your ANSYS Mechanical simulations completed more efficiently.  There are lots and lots of other new features that we didn’t mention here.  The Release Notes in the Help covers a lot of them.  We’ll be writing more about some of the things we mentioned here as well as some of the other new features soon.