GrabCAD Print Software: Part One, an Introduction

Where are you on your New Year’s resolutions? They often include words such as “simplify,” “organize” and “streamline.” They can be timely reminders to rethink how you do things in both your personal and professional lives, so why not rethink the software you use in 3D Printing?

Preparing a CAD solid model or an STL file to print on a 3D printer requires using set-up software that is typically unique to each printer’s manufacturer. For Flashforge equipment, you use FlashPrint, for Makerbot systems you use MakerBot Print, for Formlabs printers you use PreForm, and so on.

GrabCAD Print software for setting up STL or CAD files to print on Stratasys 3D printers (main screen).
GrabCAD Print software for setting up STL or CAD files to print on Stratasys 3D printers (main screen). Image courtesy PADT.

For printers from industrial 3D printing company Stratasys, the go-to software is GrabCAD Print (along with GrabCAD Print Mobile), developed for setting up both fused deposition modeling (FDM) and PolyJet technologies in new and efficient ways. Often just called GrabCAD, this versatile software package lets you organize and control prints assigned to one of more than 30 printer models, so the steps you learn for one printer transfer directly over to working with other models.

If you’ve previously used Stratasys Catalyst (on Dimension and uPrint printers), you’ll find similarities with GrabCAD, as well as some enhanced functionality. If you’re accustomed to the fine details of Stratasys Insight, you’ll see that GrabCAD provides similar capabilities in a streamlined interface, plus powerful new features made possible only by the direct import of native CAD files.  Additionally, you can access Insight within GrabCAD, combining the best of both traditional and next-generation possibilities.

Simple by Default, Powerful by Choice

GrabCAD lets users select simplified default settings throughout, with more sophisticated options available at every turn. Here are the general steps for print-file preparation, done on your desktop, laptop or mobile device:

1 – Add Models: Click-and-drag files or open them from File Explorer. All standard CAD formats are supported, including SolidWorks, Autodesk, Siemens and PTC, as well as STL. You can also bring in assemblies of parts and multi-body models, choosing whether to print them assembled or not. (Later we’ll also talk about what you can do with a CAD file that you can’t do with an STL.)

2 – Select Printer: Choose from a drop-down menu to find whatever printer(s) is networked to your computer. You can also experiment using templates for printers you don’t yet own, in order to compare build volumes and print times.

3 – Orient/Rotate/Scale Model: Icons along the right panel guide you through placing your model or models on the build platform, letting you rotate them around each axis, choose a face to orient as desired, and scale the part up or down. You can also right-click to copy and paste multiple models, then edit each one separately, move them around, and delete them as desired.

4 – Tray Settings: This icon leads to the menu with choices such as available materials, slice height options, build style (normal or draft), and more; always targeted to the selected printer. These choices apply to all the parts on the tray or build sheet.

5 – Model Settings: Here’s where you choose infill style, infill density (via slider bar), infill angle, and body thickness (also known as shell thickness) per part. Each part can have different choices.

6 – Support Settings: These all have defaults, so you don’t even have to consider them if you don’t have special needs (but it’s where, for example, you would change the self-supporting angle).

7 – Show Slice Preview: Clicking this icon slices the model and gives you the choice to view layers/tool paths individually, watch a video animation, or even set a Z-height pause if you plan on changing filament color or adding embedded hardware.

8 – Print: You’re ready to hit the Print button, sending the prepared file to the printer’s queue.

Scheduling Your Print, and Tracking Print Progress

A clock-like icon on the left-side GrabCAD panel (the second one down, or third if you’ve activated Advanced FDM features) switches the view to the Scheduler. In this mode, you can see a day/time tracking bar for every printer on the network. All prints are queued in the order sent, and the visuals make it easy to see when one will finish and another start (assuming human intervention for machine set-up and part removal, of course).

Scheduling panel in GrabCAD Print, showing status of files printing on multiple 3D printers.
Scheduling panel in GrabCAD Print, showing status of files printing on multiple 3D printers. Image courtesy PADT.

If you click on the bar representing a part being built, a new panel slides in from the right with detailed information about material type, support type, start time, expected finish time and total material used (cubic inches or grams). For printers with an on-board camera, you can even get an updated snapshot of the part as it’s building in the chamber.

Below the Scheduler icon is the History button. This is a great tool for creating weekly, monthly or yearly reports of printer run-time and material consumption, again for each printer on the network. Within a given build, you’ll even see the files names of the individual parts within that job.

Separately, if you’re not operating the software offline (an option that some companies require), you can enable GrabCAD Print Reports. This function generates detailed graphs and summaries covering printer utilization and overall material use across multiple printers and time periods – very powerful information for groups that need to track efficiencies and expenditures.

And That’s Just the Beginning

Once you decide to experiment with these settings, you begin to see the power of GrabCAD Print for FDM systems. We haven’t even touched on the automated repairs for STL files, PolyJet’s possibilities for colors, transparency and blended materials, or the options for setting up a CAD model so that sub-sections print with different properties.

For example, you’ll see how planning ahead allows you to bring in a multi-body CAD model and have GrabCAD identify and reinforce some areas at full density, while changing the infill pattern, layout, and density in other regions. GrabCAD recognizes actual CAD bodies and faces, letting you make build-modifications that previously would have required layer-by-layer slice editing, or couldn’t have been done at all.

Stay tuned for our next blog post, GrabCAD Print Software, Part Two: Simplify Set-ups, Save Time, and Do Cool Stuff You Hadn’t Even Considered, and reach out to us to learn more about downloading and using GrabCAD Print.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

Stratasys 3D Printing Filament: the Quality Behind OEM Sourcing

In 1925, when the automotive industry was rapidly growing in response to consumer and industrial needs, a group of independent auto parts resellers joined to form the National Automotive Parts Association (NAPA). A founding member was the Genuine Parts Company; this group later acquired a number of other NAPA stores and gave rise to ad campaigns stressing the importance of buying genuine auto parts from a well-known, trusted source.

Stratasys 3D printing filament is crafted to stringent standards, ensuring dimensional consistency and repeatable material properties. Image courtesy PADT.
Stratasys 3D printing filament is crafted to stringent standards, ensuring dimensional consistency and repeatable material properties. Image courtesy PADT.

Following that same philosophy is a good idea for users involved with industrial 3D printing (additive manufacturing/AM). How do you know your part will print consistently, and display measureable, repeatable material properties, if you can’t rely on the consistency of the AM material’s own production?

At PADT, we print the gamut of filament options on our Stratasys industrial 3D printers, from ABS and TPU to production-grade Nylons and certified Ultem ® . As both an authorized AM system reseller and service provider, we count on the quality of the materials we source for ourselves and our customers, so it’s enlightening to get a behind-the-scenes look at the Stratasys filament production-process.

Ingredients Matter

Great recipes start with the finest ingredients, right? It’s no different when you’re producing filament for demanding applications: start with qualified raw materials from reputable sources. Standard Stratasys filament (like ASA and ABS), Engineering Grade materials (including polycarbonate and Nylon 12) and most Support materials are made in Israel at one of the two Stratasys corporate offices, while the High Performance materials such as Nylon 12 Carbon-Fiber (CF), Antero and Ultem ® products are produced at the original Minnesota location.

The raw stock for 3D printing filament comes in pellet form. Image courtesy Shutterstock.
The raw stock for 3D printing filament comes in pellet form. Image courtesy Shutterstock.

Stratasys buys polymers in pellet form from chemical suppliers such as France-based Arkema, who blends the proprietary polyethyl ketone ketone (PEKK) base formula for Antero and Antero ESD materials, and SABIC who supplies the raw pellets for Ultem ® -based filaments.

Some pellets are fed directly into the filament production equipment while others are compounded like a custom pharmaceutical: mixed and blended with stabilizers and colorants, extruded as interim-stage filament, cooled and then granulated all over again into new pellet stock. (Given that FDM is an extrusion-based technology, one of the seven standard AM technologies defined by ISO/ASTM52900-15, it’s interesting that extrusion plays a key role in the material production-process itself.)

Polymer Pasta

Whether you’ve made your own fresh pasta or just watched a child crank out endless strings of PlayDoh, you can envision the next steps in filament production, starting with melting the pellets into a viscous liquid resin. Chaffee Tran, Stratasys’ Materials Product Director, explains, “Resin is (then) run through a screw extruder and forced through a die (metal perforated with precision holes), cooled as it comes out, and wound onto spools.” An optical monitor continuously checks for “ovality” of the filament as it moves past, and triggers a stop for anything out-of-round beyond tolerance. If you’ve ever struggled with a printer that jammed because of inconsistent filament diameters, you’ll understand the importance of this process requirement.

Loading bays for Stratasys F370 office-environment FDM 3D Printer. Image courtesy Stratasys.
Loading bays for Stratasys F370 office-environment FDM 3D Printer. Image courtesy Stratasys.

Filament for the Stratasys F123 plug-and-play series of printers is packaged on-site as bagged or boxed spools. Filament for the industrial printers such as the F380cf, F450 and F900 gets loaded into sealed canisters that hold larger volumes in both standard and extended capacity. For all filament types, Tran says, “We have full traceability of our finished products via serial number and manufacturing lots. This can be traced back to production documents, to link back to the production-line settings and batch lots of resin used.”

Canister of Stratasys Ultem® 9085 filament, with production documentation for traceability. Image courtesy Stratasys.

One Step Beyond: Certification

For truly demanding applications, the quality process gets kicked up another notch. Ultem ® 9085 Aerospace and Ultem ® 1010 Certified Grade (CG) are shipped with Certificates of Compliance that confirm the production parameters down to the exact machine type and location where the filament is manufactured. “Certified Ultem ® has a higher sampling rate of finished goods for various filament properties and tighter internal specification,” adds Tran.

This tightly regulated process allows Stratasys to be the only AM company offering material certified by the Aircraft Interior Solution (AIS), a process – developed in collaboration with the National Center for Advanced Materials Performance (NCAMP) – that provides the necessary tools, documentation, and training needed to guide aerospace producers down the aircraft qualification process. In order to meet the requirements aerospace manufacturers face, their parts must not only be made from the AIS certified version of the Stratasys Ultem ® 9085 material, but must also be printed on a certified F900mc Gen II system, in accordance with a string of aerospace standards documents. (For more information see details provided by NCAMP.) That’s what you call Quality Control.

For historical details about the development of standards for qualifying non-metallic materials for aircraft applications, now including the first polymer AM material, download this nine-page document, A Path to Certification:

Today's aircraft increasingly rely on non-metallic component design to save on weight and therefore fuel consumption. Certified Ultem 9085® filament from Stratasys plays a key role in supporting the design and use of 3D printed flight-qualified parts. Image courtesy Stratasys.
Today’s aircraft increasingly rely on non-metallic component design to save on weight and therefore fuel consumption. Certified Ultem 9085® filament from Stratasys plays a key role in supporting the design and use of 3D printed flight-qualified parts. Image courtesy Stratasys.

Even if your part production process is not as stringent as that demanded for the AIS program, you’ll avoid jammed drive-gears and cross-wound spools and get consistent part performance when your Stratasys printers run “genuine Stratasys” filament. Classic ABS, chemically resistant Antero, flexible TPU and new, fine-finish Diran are just some of the materials that will offer you repeatable results. Ask us for more details, and stay tuned as Stratasys launches even more options for true industrial applications.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and filaments, contact us at info@padtinc.com.

3D Printed Parts Create a Tricked-Out Truck

PADT’s Austin Suder is a Solidworks CAD wizard, a NASA design-competition (Two for the Crew) winner and a teaching assistant for a course in additive manufacturing (AM)/3D printing. Not bad for someone who’s just started his sophomore year in mechanical engineering at Arizona State University.

PADT's Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)
PADT’s Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)

In last month’s PADT blog post about adding heat-set inserts to 3D printed parts we gave a shout-out to Austin for providing our test piece, the off-road LED light unit he had designed and printed for his 2005 Ford F-150. Now we’ve caught up with him between classes to see what other additions he’s made to his vehicle, all created with his personal 3D printers and providing great experience for his part-time work with Stratasys industrial printers in PADT’s manufacturing department.

Q: What has inspired or led you to print multiple parts for your truck?

I like cars, but I’m on a college budget so instead of complaining I found a way to fix the problem. I have five 3D printers at my house – why not put them to work! I understand the capabilities of AM so this has given me a chance to practice my CAD and manufacturing skills and push boundaries – to the point that people start to question my sanity.

Q: How did you end up making those rear-mount LED lights?

I wanted some reverse lights to match the ones on the front of my truck, so I designed housings in SolidWorks and printed them in carbon fiber PLA. Then I soldered in some high-power LED lights and wired them to my reverse lights. These parts made great use of threaded inserts! The carbon fiber PLA that I used was made by a company called Vartega that recycles carbon fiber material. (Note: PADT is an investor of this company.)

Q: In the PADT parking lot, people can’t help but notice your unusual tow-hitch. What’s the story with that?

I saw a similar looking hitch on another car that I liked and my first thought was, “I bet I could make that better.” It’s made from ABS painted chrome (not metal); I knew that I would never use it to tow anything, so this opened up my design freedom. This has been on my truck for about a year and the paint has since faded, but the printed parts are still holding strong.

An adjustable-height "topology optimized" trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it's just for fun, not function. (Image courtesy PADT)
An adjustable-height “topology optimized” trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it’s just for fun, not function. (Image courtesy PADT)

This part also gets questioned a lot! It’s both a blessing and a curse. In most cases it starts when I’m getting gas and the person behind me starts staring and then questions the thing that’s attached to the back of my truck. The conversation then progresses to me explaining what additive is, to a complete stranger in the middle of a gas station. This is the blessing part because I’m always down for a conversation about AM; the downside is I hate being late for work.

Q: What about those tow shackles on your front bumper?

Unique ABS printed tow shackles - another conversation-starter. (Image courtesy PADT)
Unique ABS printed tow shackles – another conversation-starter. (Image courtesy PADT)

Those parts were printed in ABS – they’re not meant for use, just for looks. I’ve seen towing shackles on Jeeps and other trucks but never liked the look of them, so again I designed my own in this pentagon-shape. I originally printed them in red but didn’t like the look when I installed them; the unusual shading comes because I spray-painted them black then rubbed off some of the paint while wet so the red highlights show through.

Q: Have you printed truck parts in any other materials?

Yes, I‘ve used a carbon-fiber (CF) nylon and flexible TPU (thermoplastic polyurethane) on filament printers and a nylon-like resin on a stereolithography system.

The CF nylon worked well when I realized my engine bay lacked the real estate needed for a catch can I’d bought. This was a problem for about five minutes – then I realized I have the power of additive and engineered a mount which raised the can and holds it at an angle. The mount makes great use of complex geometry because AM made it easy to manufacture a strong but custom-shaped part.     

Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)
Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)

After adding the catch can to my engine, I needed a way to keep the hoses from moving around when driving so I designed a double S-clip in TPU. The first design didn’t even come close to working – the hoses kept coming loose when driving – so I evaluated it and realized that the outer walls needed to be thicker. I made the change and printed it again, and this time it worked great. In fact, it worked so well that when I took my truck to the Ford dealership for some warranty work, they went missing. (It’s OK Ford, you can have them – I’ll just print another set.)    

Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)
Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)

Other parts I printed in TPU included clips for the brake-lines. I had seen that my original clip had snapped off, so when I had the truck up on jacks, I grabbed my calipers and started designing a new, improved version. Thirty minutes later I had them in place.

I also made replacement hood dampeners from TPU since they looked as though they’d been there for the life of the truck. I measured the old ones, used SolidWorks to recreate them (optimized for AM), printed a pair and installed them. They’ve been doing great in the Arizona heat without any deformation.      

New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)
New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)

My last little print was done on my SLA system in a material that behaves like nylon. (This was really just me showing off.) The plastic clips that hold the radiator cover had broken off, which led me to use threaded sheet-metal inserts to add machine threading to the fixture. I then purchased chrome bolts and made some 3D printed cup-washers with embossed text for added personalization and flair.  

Even the cup-washers got a 3D printed make-over on Austin's F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)
Even the cup-washers got a 3D printed make-over on Austin’s F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)

Q: What future automotive projects do you have in mind?

I’m working on a multi-section bumper and am using the project to standardize my production process – the design, material choice, sectioning and assembling. I got the idea because I saw someone with a tube frame car and thought it looked great, which led to me start thinking about how I could incorporate that onto my truck.

When I bought my F-150, it had had a dent in the rear bumper. I was never happy with this but didn’t have the money to get it fixed, so at this point the tube-frame look came full circle! I decided that I was going to 3D print a tube-frame bumper to replace the one with a dent. I started by removing the original bumper, taking measurements and locating possible mounting points for my design. Then I made some sketches and transferred them into SolidWorks.

The best part about this project is that I have additive on my side. Typical tube frame construction is limited by many things like bend allowance, assembly, and fabrication tooling. AM has allowed me to design components that could not be manufactured with traditional methods. The bumper will be constructed of PVC sections connected by 50 ABS printed parts, all glued together, smoothed with Bondo and filler primer then painted black. This is a large project!  It will take a lot of hand-finishing, but it will be perfect.

Q: If you were given the opportunity to work on any printer technology and/or material, what would you want to try working with?

Great question! If I had the opportunity to use AM for automotive components, I would redesign internal engine components and print them with direct metal laser sintering (DMLS), one of PADT’s other AM technologies. I would try printing part like piston rods, pistons, rocker arms, and cylinder valves. Additive is great for complex geometries with exotic materials.

Go Austin! Can’t wait to see what your truck looks like when you visit over semester break.

To learn more about fused deposition modeling (FDM/filament), stereolithography (SLA), selective laser sintering (SLS) and DMLS printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Our Parking Lot Gets Cool for PADT Motorsport Day

There were Chevys and Fords, Porches and Harleys, Teslas and Acuras. Big trucks and little sports cars. And of course, there was pizza. Our first ever Motorsport Day was a blast. Mechanical engineers have a special relationship with cars. For those of us who studied machine design, statics, dynamics, thermo, and CAD, various forms of motor driven transportation often represent the pinnacle of our trade during a given era. So having a parking lot full of wheeled vehicles tickled our brains.

Employees, as well as family and friends of employees, brought their rides. The best part was to see the love and passion that the owners put into their vehicles. These are far more than just a way to get to and from work. One thing we can’t share in words is the sound of each machine. From the purr of the Porche to the throaty roar of the two drag cars to the rumble of the Harley, each one had its own unique and special sound. And the Tesla, not wanting to be left out in the sound department, cranked up its stereo did a dance for us.

This was our first attempt at this type of an event, a practice run to see if anyone was interested. Duh. It was a huge success. So, watch your email and this blog for an announcement of our 2020 Motorsport Day when we will open it up to customers and vendors who are interested in sharing their ride or taking a look.

Words don’t do these marvelous machines justice, so here is a gallery with this year’s entries. And for the car fans, a table after that gives specifics on each vehicle.


—-Owner—-

—-Year—-

———-Make———-

———-Model———-
Rob R1935ChevyStandard Three Window Coupe
Tom S1950Chevy3100 – Resto Mod Patina Truck
Ralph G1964ChevyNova SS (Chevy II)
Steve G1968FordMustang Cobra Covertible
Vince E1969ChevyNova SS
Dwaine R1973ChevyCorvette
Scott R1983Datsun 280ZX
Mark M2001DodgeRAM 2500
Ted H2003AcuraCL Type S
Tom B2011ChevyCamaro SS
Teri S2015Harley DavidsonDyna Lowrider
Tim M2015Porsche911 Carrera S
Roger S2018TeslaX

Press Release: Grant to ASU, PADT, and Others for Advancement of 3D Printing Post-Processing Techniques

We are very pleased to announce that PADT is part of another successful Federal grant with ASU in the area of Additive Manufacturing.  This is the second funded research effort we have been part of in the past twelve months and also our second America Makes funded project.

It is another great example of PADT’s cooperation with ASU and other local businesses and also shows how Arizona is becoming a hub for innovation around this important and growing technology.

Please find the official press release on this new partnership below and here in PDF and HTML.

You can find links to our other recent research grants here:

If you have any questions about, additive manufacturing or this project, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

$800,000 in Matching Funds Appointed to ASU, PADT and Other Partners by America Makes for the Advancement of 3D Printing Post-Processing Techniques

This Grant Marks PADT’s Second Federally Funded Project in the Past Year, and its Second America Makes Funded Project in the Past Two Years

TEMPE, Ariz., January 24, 2019 ─ PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, has announced it has joined ASU in a Directed Project Opportunity to advance post-processing techniques used in additive manufacturing (AM). The project is being funded by the Air Force Research Laboratory (AFRL) and the Materials and Manufacturing Directorate, Manufacturing and Industrial Base Technology Division and driven by the National Center for Defense Manufacturing and Machining (NCDMM).

ASU was one of two awardees that received a combined $1.6M with at least $800K in matching funds from the awarded project teams for total funding worth roughly $2.4M. ASU will lead the project, while PADT, Quintus Technologies, and Phoenix Heat Treating, Inc. have joined to support the project.

“Our ongoing partnership with ASU has allowed us to perform critical research into the advancement of 3D printing,” said Rey Chu, principal and co-founder, PADT. “We are honored to be involved with this project and look forward to applying our many years of technical expertise in 3D printing post-processing.”

The goal of this research is to yield essential gains in process control, certified processes, and the qualification of materials and parts to drive post-processing costs down and make 3D printing more accessible. PADT will be responsible for providing geometry scanning capabilities, as well as technical expertise.

PADT has deep experience in 3D printing post-processing techniques due to the development of its proprietary Support Cleaning Apparatus (SCA), the best-selling post-processing hardware on the market. Initially released in November 2008, more than 12,500 SCA systems have sold to-date. The SCA system was awarded a U.S. patent in October 2018.

This grant will be the second federally funded research project in 2018 which teams PADT and ASU to advance 3D printing innovation and adoption. The first project received a $127,000 NASA STTR grant and is aimed at accelerating biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs.

For more information on PADT and its background in 3D printing post-processing, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

Press Release: NASA Awards a $127,000 STTR Research Grant to PADT and ASU for Advanced Research in 3D Printing

For as long as PADT has been involved in Additive Manufacturing, we have been interested in how the process of building geometry one layer at a time could be used to more closely represent how nature creates objects.  Nature is able to create strong, lightweight, and flexible structures that can not be created using traditional ways of manufacturing like machining, molding, or forming.  3D Printing gives engineers and researchers the ability to explore the same shapes that nature creates.

As you can imagine, strong and light structures are very beneficial for objects that need to be launched into space.  That is why NASA just awarded PADT and Arizona State University, a Phase 1 STTR grant to explore how to make just this type of geometry.  We are excited to work with ASU to define what the possibilities are in this first phase and then apply for a Phase 2 grant to bring real-world applications of this technology to industry.

This is PADT’s 14th SBIR/STTR and our second joint project with Dr. Dhruv Bhate at ASU.  Many of you may remember the research and process improvements that Dhruv worked on when he was a PADT employee.  We look forward to sharing our results with the Additive Manufacturing community and moving this exciting application for the technology forward.

Please find the official press release on this new partnership below and here in PDF and HTML

If you have any questions about high-performance computing for simulation, either with local hardware or compute resources in the cloud, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

NASA Awards a $127,000 STTR Research Grant to PADT and ASU
for Advanced Research in 3D Printing

The Grant Represents the Strength of 3D Printing in Arizona Exemplified by the Strong Cooperation Between Industry and Academia

TEMPE, Ariz., August 14, 2018 ─ To further advance their longstanding cooperation, PADT and Arizona State University (ASU) were awarded a $127,000 Small Business Technology Transfer (STTR) Phase I grant from NASA. The purpose of the grant is to accelerate biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs or bamboo. The research is critically important to major sectors in Arizona such as aerospace because it enables strong and incredibly light parts for use in the development of air and space crafts.

“We’re honored to continue advanced research on biomimicry with our good friends and partners at ASU,” said Rey Chu, principal and co-founder, PADT. “With our combined expertise in 3D printing and computer modeling, we feel that our research will provide a breakthrough in the way that we design objects for NASA, and our broad range of product manufacturing clients.”

PADT recently partnered with Lockheed Martin and Stratasys to help NASA develop more than 100 3D printed parts for its manned-spaceflight to Mars, the Orion Mission. This grant is another example of how PADT is supporting NASA efforts to use 3D printing in spacecraft development. Specific NASA applications of the research include the design and manufacturing of high-performance materials for use in heat exchanges, lightweight structures and space debris resistant skins. If the first phase is successful, the partners will be eligible for a second, larger grant from NASA.

“New technologies in imaging and manufacturing, including 3D printing, are opening possibilities for mimicking biological structures in a way that has been unprecedented in human history,” said Dhruv Bhate, associate professor, Arizona State University. “Our ability to build resilient structures while significantly reducing the weight will benefit product designers and manufacturers who leverage the technology.”

“PADT has been an excellent partner to ASU and its students as we explore the innovative nature of 3D printing,” said Ann McKenna, school director and professor, Ira A. Fulton Schools of Engineering, Arizona State University. “Between the STTR grant and partnering to open our state-of-the-art Additive Manufacturing Center, we’re proud of what we have been able to accomplish in this community together.”

This grant is PADT’s 14th STTR/SBIR award.

To learn more about PADT and its 3D printing services, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

Standard Roof Rack Fairing Mount Getting In Your Way?! Engineer it better and 3D Print it!

It is no mystery that I love my Subaru. I bought it with the intention of using it and I have continually made modifications with a focus on functionality.

When I bought my roof crossbars in order to mount ski and/or bike racks, I quickly realized I needed to get a fairing in order to reduce drag and wind noise. The fairing functions as designed, and looks great as well. However, when I went to install my bike rack, I noticed that the fairing mount was in the way of mounting at the tower. As a result, I had to mount the rack inboard of the tower by a few inches. This mounting position had a few negative results:

  • The bike was slightly harder to load/unload
  • The additional distance from the tower resulted in additional crossbar flex and bike movement
  • Additional interference between bikes when two racks are installed

These issues could all be solved if the fairing mount was simply inboard a few more inches. If only I had access to the resources to make such a concept a reality…. oh wait, PADT has all the capabilities needed to take this from concept to reality, what a happy coincidence!

First, we used our in-house ZEISS Comet L3D scanner to get a digital version of the standard left fairing mount bracket. The original bracket is coated with Talcum powder to aid in the scanning process.

The output from the scanning software is a faceted model in *.STL format. I imported this faceted CAD into ANSYS SpaceClaim in order to use it as a template to create editable CAD geometry to use as a basis to create my revised design. The standard mounting bracket is an injection molded part and is hollow with the exception of a couple of ribs. I made sure to capture all this geometry to carry forward into my redesigned parts, which would make the move to scaled manufacturing of this design easy.

Continuing in ANSYS SpaceClaim, as it is a direct modeling software instead of traditional feature-based modeling, I was able to split the bracket’s two function ends, the crossbar end and fairing end, and offset them by 4.5 inches, in order to allow the bike rack to mount right at the crossbar tower. I used the geometry from the center section CAD to create my offset structure. A mirrored version allows both the driver and passenger side fairing mount to be moved inboard to enable mounting of two bike racks in optimal positions. The next step is to turn my CAD geometry back into faceted *.STL format for printing, which can be done directly within ANSYS SpaceClaim.

 

After the design has been completed, I spoke with our 3D printing group to discuss what technology and material would be good for these brackets, as the parts will be installed on the car during the Colorado summer and winter. For this application, we decided on our in-house Selective Laser Sintering (SLS) SINTERSTATION 2500 PLUS and glass filled nylon material. As this process uses a powder bed when building the parts, no support is needed for overhanging geometry, so the part can be built fully featured. Find out more about the 3D printing technologies available at PADT here.

Finally, it was time to see the results. The new fairing mount offset brackets installed just like the factory pieces, but allowed the installation of the bike rack right at the tower, reducing the movement that was present when mounted inboard, as well as making it easier to load and unload bikes!!

I am very happy with the end result. The new parts assembled perfectly, just as the factory pieces did, and I have increased the functionality of my vehicle yet again. Stay tuned for some additional work featuring these brackets, and I’m sure the next thing I find that can be engineered better! You can find the files on GrabCAD here.

 

Video Tips – Two-way connection between Solidworks and ANSYS HFSS

This video will show you how you can set up a two-way connection between Solidworks and ANSYS HFSS so you can modify dimensions as you are iterating through designs from within HFSS itself. This prevents the need for creating several different CAD model iterations within Solidworks and allows a more seamless workflow.  Note that this process also works for the other ANSYS Electromagnetic tools such as ANSYS Maxwell.

Introducing our new Newsletter: The PADT Pulse

We are very pleased to announce our new newsletter, the PADT Pulse.  For a while now customers have been asking for a monthly update on what is going on without having to go through our blog. So we are taking the best of what we did in a given month and sharing it in this newsletter.

Not only does it have a recap of important activities, it summarizes our most popular blog posts, shares some outside news of interest, and keeps you up to date on our upcoming events. We hope you enjoy it.

Here is a link to the online version.

And you can subscribe here.

New: PADT’s Medical Device Capabilities and Portfolio Presentation

We recently updated our slide presentation on PADT’s Medical Device product development capabilities that includes some examples of past work.  Our team applies proven processes and deep industry experience across a wide spectrum of products.  Please take a look to learn more about how we help companies engineer their medical devices.

PADT-Medical-Overview-Portfolio-2018_02_13-1

You can learn more here and if you have any questins, simply email info@padtinc.com or call 480.813.4884.

In Business Magazine: Five simple strategies for promoting customer satisfaction

How do you make sure that your customers have a great experience?  In “Five simple strategies for promoting customer satisfaction” PADT’s manager of ANSYS Technical Support and Training, Ted Harris, outlines the tools he and his team use to keep PADT’s customer satisfaction rates outstanding.

PADT Named ANSYS North American Channel Partner of the Year and Becomes an ANSYS Certified Elite Channel Partner

The ANSYS Sales Team at PADT was honored last week when we were recognized four times at the recent kickoff meeting for the ANSYS North American Sales orginization.  The most humbling of those trips up to the stage was when PADT was recognized as the North American Channel Partner of the Year for 2016.  It was humbling because there are so many great partners that we have had the privilege of worked with for almost 20 years now.  Our team worked hard, and our customers were fantastic, so we were able to make strides in adding capability at existing accounts, finding new customers that could benefit from ANSYS simulation tools, and expanding our reach further in Southern California.  It helps that simulation driven product development actually works, and ANSYS tools allow it to work well.

Here we are on stage, accepting the award:

PADT Accepts the Channel Partner of the Year Award. (L-R: ANSYS CEO Ajei Gopal, ANSYS VP Worldwide Sales and Customer Excellence Rick Mahoney, ANSYS Director of WW Channel Ravi Kumar, PADT Co-Owner Ward Rand, PADT Co-Owner Eric Miller, PADT Software Sales Manager Bob Calvin, ANSYS VP Sales for the Americas Ubaldo Rodriguez

We were also recognized two other times; for exceeding our sales goals and for making the cut to the annual President’s Club retreat.   As a reminder, PADT sells the full multiphysics product line from PADT in Southern California, Arizona, New Mexico, Colorado, Utah, and Nevada.  This is a huge geographic area with a very diverse set of industries and customers.

In addition, ANSYS, Inc. announced that PADT was one of several Channel Partners who had obtained Elite Certified Channel Partner status. This will allow PADT to provide our customers with better services and gives our team access to more resources within ANSYS, Inc.

Once we made it back from the forests and hills of Western Pennsylvania we were able to get a picture with the full sale team.  Great job guys:

We could not have had such a great 2016 without the support of everyone at PADT. The sales team, the application engineers, the support engineers, business operations, and everyone else that pitches in.   We look forward to making more customers happy in 2017 and coming back with additional hardware.

ANSYS HPC Distributed Parallel Processing Decoded: CUBE Workstation

ANSYS HPC Distributed Parallel Processing Decoded: CUBE Workstation

Meanwhile, in the real world the land of the missing-middle:  To read and learn more about the missing middle please read this article by Dr. Stephen Wheat. Click Here

This blog post is about distributed parallel processing performance in a missing-middle world of science, tech, engineering & numerical simulation. I will be using two of PADT, Inc.’s very own CUBE workstations along with ANSYS 17.2. To illustrate facts and findings on the ANSYS HPC benchmarks. I will also show you how to decode and extract key bits of data out of your own ANSYS benchmark out files. This information will assist you with locating and describing the performance how’s and why’s on your own numerical simulation workstations and HPC clusters. With the use of this information regarding your numerical simulation hardware. You will be able to trust and verify your decisions. Assist you with understanding in addition to explaining the best upgrade path for your own unique situation. In this example, I am providing to you in this post. I am illustrating a “worst case” scenario.

You already know you need to increase your parallel processing solves times of your models. “No I am not ready with my numerical simulation results. No I am waiting on Matt to finish running the solve of his model.” “Matt said that it will take four months to solve this model using this workstation. Is this true?!”

  1. How do I know what to upgrade and/or you often find yourself asking yourself. What do I really need to buy?
    1. One or three ANSYS HPC Packs?
    2. Purchase more compute power? NVidia TESLA K80’s GPU Accelerators? RAM? A Subaru or Volvo?
  2. I have no budget. Are you sure? Often IT departments set a certain amount of money for component upgrades and parts. Information you learn in these findings may help justify a $250-$5000 upgrade for you.
  3. These two machines as configured will not break the very latest HPC performance speed records. This exercise is a live real world example of what you would see in the HPC missing middle market.
  4.  Benchmarks were formed months after a hardware and software workstation refresh was completed using NO BUDGET, zip, zilch, nada, none.

Backstory regarding the two real-world internal CUBE FEA Workstations.

  1. These two CUBE Workstations were configured on a tight budget. Only the components at a minimum were purchased by PADT, Inc.
  2. These two internal CUBE workstations have been in live production, in use daily for one or two years.
    1. Twenty-four hours a day seven days a week.
  3. These two workstations were both in desperate need of some sort of hardware and operating system refresh.
  4. As part of Microsoft upgrade initiative in 2016.  Windows 10 Professional was upgraded for free! FREE!

Again, join me in this post and read about the journey of two CUBE workstations being reborn and able to produce impressive ANSYS benchmarks to appease the sense of wining in pure geek satisfaction.

Uh-oh?! $$$

As I mentioned, one challenge that I set for myself on this mission is that I would not allow myself to purchase any new hardware or software. What? That is correct; my challenge was that I would not allow myself to purchase new components for the refresh.

How would I ever succeed in my challenge? Think and then think again.

Harvesting the components of old workstations recently piling up in the IT Lab over the past year! That was the solution. This idea just may be the idea I needed for succeeding in my NO BUDGET challenge. First, utilize existing compute components from old tired machines that had showed in the IT boneyard. Talk to your IT department, you never know what they find or remember that they had laying around in their own IT boneyard. Next, I would also use any RMA’d parts that I could find that had trickled in over the past year. Indeed, by utilizing these old feeder workstations, I was on my way to succeeding in my no budget challenge. The leftovers? Please do not email me for the discarded not worthy components handouts. There is nothing left, none, those components are long gone a nice benefit from our recent in-house next PADT Tech Recycle event.

*** Public Service Announcement *** Please remember to reuse, recycle and erase old computer parts from the landfills.

CUBE Workstation Specifications

PADT, Inc. – CUBE w12ik Numerical Simulation Workstation

(INTENAL PADT CUBE Workstation “CUBE #10”)
1 x CUBE Mid-Tower Chassis (SQ edition)

2 x 6c @3.4GHz/ea (INTEL XEON e5-2643 V3 CPU)

Dual Socket motherboard

16 x 16GB DDR4-2133 MHz ECC REG DIMM

1 x SMC LSI 3108 Hardware RAID Controller – 12 Gb/s

4 x 600GB SAS2 15k RPM – 6 Gb/s – RAID0

3 x 2TB SAS2 7200 RPM Hard Drives – 6 Gb/s (Mid-Term Storage Array – RAID5)

NVIDIA QUADRO K6000 (NVidia Driver version 375.66)

2 x LED Monitors (1920 x 1080)

Windows 10 Professional 64-bit

ANSYS 17.2

INTEL MPI 5.0.3

PADT, Inc. CUBE w16i-k Numerical Simulation Workstation

(INTENAL PADT CUBE Workstation “CUBE #14″)
1 x CUBE Mid-Tower Chassis

2 x 8c @3.2GHz/ea (INTEL XEON e5-2667 V4 CPU)

Dual Socket motherboard

8 x 32GB DDR4-2400 MHz ECC REG DIMM

1 x SMC LSI 3108 Hardware RAID Controller – 12 Gb/s

4 x 600GB SAS3 15k RPM 2.5” 12 Gb/s – RAID0

2 x 6TB SAS3 7.2k RPM 3.5” 12 Gb/s – RAID1

NVIDIA QUADRO K6000 (NVidia Driver version 375.66)

2 x LED Monitors (1920 x 1080)

Windows 10 Professional 64-bit

ANSYS 17.2

INTEL MPI 5.0.3

The ANSYS sp-5 Ball Grid Array Benchmark

ANSYS Benchmark Test Case Information

  • BGA (V17sp-5)
    • Analysis Type Static Nonlinear Structural
    • Number of Degrees of Freedom 6,000,000
    • Equation Solver Sparse
    • Matrix Symmetric
  • ANSYS 17.2
  • ANSYS HPC Licensing Packs required for this benchmark –> (2) HPC Packs
  • Please contact your local ANSYS Software Sales Representative for more information on purchasing ANSYS HPC Packs. You too may be able to speed up your solve times by unlocking additional compute power!
  • What is a CUBE? For more information regarding our Numerical Simulation workstations and clusters please contact our CUBE Hardware Sales Representative at SALES@PADTINC.COM Designed, tested and configured within your budget. We are happy to help and to listen to your specific needs.

Comparing the data from the 12 core CUBE vs. a 16 core CUBE with and without GPU Acceleration enabled.

ANSYS 17.2 Benchmark  SP-5 Ball Grid Array
CUBE w12i-k 2643 v3 CUBE w12i-k 2643 v3 w/GPU Acceleration Total Speedup w/GPU CUBE w16i-k 2667 V4 CUBE w16i-k 2667 V4 w/GPU Acceleration Total Speedup w/GPU
Cores CUBE  w12i w/NVIDIA QUADRO K6000 CUBE  w12i w/NVIDIA QUADRO K6000 CUBE  w16i w/NVIDIA QUADRO K6000 CUBE  w16i w/NVIDIA QUADRO K6000
2 878.9 395.9 2.22 X 888.4 411.2 2.16 X
4 485.0 253.3 1.91 X 499.4 247.8 2.02 X
6 386.3 228.2 1.69 X 386.7 221.5 1.75 X
8 340.4 199.0 1.71 X 334.0 196.6 1.70 X
10 269.1 184.6 1.46 X 266.0 180.1 1.48 X
11 235.7 212.0 1.11 X
12 230.9 171.3 1.35 X 226.1 166.8 1.36 X
14 213.2 173.0 1.23 X
15 200.6 152.8 1.31 X
16 189.3 166.6 1.14 X
GPU NOT ENABLED ENABLED NOT ENABLED ENABLED
11/15/2016 & 1/5/2017

CUBE w12i-k v17sp-5 Benchmark Graph 2017
CUBE w12i-k v17sp-5 Benchmark Graph 2017

CUBE w16i-k v17sp-5 Benchmark Graph 2017
CUBE w16i-k v17sp-5 Benchmark Graph 2017

Initial impressions

  1. I was very pleased with the results of this experiment. Using the Am I bound bound or I/O bound overall parallel performance indicators the data showed healthy workstations that were both I/O bound. I assumed the I/O bound issue would happen. During several of the benchmarks, the data reveals almost complete system bandwidth saturation. Upwards of ~82 GB/s of bandwidth created during the in-core distributed solve!
  2. I was pleasantly surprised to see a 1.7X or greater solve speedup using one ANSYS HPC licensing pack and GPU Acceleration!

The when and where of numerical simulation performance bottleneck’s for numerical simulation. Similar to how the clock is ticking on the wall, over the years I have focused on the question of, “is your numerical simulation compute hardware compute bound or I/O bound”. This quick and fast benchmark result will show general parallel performance of the workstation and help you find the performance sweet spot for your own numerical simulation hardware.

As a reminder, to determine the answer to that question you need to record the results of your CPU Time For Main Thread, Time Spent Computing Solution and Total Elapsed Time. If the results time for my CPU Main is about the same as my Total Elapsed Time result. The compute hardware is in a Compute Bound situation. If the Total Elapsed Time result is larger than the CPU Time For Main Thread than the compute hardware is I/O bound. I did the same analysis with these two CUBE workstations. I am pickier than most when it comes to tuning my compute hardware. So often I will use a percentage around 95 percent. The percentage column below determines if the workstation is Compute Bound or O/O bound. Generally, what I have found in the industry, is that a percentage of greater than 90% indicates the workstation is wither Compute Bound, I/O bound or in worst-case scenario is both.

**** Result sets data garnered from the ANSYS results.out files on these two CUBE workstations using ANSYS Mechanical distributed parallel solves.

Data mine that ANSYS results.out file!

The data is all there, at your fingertips waiting for you to trust and verify.

Compute Bound or I/O bound

Results 1 – Compute Cores Only

w12i-k

“CUBE #10”

Cores CPU Time For Main Thread Time Spent Computing Solution Total Elapsed Time % Compute Bound IO Bound
2 2 914.2 878.9 917.0 99.69 YES NO
4 4 517.2 485.0 523.0 98.89 YES NO
6 6 418.8 386.3 422.0 99.24 YES NO
8 8 374.7 340.4 379.0 98.87 YES NO
10 10 302.5 269.1 307.0 98.53 YES NO
11 11 266.6 235.7 273.0 97.66 YES NO
12 12 259.9 230.9 268.0 96.98 YES NO
w16i-k

“CUBE #14”

Cores CPU Time For Main Thread Time Spent Computing Solution Total Elapsed Time % Compute Bound IO Bound
2 2 925.8 888.4 927.0 99.87 YES NO
4 4 532.1 499.4 535.0 99.46 YES NO
6 6 420.3 386.7 425.0 98.89 YES NO
8 8 366.4 334.0 370.0 99.03 YES NO
10 10 299.7 266.0 303.0 98.91 YES NO
12 12 258.9 226.1 265.0 97.70 YES NO
14 14 244.3 213.2 253.0 96.56 YES NO
15 15 230.3 200.6 239.0 96.36 YES NO
16 16 219.6 189.3 231.0 95.06 YES NO

Results 2 – GPU Acceleration + Cores

w12i-k

“CUBE #10”

Cores  + GPU CPU Time For Main Thread Time Spent Computing Solution Total Elapsed Time % Compute Bound IO Bound
2 2 416.3 395.9 435.0 95.70 YES YES
4 4 271.8 253.3 291.0 93.40 YES YES
6 6 251.2 228.2 267.0 94.08 YES YES
8 8 219.9 199.0 239.0 92.01 YES YES
10 10 203.2 184.6 225.0 90.31 YES YES
11 11 227.6 212.0 252.0 90.32 YES YES
12 12 186.0 171.3 213.0 87.32 NO YES
CUBE 14 Cores + GPU CPU Time For Main Thread Time Spent Computing Solution Total Elapsed Time % Compute Bound IO Bound
2 2 427.2 411.2 453.0 94.30 YES YES
4 4 267.9 247.8 286.0 93.67 YES YES
6 6 245.4 221.5 259.0 94.75 YES YES
8 8 219.6 196.6 237.0 92.66 YES YES
10 10 201.8 180.1 222.0 90.90 YES YES
12 12 191.2 166.8 207.0 92.37 YES YES
14 14 195.2 173.0 217.0 89.95 NO YES
15 15 172.6 152.8 196.0 88.06 NO YES
16 16 177.1 166.6 213.0 83.15 NO YES

Identifying Memory, I/O, Parallel Solver Balance and Performance

Results 3 – Compute Cores Only

w12i-k

“CUBE #10”

Ratio of nonzeroes in factor (min/max) Ratio of flops for factor (min/max) Time (cpu & wall) for numeric factor Time (cpu & wall) for numeric solve Effective I/O rate (MB/sec) for solve Effective I/O rate (GB/sec) for solve No GPU Maximum RAM used in GB
0.9376 0.8399 662.822706 5.609852 19123.88932 19.1 78
0.8188 0.8138 355.367914 3.082555 35301.9759 35.3 85
0.6087 0.6913 283.870728 2.729568 39165.1946 39.2 84
0.3289 0.4771 254.336758 2.486551 43209.70175 43.2 91
0.5256 0.644 191.218882 1.781095 60818.51624 60.8 94
0.5078 0.6805 162.258872 1.751974 61369.6918 61.4 95
0.3966 0.5287 157.315184 1.633994 65684.23821 65.7 96
w16i-k

“CUBE #14”

Ratio of nonzeroes in factor (min/max) Ratio of flops for factor (min/max) Time (cpu & wall) for numeric factor Time (cpu & wall) for numeric solve Effective I/O rate (MB/sec) for solve Effective I/O rate (GB/sec) for solve No GPU Maximum RAM used in GB
0.9376 0.8399 673.225225 6.241678 17188.03613 17.2 78
0.8188 0.8138 368.869242 3.569551 30485.70397 30.5 85
0.6087 0.6913 286.269409 2.828212 37799.17161 37.8 84
0.3289 0.4771 251.115087 2.701804 39767.17792 39.8 91
0.5256 0.644 191.964388 1.848399 58604.0123 58.6 94
0.3966 0.5287 155.623476 1.70239 63045.28808 63.0 96
0.5772 0.6414 147.392121 1.635223 66328.7728 66.3 101
0.6438 0.5701 139.355605 1.484888 71722.92484 71.7 101
0.5098 0.6655 130.042438 1.357847 78511.36377 78.5 103

Results 4 – GPU Acceleration + Cores

w12i-k

“CUBE #10”

Ratio of nonzeroes in factor (min/max) Ratio of flops for factor (min/max) Time (cpu & wall) for numeric factor Time (cpu & wall) for numeric solve Effective I/O rate (MB/sec) for solve Effective I/O rate (GB/sec) for solve % GPU Accelerated The Solve Maximum RAM used in GB
0.9381 0.8405 178.686155 5.516205 19448.54863 19.4 95.78 78
0.8165 0.8108 124.087864 3.031092 35901.34876 35.9 95.91 85
0.6116 0.6893 122.433584 2.536878 42140.01391 42.1 95.74 84
0.3365 0.475 112.33829 2.351058 45699.89654 45.7 95.81 91
0.5397 0.6359 103.586986 1.801659 60124.33358 60.1 95.95 94
0.5123 0.6672 137.319938 1.635229 65751.09125 65.8 85.17 95
0.4132 0.5345 97.252285 1.562337 68696.85627 68.7 95.75 97
w16i-k

“CUBE #14”

Ratio of nonzeroes in factor (min/max) Ratio of flops for factor (min/max) Time (cpu & wall) for numeric factor Time (cpu & wall) for numeric solve Effective I/O rate (MB/sec) for solve Effective I/O rate (GB/sec) for solve % GPU Accelerated The Solve Maximum RAM used in GB
0.9381 0.8405 200.007118 6.054831 17718.44411 17.7 94.96 78
0.8165 0.8108 122.200896 3.357233 32413.68282 32.4 95.20 85
0.6116 0.6893 122.742966 2.624494 40733.2138 40.7 94.91 84
0.3365 0.475 114.618006 2.544626 42223.539 42.2 94.97 91
0.5397 0.6359 105.4884 1.821352 59474.26914 59.5 95.18 94
0.4132 0.5345 96.750618 1.988799 53966.06502 54.0 94.96 97
0.5825 0.6382 106.573973 1.989103 54528.26599 54.5 88.96 101
0.6604 0.566 91.345275 1.374242 77497.60151 77.5 92.21 101
0.5248 0.6534 107.672641 1.301668 81899.85539 81.9 85.07 103

The ANSYS results.out file – The decoding continues

CUBE w12i-k (“CUBE #10”)

  1. Elapsed Time Spent Computing The Solution
    1. This value determines how efficient or balanced the hardware solution for running in distributed parallel solving.
      1. Fastest Solve Time For CUBE 10
    2. 12 out of 12 Cores w/GPU @ 171.3 seconds Time Spent Computing The Solution
  2. Elapsed Time
    1. This value is the actual time to complete the entire solution process. The clock on the wall time.
    2. Fastest Time For CUBE10
      1. 12 out of 12 w/GPU @ 213.0 seconds
  3. CPU Time For Main Thread
    1. This value indicates the RAW number crunching time of the CPU.
    2. Fastest Time For CUBE10
      1. 12 out of 12 w/GPU @186.0 seconds
  4. GPU Acceleration
    1. The NVidia Quadro K6000 accelerated ~96% of the matrix factorization flops
    2. Actual percentage of GPU accelerated flops = 95.7456
  5. Cores and storage solver performance 12 out of 12 cores and using 1 NVidia Quadro K6000
    1. ratio of nonzeroes in factor (min/max) = 0.4132
    2. ratio of flops for factor (min/max) = 0.5345
      1. These two values above indicate to me that the system is well taxed for compute power/hardware viewpoint.
    3. Effective I/O rate (MB/sec) for solve = 68696.856274 (or 69 GB/sec)
      1. No issues here indicates that the workstation has ample bandwidth available for the solving.

CUBE w16i-k (“CUBE #14”)

  1. Elapsed Time Spent Computing The Solution
    1. This value determines how efficient or balanced the hardware solution for running in distributed parallel solving.
    2. Fastest Time For CUBE w16i-k “CUBE #14”
      1. 15 out of 16 Cores w/GPU @ 152.8 seconds
  2. Elapsed Time
    1. This value is the actual time to complete the entire solution process. The clock on the wall time.
    2. CUBE w16i-k “CUBE #14”
      1. 15 out of 16 Cores w/GPU @ 196.0 seconds
  3. CPU Time For Main Thread
    1. This value indicates the RAW number crunching time of the CPU.
    2. CUBE w16i-k “CUBE #14”
      1. 15 out of 16 Cores w/GPU @ 172.6 seconds
  4. GPU Acceleration Percentage
    1. The NVIDIA QUADRO K6000 accelerated ~92% of the matrix factorization flops
    2. Actual percentage of GPU accelerated flops = 92.2065
  5. Cores and storage 12 out of 12 cores and one Nvidia Quadro K6000
    1. ratio of nonzeroes in factor (min/max) = 0.6604
    2. ratio of flops for factor (min/max) = 0.566
      1. These two values above indicate to me that the system is well taxed for compute power/hardware.
    3. Please note that when reviewing these two data points. A balanced solver performance is when both of these values are as close to 1.0000 as possible.
      1. At this point the compute hardware is no longer as efficient and these values will continue to move farther away from 1.0000.
    4. Effective I/O rate (MB/sec) for solve = 77497.6 MB/sec (or ~78 GB/sec)
      1. No issues here indicates that the workstation has ample bandwidth with fast I/O performance for in-core SPARSE Solver solving.
    1. Maximum amount of RAM used by the ANSYS distributed solve
      1. 103GB’s of RAM needed for in-core solve

Conclusions Summary And Upgrade Path Suggestions

It is important for you to locate your bottleneck on your numerical simulation hardware. By utilizing data provided in the ANSYS results.out files, you will be able to logically determine your worst parallel performance inhibitor and plan accordingly on how to resolve what is slowing the parallel performance of your distributed numerical simulation solve.

I/O Bound and/or Compute Bound Summary

  • I/O Bound
    • Both CUBE w12i-k “CUBE #10” and w16i-k “CUBE #14” are I/O Bound.
      • Almost immediately when GPU Acceleration is enabled.
      • When GPU Acceleration is not enabled, I/O bound is no longer an issue compute solving performance. However solve times are impacted due to available and unused compute power.
  • Compute Bound
    • Both CUBE w12i-k “CUBE #10” and w16i-k “CUBE #14” would benefit from additional Compute Power.
    • CUBE w12i-k “CUBE #10” would get the most bang for the buck by adding in the additional compute power.

Upgrade Path Recommendations

CUBE w12i-k “CUBE #10”

  1. I/O:
    1. Hard Drives
    2. Remove & replace the previous generation hard drives
      1. 3.5″ SAS2.0 6Gb/s 15k RPM Hard Drives
    3. Hard Drives could be upgraded to Enterprise Class SSD or PCIe NVMe
      1. COST =  HIGH
    1. Hard Drives could be upgraded to SAS 3.0 12 Gb/s Drives
      1. COST =  MEDIUM
  2.  RAM:
    1. Remove and replace the previous generation RAM
    2. Currently all available RAM slots of RAM are populated.
      1. Optimum slots per these two CPU’s are four slots of RAM per CPU. Currently eight slots of RAM per CPU are installed.
    3. RAM speeds 2133MHz ECC REG DIMM’
      1. Upgrade RAM to DDR4-2400MHz LRDIMM RAM
      2. COST =  HIGH
  3. GPU Acceleration
    1. Install a dedicated GPU Accelerator card such as an NVidia Tesla K40 or K80
    2. COST =  HIGH
  4.  CPU:
    1. Remove and replace the current previous generation CPU’s:
    2. Currently installed dual  x INTEL XEON e5-2643 V3
    3. Upgrade the CPU’s to the V4 (Broadwell) CPU’s
      1. COST =  HIGH

CUBE w16i-k “CUBE #14”

  1. I/O: Hard Drives SAS3.0 15k RPM Hard Drives 12Gbps 2.5”
    1.  Replace the current 2.5” SAS3 12Gb/s 15k RPM Drives with Enterprise Class SSD’s or PCIe NVMe disk
      1. COST =  HIGH
    2. Replace the 2.5″ SAS3 12 Gb/s hard drives with 3.5″ hard drives.
      1. COST =  HIGH
    3. INTEL 1.6TB P3700 HHHL AIC NVMe
      1. Click Here: https://www-ssl.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-p3700-series.html
  2. Currently a total of four Hard Drives are installed
    1. Increase existing hard drive count from four hard drives to a total ofsix or eight.
    2. Change RAID configuration to RAID 50
      1. COST =  HIGH
  3. RAM:
    1. Using DDR4-2400Mhz ECC REG DIMM’s
      1. Upgrade RAM to DDR4-2400MHz LRDIMM RAM
      2. COST =  HIGH

Considering RAM: When determining how much System RAM you need to perform a six million degree of freedom ANSYS numerical simulation. Add the additional amounts to your Maximum Amount of RAM used number indicated in your ANSYS results.out file.

  • ANSYS reserves  ~5% of your RAM
  • Office products can use an additional l ~10-15% to the above number
  • Operating System please add an additional ~5-10% for the Operating System
  • Other programs? For example, open up your windows task manager and look at how much RAM your anti-virus program is consuming. Add for the amount of RAM consumed by these other RAM vampires.

Terms & Definition Goodies:

  • Compute Bound
    • A condition that occurs when your CPU processing power sites idle while the CPU waits for the next set of instructions to calculate. This occurs most often when hardware bandwidth is unable to feed the CPU more data to calculate.
  • CPU Time For Main Thread
    • CPU time (or process time) is the amount of time for which a central processing unit (CPU) was used for processing instructions of a computer program or operating system, as opposed to, for example, waiting for input/output (I/O) operations or entering low-power (idle) mode.
  • Effective I/O rate (MB/sec) for solve
    • The amount of bandwidth used during the parallel distributed solve moving data from storage to CPU input and output totals.
    • For example the in-core 16 core + GPU solve using the CUBE w16i-k reached an effective I//O rate of 82 GB/s.
    • Theoretical system level bandwidth possible is ~96 GB/s
  • IO Bound
    • The ability for the input-output of the system hardware for reading, writing and flow of data pulsing through the system has become inefficient and/or detrimental to running an efficient parallel analysis.
  • Maximum total memory used
    • The maximum amount of memory used by analysis during your analysis.
  • Percentage (%) GPU Accelerated The Solve
    • The percentage of acceleration added to your distributed solve provided by the Graphics Processing Unit (GPU). The overall impact of the GPU will be diminished due to slow and saturated system bandwidth of your compute hardware.
  • Ratio of nonzeroes in factor (min/max)
    • A performance indicator of efficient and balanced the solver is performing on your compute hardware. In this example the solver performance is most efficient when this value is as close to the value of 1.0.
  • Ratio of flops for factor (min/max)
    • A performance indicator of efficient and balanced the solver is performing on your compute hardware. In this example the solver performance is most efficient when this value is as close to the value of 1.0.
  • Time (cpu & wall) for numeric factor
    • A performance indicator used to determine how the compute hardware bandwidth is affecting your solve times. When time (cpu & wall) for numeric factor & time (cpu & wall) for numeric solve values are somewhat equal it means that your compute hardware I/O bandwidth is having a negative impact on the distributed solver functions.
  • Time (cpu & wall) for numeric solve
    • A performance indicator used to determine how the compute hardware bandwidth is affecting your solve times. When time (cpu & wall) for numeric solve & time (cpu & wall) for numeric factor values are somewhat equal it means that your compute hardware I/O bandwidth is having a negative impact on the distributed solver functions.
  • Total Speedup w/GPU
    • Total performance gain for compute systems task using a Graphics Processing Unit (GPU).
  • Time Spent Computing Solution
    • The actual clock on the wall time that it took to compute the analysis.
  • Total Elapsed Time
    • The actual clock on the wall time that it took to complete the analysis.

References:

ANSYS Startup Roadshow Kickoff – CEI Phoenix

Click Here to Register

Click Here to Register

Can’t make it? Keep an eye out as we will be hosting events in other locations as the roadshow continues on!

In the meantime, click here for more information on the ANSYS Startup Program.

250+ Gather to Celebrate Arizona Engineering and Manufacturing at Nerdtoberfest

nerdtoberfest-logo-nt-1-800w

Customers, friends, partners, and students braved 100 degree temperatures and some unusual traffic to gather at PADT’s Tempe office to celebrate engineering and manufacturing in Arizona at Nerdtoberfest.  Machinists, startup experts, engineers, and professors mingled under the stars and took a tour of the facilities while enjoying pizza and beer.

The day started with a seminar on Metal 3D Printing given by Dr. Dhruv Bhate.  If you missed it, you can watch his talk here:

We followed that with the first ever PADT Perfect Pitch competition, where four teams pitched the same fictitious company as an exercise in seeing if those who teach, can do.  That was such a big part of the day that it has it’s own blog post including a link to a video of all of the pitches.

And after the the laughing and congratulations to the winner of the Unicorn Cup, we started the open house.  A chance to tour PADT and network with other members of the Arizona Tech Community.

If you have ever read a post before about one of our open houses you know we have a consistent problem. Once the party starts we stop taking pictures. The only one I got was of Dhruv showing off our new Laser Concepts Metal 3D Printer.

img_2197

That room was definitely the star of the show and we calculated that Dhruv was talking from 3:00 to 8:30 – five and a half hours non-stop.  He earned his pizza and beer.

The table from Basis Chandler was also popular, where they talked about their 3D Printed prosthetic hand project.  We also had representatives from the SciTech Festival and RevAZ talking to visitors.  The 3D Printing demo room was great and many people stopped to hear about how we are combining 3D Printing and ANSYS Simulation.

We always enjoy these events, they give us a chance to socialize with people we see all the time in work situations.  It is also a great opportunity for us to introduce people that would probably otherwise not meet, and grow the strength of the Arizona engineering and manufacturing ecosystem.