Getting to Know PADT: Stratasys 3D Printer Sales and Support

 This post is the eleventh installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

When it comes to delivering accurate, robust, and feature-rich additive manufacturing, commonly called 3D Printing, to professional users, one brand of systems stands above all the rest: Stratasys. For over a decade PADT has been a reseller of these outstanding machines in the four-corners states of Arizona, Colorado, New Mexico, and Utah. In fact, our leadership position in the Additive Manufacturing space is built on the foundation of our sales and support history with Stratasys.

Stratasys, The World Leader in Additive Manufacturing

There is one simple reason why Stratasys is the world leader in Additive Manufacturing systems and why so many of our customers keep buying Stratasys systems: They Work.  The whole point of 3D Printing is that you can go from a computer model to a real part as quickly and easily as possible. Stratasys has created a complete set of hardware, material, and software to make that happen.  For hardware, they offer two additive manufacturing technologies: FDM and PolyJet.

FDM, or Fused Deposition Modeling, is the most common technology because it is reliable, accurate and builds strong parts.  FDM was invented by Stratasys over 25 years ago and still forms the foundation of their product line.  It is a layered deposition process that melts a variety of plastics that are then extruded through a nozzle to draw the shape of each layer. From the desktop MakerBot machines to the industry favorite FORTUS 900, there is a machine that works for every need.  Recently, we have been selling a large number of F370’s to new an existing customers.  FMD systems come in a variety of sizes, speeds, costs, and most importantly, material options.  And best of all, the majority of FDM systems come with Stratasys’ patented soluble support material that makes support removal as easy as dropping your part into a cleaning system (many of which are made by PADT).

If you need greater refinement, the ability to change material, or color, then PolyJet technology is your ideal solution.  The power of PolyJet is that it uses inkjet print heads to deposit tiny dots of liquid material on a build layr. That material is then hardened with an ultraviolet lamp. What is cool is that you can have multiple inkjet print heads and therefore deposit a mix of material within a given layer. This allows you to make parts with very hard, or very soft material in the same build. Or, to mix clear and colors in the same build.  Our customers use Polyjet printers to make everything from accurate medical models of organs to molds for plastic injection molding.  No other 3D Printing technology is as versatile as the PolyJet machines from Stratasys.

The PADT Sales Experience

Lots of people sell 3D Printers. We know because we have been doing it for over fifteen years. And as the technology has become more popular, more and more people are getting into the industry.  Our experience and technically driven sales approach is why customers keep coming to PADT when they have so many choices.  Our sales team is not about this months sales goal. They are about building, and more often than not, growing our relationship with customers new and old.  We are all about understanding what you really want to get done, and then finding the right combination of Additive Manufacturing system, accessories, and software that will make it happen.

That expertise comes from the fact that we have been running a 3D Printing service since 1994.  We know the real world of Additive Manufacturing.  No other reseller can bring our expertise and experience to your aid.

Support that Goes Above and Beyond

Once you purchase a system, your journey with PADT hits full swing. Our engineers will help you install, train your users, and then be there when you need us for maintenance and repair. Or simply to answer your questions.  We recently won a series of competitive situations where customers had a choice of who to hire to support their Stratasys systems. They chose PADT over other solutions for one simple reason: we know what we are doing and we really do care.  Our team has driven through snow storms, stayed with machines late into the night, and personally shipped replacement parts just so they could get customer’s machines back online and running as quickly as possible.

Talk to PADT about your Additive Manufacturing Needs

ULA’s Kyle Whitlow demonstrates the ECS duct that was printed using FDM

Regardless of what systems you currently have, or if you don’t have any 3D Printing capability in-house, now is the time to talk to PADT.  We have never had a better offering of solutions in terms of price, performance, and variety of capability.  We are helping universities establish labs, Aerospace companies 3D Print hardware for launch vehicles, and consumer products companies shorten their design cycle.  It may be time for you to upgrade or add a new material or technology. Or maybe you just need some accessories to get more out of the equipment you have.  Regardless of where you are in your Additive Manufacturing journey, PADT is here to help you get more out of your investment.

Getting to Know PADT: 3D Printing Services

This post is the sixth installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

If there is one service that most people connect PADT with it is our 3D Printing Services.  We have been making prototypes for companies using this ever-advancing technology since we started the company in 1994. As 3D Printing has become more popular and entered the mainstream even beyond engineering, what 3D Printing means to people has changed as well. Along with that, people’s understanding of exactly what it is we do in this area has drifted a little from what goes on. In this month’s installment of our “Getting to Know PADT” series, we will work to provide insight into what 3D Printing Services are and how they can benefit your company.

What is “3D Printing” and “3D Printing Services?”

To start, it should be called “Additive and Advanced Manufacturing and Prototyping Services, ” but people search for “3D Printing” so that is what we call it.  3D Printing is the common name for what is technically referred to as Additive Manufacturing, or AM.  Most physical parts are made (manufactured) by casting or shaping material into a shape you want, removing material from stock to get the shapes you want, and/or combining physical parts you get by the other two methods. Instead of these well-proven methods, AM creates a part by building up material one layer at a time.  That is why it is called additive – it adds layers of material to get a shape. Here is an older blog article showing the most common technologies used in AM.

The advantage of this approach is that you just need one machine to make a part, you can go straight from a computer model to that part, and you are not held back by the physical constraints of traditional processes. These features allow anyone to make a part and to make shapes we just could not create before.  At first, we only used it for prototypes before parts were made. Then we started to make tools to make final products, and now 3D Printing is employed to manufacturing end-use parts.

In the world of mechanical engineering, where 3D Printing is heavily used, we call companies that use additive manufacturing to make parts for others 3D Printing Service Bureaus or 3D Printing Service Providers. Therefore, the full process of doing manufacturing using the technology is called: 3D Printing Services.

The critical word in that last sentence is “full.”  Sending a computer model to a 3D Printer is just one of many steps involved in Additive Manufacturing.  When the service is employed correctly, it includes identifying the right type of additive manufacturing to use, preparing the geometry, setting parameters on the machine, printing the parts, removing supports, cleaning the parts, sanding, applying a surface finish treatment, and then inspection and shipping.  Anyone can send a part to a printer; the other steps are what make the difference between simply printing a part, and producing a great part.

What Services does PADT Offer?

Additive Manufacturing covers a wide range of technologies that create parts one layer at a time, using a variety of approaches. Some extrude, some harden, some use an inkjet print head, and still others melt material.  What they have in common is creating solid geometry one layer at a time. Each technology has its own unique set of advantages, and that is why PADT offers so many different 3D Printing technologies for our customers.  Each of these approaches has unique part preparations, machine parameters, and post-printing processes. Each with a unique set of advantages.  The key to success is knowing which technology is best for each part and then executing it correctly.

Currently, PADT’s 3D Printing Services Group makes parts for customers using the following technologies.  Each one listed has a brief description of its advantages.  See our website for more details.

Technology

Abbrv.

Advantages

Fused
Deposition Modeling

FDM

Strong parts

Easy operation

Reliability of systems

Broad material choice

Water soluble supports

Fast

Cost

Polyjet

PolyJet

Multiple materials in a single build

Broad material choices

Custom material choices

Multiple colors in single build

Water soluble supports

Accuracy

Stereolithography

SLA

Part quality

Material options

Speed

Speed

Material properties

Self supporting

Selective
Laser Sintering

SLS

Digital
Light Synthesis

DLS

Speed

Production capable

Surface Finish

Material Choices

Material properties

Orthotropic properties

Direct
Laser Melting (Metal)

DLM

Fully dense metal parts

Accuracy

Speed

Part strength

As a proud reseller for Stratasys systems, we feel strongly that the two primary technologies from Stratasys, FDM and Polyjet, are the best for customers who want to do Additive Manufacturing in-house or as a service provider. When customers need something different, they can come to PADT to take advantage of the unique capabilities found in each technology.

How is 3D Printing with PADT Better?

The difference is in what we know and how to execute the complete process.  As a provider of 3D Printing services for over 23 years, very few people in the industry even come close to the amount of experience that we bring to the table.  We also know product development and traditional manufacturing, so when a customer comes to us with a need, we understand what they are asking to do and why. That helps us make the right recommendation on process, material, and post-processing.

A few differentiators are:

  • We know our machines
  • We know our materials
  • We offer a wide range of plastic and metal materials
  • We understand post-processing
  • We understand support removal (we manufacture the leading support removal system)
  • We understand design and manufacturing
  • In-house machining, painting, and part finishing
  • In-house inspection and quality
  • Employees who are enthusiastic and dedicated to providing the right solution.

In addition to all of these things, PADT also offers On-Demand Manufacturing as a Carbon Production Partner. We combine Carbon’s DLS technology with our existing and proven manufacturing processes to provide low volume manufacturing solutions for plastic components.

We are also always looking at the latest technologies and adding what our customers need.  You can see this with the recent addition of systems from ConceptLaser, Carbon and Desktop Metal systems.

 

Next Steps and Where to Learn More

The very best way to learn more about PADT’s 3D Printing services is to have us print a part. The full experience and the final product will explain why, with so many choices, so many companies large and small count on us for their Additive Manufacturing. If you need to learn more, you can also contact us at 480.813.4884 or rp@padtinc.com.

Here are some links that you may find useful:

 

This slideshow requires JavaScript.

Stratasys – PolyJet Agilus 30 Webinar

Introducing New PolyJet Material: Agilus30

PADT is excited to introduce the newest polyjet material available from Stratasys, Agilus30! Agilus30 is a superior Rubber-like PolyJet photopolymer family ideal for advanced design verification and rapid prototyping.

Get more durable, tear-resistant prototypes that can stand up to repeated flexing and bending. With a Shore A value of 30 in clear or black, Agilus30 accurately simulates the look, feel and function of Rubber-like products. 3D print rubber surrounds, overmolds, soft-touch coatings, living hinges, jigs and fixtures, wearables, grips and seals with improved surface texture.

Agilus30 has applications in a number of areas, including:

  • Medical Models

  • Tooling needing rubber-like characteristics

  • Consumer Goods

  • Sporting Goods

  • General Prototyping

  • Overmolding & many more!

Want to know more about PolyJet’s toughest flexible material to date? 

Join PADT’s 3D Printing Application Engineer James Barker along with Stratasys Materials Business Manager Ken Burns for a presentation on the various benefits and attributes that Agilus30 has to offer, which machines are compatible with it, and how companies are making use of it’s unique capabilities.

On the Biocompatibility of PolyJet MED610

Is PolyJet MED610 truly biocompatible? And what does that mean anyway?

IMG_0144
Figure 1. Our PolyJet Eden 260V dedicated to running MED610

A couple of months ago, our product development team contacted me to see if I could 3D print them a small bio-compatible masking device that was needed for temporary attachment to an invasive device prior to insertion for surgery. That led me to investigate all the different bio-compatible materials we did have access to at PADT on our FDM (Fused Deposition Modeling) and PolyJet machines. Given the tiny size and high detail required in the part, I decided to opt for PolyJet, which does offer the MED610 material that is claimed to be biocompatible. As it so happens, we have an Objet Eden 260V PolyJet machine that has been dedicated to running MED610 exclusively since it’s installation a year ago.

We printed the mask, followed all the post-processing instructions per supplier recommendations (more on that later) and delivered the parts for further testing. And that is when I asked myself the questions at the top of this post.

I set off on a quest to see what I could find. My first stop was the RAPID conference in (May 2016), where the supplier (Stratasys Inc.) had a well-staffed booth – but no one there knew much about MED610 apart from the fact that some orthodontists were using it. I did pick up one interesting insight: one of the engineers there hypothesized that MED610 was not very popular because it was cost-prohibitive since its proper use required machine dedication. I then went to the Stratasys Direct Manufacturing (a service bureau owned by Stratasys) booth, but it turned out they don’t even offer MED610 as a material option for service jobs – presumably because of the low demand for this material, consistent with our own observations.

So I took a step back and began searching for all I could find in the public domain on MED610 – and while it wasn’t much, here is the summary of my findings that I hope help anyone interested in this. I categorize it in three sources of information: claims made by the supplier, published work on in vitro studies and finally, some in vivo animal trials. But first, we must ask…

What does it mean for a Material to be Biocompatible?

A definition by Williams (The Williams Dictionary of Biomaterials, 1999) is in order: “Biocompatibility is the ability of a material to perform with an appropriate host response in a specific application.” So if PolyJet MED610 is to be called biocompatible, we must ask – what application do we have in mind? Fortunately, the supplier has a recommendation.

IMG_0152
Figure 2. PolyJet MED610 printed “Hydrogel Hand Bone Scaffolds” [Design Attribution: dotmatrix, Published on December 11, 2015, www.thingiverse.com/thing:1193425]

Supplier Claims

MED610 was launched by Objet in 2011 (Objet was acquired by Stratasys in 2012) as a biocompatible material, ideal for “applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours“. Stratasys claims that parts printed according to Objet MED610 Use and Maintenance Terms were evaluated for biocompatibility in accordance with standard “DIN EN ISO 10993-1: 2009, Biological Evaluation of Medical Devices-Part 1: Evaluation and testing within a risk management process. This addresses cytotoxicity, genotoxicity, delayed hypersensitivity, and USP plastic Class VI, which includes the test for irritation, acute systemic toxicity and implantation”. Unfortunately, the actual data from the biocompatibility study conducted by Objet have not been made publicly available.

It is important to remember that Stratasys publishes a “Use and Maintenance Terms” document that details the steps needed not just to clean the part after printing, but also on the proper setup of the machine for ensuring best chances of meeting biocompatibility requirements. These are published online at this link and include a 3 hour soak in a 1-percent NaOH solution, a 30 min soak in IPA and multiple water jet rinses, among other steps. In other words, the claimed biocompatibility of MED610 is only valid if these instructions are followed.  These steps are primarily driven by the need to completely remove supports and any support-residue, but it is not clear if this is needed if a part can be printed without supports. Given such strong process dependencies, it is only to be expected that Stratasys provide a disclaimer at the end of the document clarifying that the users of their machines are responsible for independently validating biocompatibility of any device they make with MED610.

The next question is: have there been any relevant published, independent studies that have used MED610? In my search, I could only find two instances, which I discuss below.

Primary Human Cells Response (In Vitro)

In a recent (January 2016) study published in the Journal of Medical and Biological Engineering, Schmelzer et al. studied the response of primary human cells to four 3D printed materials in vitro: ABS, PC, PLA and MED610 – the only such study I could find. All samples instead went through a 100% ethanol brief rinse and were washed 5 times with de-mineralized water – this seems like a less stringent process than what the supplier recommends (3 hour 1-percent NaOH solution soak, 30 minutes IPA soak and 10 times waterjet blasting) but was designed to be identical across all the materials tested.

There were some very interesting findings:

  • Different cells had different responses:
    • MED610 had the most negative impact on cell viability for keratinocytes (epidermal cells that produce keratin) – and the only material that showed statistically significant difference from the control.
    • For bone marrow mesenchymal (stem) cells, a different effect was observed: direct culture on ABS and PC showed significant growth (7X compared to control) but MED610 and PLA showed no significant effect
  • Surface Roughness influences cell attachment and proliferation:
    • In agreement with other work, the authors showed that while rougher surfaces promote initial cell attachment, subsequent cell proliferation and overall cell numbers are higher on smoother surfaces. The MED610 samples had rougher surfaces than the FDM samples (possibly due to the use of the “matte” finish option) and could be one of the contributors to the observed negative effects on cell viability, along with the leached contents from the specimen.

Glaucoma Drainage Device (In Vivo, Rabbit studies)

A group of Australian researchers published a 2015 paper where they designed and used PolyJet MED610 to manufacture a Glaucoma Drainage Device (GDD). They selected PolyJet because of its ability to resolve very fine details that they needed for the device. Importantly, the purpose of this study was to assess the effect of different design parameters on the effectiveness of the device (relieving intraocular pressure). The device was implanted into rabbit eyeballs where it remained for up to 4 weeks.

The devices were printed on a Connex 350 PolyJet machine, after which the supports were removed from the devices with a water jet and “were repeatedly washed and inspected for consistency and integrity.” Tubes were attached with Silicone adhesive and the entire assembly was then “washed and sterilized with a hospital-grade hydrogen peroxide system before use”. The researchers did not examine the cellular and extracellular reactions in great detail, but did conclude that the reactions were similar between the MED610 device and the more standard polypropylene injection-molded device.

A short video recorded by some of the researchers as part of a Bioprinting course also provides some details into the 3D printing aspects of the work done.

Concluding Thoughts

In conclusion, the question I posed at the start of this post (Is PolyJet MED610 truly biocompatible?) is too simplistic. A process and a material together are not sufficient – there are procedures that need to be defined and controlled and further and more importantly, biocompatibility itself has to be viewed in the context of the application and the specific toxicity and interaction demands of that application. And that brings us to our key takeaways:

  • MED610 is only recommended at best for applications requiring prolonged skin contact of more than 30 days and short-term mucosal-membrane contact of up to 24 hours and there is no data to dispute the suppliers claim that it is biocompatible in this context once all recommended procedures are implemented
  • The work done by Australian researchers in using PolyJet MED610 for devoloping their Glaucoma Drainage Device in animal trials is perhaps the best example of how  this material and the technology can be pushed further for evaluating designs and hypothesis in vivo when really fine features are needed. Stratasys’s FDM PC-ISO or ABS M30i materials, or other FDM extrusion capable materials like PLA, PCL and PLGA may be better options when the resolution allows – but this is a topic for a follow-on blog post.
  • More in vitro work needs to be done to extend the work done by Schmelzer et al., which suggests that MED610 potentially has leachables that do impact cell viability negatively. Specifically, effects of surface finish (“matte” vs “gloss”) and sterilization on cell viability is a worthwhile follow-on step. In the interim, MED610 is expected to perform well for mucosal membrane contact under 24 hours (and why this is a great technology for dental guides and other temporary in-mouth placement).

If you have any thoughts on this matter or would like to collaborate with us and take advantage of our access to a PolyJet printer that is dedicated to MED610 or other bio-compatible FDM materials, as well as our extensive post-processing and design & analysis facilities, please connect with me on LinkedIn or send us a note at info@padtinc.com and cite this blog post.

Thanks for reading!

References

  1. Stratasys Bio-compatible Materials Page: http://www.stratasys.com/materials/polyjet/bio-compatible
  2. PolyJet MED610 Data Sheets: http://www.stratasys.com/materials/material-safety-data-sheets/polyjet/dental-and-bio-compatible-materials
  3. Schmelzer, E., Over, P., Gridelli, B., & Gerlach, J. (2016). Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. Journal of Medical and Biological Engineering, 36, 153-167.
  4. Ross C, Pandav S, Li Y, et al. Determination of Bleb Capsule Porosity With an Experimental Glaucoma Drainage Device and Measurement System. JAMA Ophthalmol.2015;133(5):549-554. doi:10.1001/jamaophthalmol.2015.30.
  5. Glaucoma case study in online course on Bioprinting, University of Woolongong, Future Learn, https://www.futurelearn.com/courses/bioprinting/3/steps/87168

An inside look at our Connex500

We wanted to see what 3d printing looked like from the inside of the machine so our new intern, Diserae Sanders, placed a GoPro inside our Connex500 during a print job.  The item being printed is a demo bicycle pedal printed in multiple materials.  

This video is the first in a series we plan to do on 3D printing. If there is something you would like to see us do a video on, please post it in the comments below.

Stratasys adds flexible color to their digital material palettes

connex3_shorevaluepress_hand_horiz
Earlier this week, Stratasys announced the addition of 10 new color pallets expanding the digital materials offering to represent hundreds of new options of both flexible color materials and rigid gray materials available for the Objet500 Connex3 Color Multi-material 3D Printer

connex3_flexpalette_cyt_hands_portrait  connex3_flexpalette_myt_hands_portrait  connex3_flexpalette_mct_hands_portrait

The first three pallets are built using TangoPlus combined with combinations of VeroCyan, VeroMagenta and VeroYellow. These new pallets allow for the printing of a range of colors and translucent tints in nine Shore A values (Shore A 27-95).

connex3_flexpalette_cyk_hands_portrait  connex3_flexpalette_mck_hands_portrait  connex3_flexpalette_myk_hands_portrait

Three additional pallets using TangoBlack Plus and combinations of VeroCyan, VeroMagenta and VeroYellow allow for users to blend a wide range of subtle vibrant-to-dark shades into the same part with TangoBlack Plus in seven Shore A values.

connex3_mkw_palette_portrait  connex3_ykw_palette_portrait  connex3_kwt_palette_portrait

The final four palettes that were introduced offer additional combinations of VeroWhite and VeroBlack with either VeroCyan, VeroMagenta or VeroYellow allowing for users to build sophisticated prototypes in a range of subtle grays alongside muted or vibrant color. 

connex3_blue_palette_landscape
The addition of these ten palettes combined with their existing palettes allow for virtually limitless combinations of flexible, rigid and translucent colors in one print job.

“The Objet500 Connex3 is the only 3D printer that combines colors with multi-material 3D printing. The ability to mix rigid, flexible, transparent and opaque colors offers users unprecedented versatility to design and perfect products faster,” says Stratasys Director of Materials & Applications Fred Fischer. “By extending the range of material options available, users can improve workflow speeds and enhance efficiency.”

These new options are available immediately to Objet500 Connex3 Color Multi-material 3D Printer owners through a free software update. 

Check out this great video on the new materials.

Polyjet 3D Printers Up and Running in Denver and Albuquerque Offices

PADT-Polyjet-Albuquerque PADT-Polyjet-Denver

With all the opening and moving of offices we failed to notice that our crack sales team sold all of our demonstration 3D Printing and rapid manufacturing machines out from underneath us.  This made it easier to move, but hard on customers who wanted to see these systems in action.  So we took the opportunity to not only replace the FDM systems in our offices, but to also add Objet30 Pro desktop printers in our New Mexico and Colorado offices.  In the past we only had Polyjet systems in our Tempe facility.

If you are not familiar with the advantages of Polyjet 3D Printing when compared to FDM or other technologies, contact us to arrange a visit to our Littleton, Albuquerque, or Tempe offices to not only see these machines in action, but to also see sample parts we have made on them.

 

 

 

Six Things to Do when Shopping for a 3D Printer

Stratasy-Mojo-3D-Printer-in-Shopping-CartPADT has been in this prototyping business for a while, even before we called the machines that make physical parts directly from computer models a 3D Printer.  When we started it was rapid prototyping and we have purchased maybe a dozen machines for our own use, and sold several hundred to our customers.  As the cost of these systems comes down and the number of people interested in having their own 3D Printer goes up, we thought it would be a good time to share our experience with choosing systems with the community.

Here are six things that every person should do when they are shopping for a 3D printer. We even recommend that you write these down and fill out a form before you contact the first vendor.

Thing 1:  Understand What you will use your Parts For

This seems obvious. You would not be looking for a 3D printer unless you knew you needed one and you knew what you needed it for.  But in reality it is very easy to get caught up in how powerful and just plane cool this technology is and you start thinking about what you can do, and you forget what you need to do.  The best way to approach this is to not think about which technology you may end up with, that will point you in one direction or another. Just assume you push a button and a prototype of your part comes out. What would you actually use it for?

The key here is to be honest. If the reality is that your receptionist really likes models of Japanese Anime characters, and you plan on making models of such in an attempt to get her attention, then be honest about that. You need a printer with the detail and perhaps color capability for that. But if you really think about it you probably need one to make patterns for doing custom composite layups, so your use will be very different and the so will the system you need.  She probably will be just impressed with your layup tooling. Well, maybe not but your boss will.

image

Our experience tells us that customers often get hung up on features that they get excited about, but when you look at the end use of their prototypes, they really do not need some of those features.  We have seen people buy a machine because it was the only one that did this one thing they got fixated on. But in the end, they only make two prototypes that need it a year and the other 137 prototypes they make are kind of sucky.  Make a list of all the uses and put a guess next to them that shows the percentage of parts that fit into that use.  A typical example would be:

  • 35% Mockups for design reviews
  • 25% Models for the machine shop and vendors to help them plan machining
  • 15% Fixtures for testing
  • 10% Consumer testing and marketing mockups for ad campaigns
  • 10% Fit models to build
  •   5% Other

Thing 2: Benchmark the Machines on your Geometry

DinoFingersClose-TangoGrayHR

When we run into someone that is unhappy with their 3D Printer, three out of four timeswe find out that it just does not perform like they thought it would.  And if we dig deeper we find out that when they were shopping for a printer, they just looked at parts that the various vendors gave them. Demo parts. They never made a variety of their own typical parts.  This is especially true if they ended up buying a lower cost machine.

Here is a secret of every person selling a 3D Printer, that probably is no secret to you. They pick the demo parts they show you because those parts look really good on their technology. And if you are not closely familiar with the strengths and weaknesses of each technology, there is no way for you to know that the parts they showed you may be the only parts that actually look good on that technology.

Untitled_00252

Get four or five parts that are typical parts that you would prototype, and have them made on each technology.  Even if the vendor tells you they can only afford to make one sample part for you (with the cost coming down the margins on these machines is low so few in the business can do a bunch of free parts for every potential sale),  go ahead and pay money to get your geometry made.  You may be shocked by the results, especially on some of the newer low cost machines.

Thing 3: Ignore Hype or the Herd

Any fast growing industry has a lot of hype, and a lot of mob pressure to go with one technology over another.  3D Printing is no different, and in fact it is worse because this technology is so cool and interesting.  The problem with hype and herd mentality is that the company with the best public relations people or with the “hippest” story gets all the attention regardless of the technology. And it feeds on itself. They get more attention because they got more attention.

A case in point is the recent introduction of a hand-held fused deposition modeling system.  Very cool, lots of hype and interest.  But really, who could use that for real work?  Even a hobbyist is going to struggle with making anything useful with a tool like that. But there is a lot of hype around it right now and a huge amount of interest. I’ve had a taxi driver mention it to me when he asked what I do.

It is human nature to want to be part of something big. So it is hard to push that aside and look at each 3D Printer you are evaluating on its own merit. Not what the press is saying, not what other people are touting, not what is the newest and flashiest.  We are talking basic “make me a useable part” here.  Look at it with basic and non-influenced eyes.

Thing 4: Calculate the Total, Long Term Cost

Of all the things listed here, this may be the hardest to do. There are so many costs that go into making prototypes. The initial cost of the machine is small compared to all the other costs. What we recommend you do is make a spreadsheet and list cost items in the first column, and create rows for each 3D Printer you are looking at, then fill it out. We like to put in the cost over three years.

Here are some cost items we recommend people include:

  • System
  • Cleaning system
  • Facility modification costs
  • Build and support material
  • Cleaning materials
  • Maintenance fees
  • Labor to prepare jobs
  • Labor to post process jobs
  • Facility square footage for machines, cleaning equipment, material storage, etc…
  • Scrap rate cost (some systems have a higher scrap rate, you need to include the cost of lost time and material because of that)

Thing 5: Honestly Prioritize the Features you Want and Need

It is always a good idea to make a “want” and “need” list, regardless of what you are purchasing.  When you are dealing with a set of technologies with so much buzz around it, we feel it is doubly important.  Sitting down and making a list, then justifying it to someone else clarifies what you should be looking for more than anything.

We also recommend that you prioritize the list.  Marking things as Want and Need is a first step, then every one of those should also be ranked in order of importance.  You can use a point scheme or you can just put them in order from most to least.  This will help you sort through the gee-whiz stuff and truly understand where the value of your investment in 3D Printing can be found.

Needless to say, it is critical that you finish Thing 1, and refer to it, when completing this step.

Thing 6: Figure Out what is Good Enough, then Ask for More

OK, maybe this one sounds like a sales pitch: “You know what you really want, but really, trust me, you need more.”  Experience tells us that this is actually true. When you are talking 3D Printing we run into customer after customer that felt the system they purchased was “good enough” for their needs then they realize it does not do what they need.  And in most cases it is because they really needed a bigger machine, or they needed a more robust material than they thought.

The last thing you want to do is invest in a 3D Printer then six months later try and turn it in to get one that is bigger, faster, more precise, or that runs a better material.   Now you are still paying for the more expensive system and you wasted money on the less expensive one.  Be honest, upgrade in the beginning to what you really need in the long run not what you think you can get by with in the short run. Because, in the end, you will save money and have better parts.

Doing the Six Things and Getting that 3D Printer

You know you want one. You actually probably need one. We have been doing this for a long time and almost every customer that has made an intelligent investment feels like the investment has been a positive one. And by intelligent investment, we do not want to imply that they bought a system from PADT (although statistically that may be true). What we have found is that these companies took their time, they used some variation of the steps listed above, and they treated their purchase as a long term investment.

You too can make a smart choice and make in-house 3D Printing part of your company, job, or even hobby.  PADT is here ready to help you with that choice.  We can show you the complete line of fused deposition and Polyjet 3D Printers from Stratasys. We can also provide some advice on what we think is a good fit for your needs, and help you capture data for the six things we have outlined here.  And don’t forget, we have a full 3D Printing services offering, with all the major systems and materials. So we can show you the advantages of all of them by providing you with your outsourced parts while you look for an in-house solution.

Stratasys Objet Polyjet Systems

PADT Adds Stratasys Polyjet 3D Printers from Objet to Product Offering

Stratasys-Objet1000-350w

PADT is proud to announce that we are officially certified to resell the full line of Stratasys products, including the newly added Polyjet 3D Printers from Objet.  We were very pleased when Objet and Stratasys decided to merge to become the new Stratasys, and we have been waiting patiently for the legal merger to take place, and then for the two organizations to merge their businesses.  Now that wait is over and PADT just completed our sales and support training for the Polyjet product line and we can offer it to customers in Arizona, New Mexico, Utah, and Nevada.

Here is a family photo of the line:

Stratasys_polyjet_machines_portfolio-500wAs you can see, they start with small desktop systems and work their way up to the monster Objet1000, a true beast of a machine capable of printing parts up to 39 inches long!

Artistic 3D Printed Prototype in Rigid Blue Material
Objet1000_bicycle-lowDinosaur3Dprinted
GPS4-low
There are two key characteristics that really sets these systems apart: The variety of materials available and the precision of the parts they make.Because the Polyjet systems use ink-jet printer heads, they lay down small droplets of photocurable material.  So the resolution of each layer can be up to 600 dpi, and the layers themselves can be very thin, as thin as 16 microns.The same ink-jet technology also allows for the use of such a wide variety of material.  Over 100 different materials can be made by mixing two different materials during the build.  This allows materials the have the properties of ABS, Polypropylene, rubber, or transparent plastic.  And materials can vary on a given layer or from layer to layer.Another set of ink-jet heads allow for the deposition of a water soluble support material, that is easily washed away to make the post processing of parts made on a Polyjet machine simple and fast.

We cold go on and on about this technology, or you can see it for yourself. As we mentioned, this technology is not new to PADT, so we know a lot about it and are eager to share what we have learned over the years.  If you want to learn more, simply contact us and we will be ready to answer your questions, show you some machines, and help determine if Polyjet technology is the right fit for you.

You can also check out our new Polyjet product pages, where you can find brochures and videos that give a lot more information.

And look for more information on this blog as we share stories, tips, and hints on the use of these systems.

View the official press release here.

StratasysLogo

Stratasys and Objet Merger Complete

Stratasys

It is now official. Stratasys and Object have completed their merger to form a company worth over $3.0 Billion.  Actually, as we prepare this update it is up to $3.37B.  Obviously the markets thing this merger is a good thing.

And now Stratasys has a new logo and what we think is a great slogan: “For a 3D World”

You can read the press release here.

As a long time Stratasys distributor and a user of Objet’s and Stratasys systems in our rapid prototyping services business, we are very familiar with both product lines and look forward to the synergy of the merger.  These are two truly complimentary product lines.

Right now this merger will have no impact on how we do business with our existing customers for any of the product sales or services we offer, including sales of new systems, maintenance of existing machines, material ordering, or prototyping services with either FDM or PolyJet.  As the two companies combine organizationally we will keep everyone informed.

Learn more about the Stratasys line of Mojo, uPrint SE, Dimension, and FORTUS 3D Printers here.

Rapid Prototyping Technology Animations

Every once in a while we get asked to go out and do presentations on Rapid Prototyping. As part of that, we like to explain the four major technologies: SLA, SLS, FDM, and Polyjet. No matter how many hand gestures we use people just don’t seem to get it unless we show an animation.

So we thought it would be good to share those with the community so that they can either learn about the basics of the technology or use these to help educate others. They are crude, we are engineers and not artists.  But they get the point across. We hope to have time to update them and add text.

They are in the form of animated GIF’s, so you can put them on a website or throw them in a PowerPoint and you don’t need a viewer or special software to view them.  Click on the images to get the larger version.

Use as you see fit, just remember to mention where you found them: P – A – D – T.

FDM-Animation

PolyJet_Animation

SLA-Animation-3

SLS-Animation