Metal 3D Printing a Shift Knob

I have always had an issue with leaving well enough alone since the day I bought my Subaru. I have altered everything from the crank pulley to the exhaust, the wheels and tires to the steering wheel. I’ve even 3D printed parts for my roof rack to increase its functionality. One of the things that I have altered multiple times has been the shift knob. It’s something that I use every time and all the time when I am driving my car, as it is equipped with a good ol’ manual transmission, a feature that is unfortunately lost on most cars in this day and age.

prevknobs

I have had plastic shift knobs, a solid steel spherical shift knob, a black shift knob, a white shift knob, and of course some weird factory equipment shift knob that came with the car. What I have yet to have is a 3D printed shift knob. For this project, not any old plastic will do, so with the help of Concept Laser, I’m going straight for some glorious Remanium Star CL!

One of the great things about metal 3D printing is that during the design process, I was not bound by the traditional need for a staple of design engineering, Design For Manufacturing (DFM). The metal 3D printer uses a powder bed which is drawn over the build plate and then locally melted using high-energy fiber lasers. The build plate is then lowered, another layer of powder is drawn across the plate, and melted again. This process continues until the part is complete.

The design for the knob was based off my previously owned shift knobs, mainly the 50.8 mm diameter solid steel spherical knob. I then needed to decide how best to include features that would render traditional manufacturing techniques, especially for a one-off part, cost prohibitive, if not impossible.   I used ANSYS Spaceclaim Direct Modeler as my design software, as I have become very familiar with it using it daily for simulation geometry preparation and cleanup, but I digress, my initial concept can be seen below:2016-10-18_16-19-33

I was quickly informed that, while this design was possible, the amount of small features and overhangs would require support structure that would make post-processing the part very tedious. Armed with some additional pointers on creating self supporting parts that are better suited for metal 3D printing, I came up with a new concept.

2016-10-18_16-24-24

This design is much less complex, while still containing features that would be difficult to machine. However, with a material density of 0.0086 g/mm^3, I would be falling just short of total weight of 1 lb, my magic number. But what about really running away from DFM like it was the plague?

2016-10-18_16-23-31

There we go!!! Much better, this design iteration is spec’d to come out at 1.04 lbs, and with that, it was time to let the sparks fly!

img_7602

Here it is emerging as the metal powder that has not been melted during the process is brushed away.

untitled

The competed knob then underwent a bit of post processing and the final result is amazing! I haven’t been able to stop sharing images of it with friends and running it around the office to show my co-workers. However, one thing remains to make the knob functional… it must be tapped.

img_7762

In order to do this, we need a good way to hold the knob in a vise. Lucky for us here at PADT, we have the ability to quickly design and print these parts. I came up with a design that we made using our PolyJet machine so we could have multiple material durometers in a single part. The part you need below utilizes softer material around the knob to cradle it and distribute the load of the vise onto the spherical lattice surface of the knob.

img_7765img_7764

We quickly found out that the Remanium material was not able to be simply tapped. We attempted to bore the hole out in order to be able to press in an insert, and also found out the High Speed Steel (HSS) was not capable of machining the hole. Carbide however does the trick, and we bored the hole out in order to press in a brass insert, which was then tapped.

img_7873

Finally, the shift knob is completed and installed!

Want to learn more, check out the article in “Additive Manufacturing Media.”

 

Be One of the First to Witness 3D Printing Reinvented

 

stratasys-j750-color-3d-printer-head

According to some, the novelty of 3D printing has been wearing off — its mentioned in daily conversations, used on Grey’s Anatomy episodes, incorporated in high school and college classes. Most iPhone-wielding millennials know what it is and how it works. It’s not a “new thing” anymore, right?

Wrong.

Coming to Denver, Salt Lake City, and Phoenix — Phoenix Analysis & Design Technologies (PADT) invites you to be one of the first to meet the Stratasys J750 3D Printer: the latest introduction in the portfolio of PolyJet 3D Printers. The Stratasys J750 is the first-ever full-color, multi-material system, which finally addresses the frustration of designers who want realistic models but have to contend with inconsistent color results and rough finishes from current technology.

Ready to register now? Click here and jump right to it! Or keep reading . . .

Unlike other 3D printers currently in existence, the Stratasys J750 can operate with five different colors: cyan, magenta, yellow, black and white — all of the primary colors in the CMYK color process, just like day-to-day 2D full-color printers. The Stratasys J750 also achieves very fine layer thicknesses, enabling high surface quality and the creation of models and parts with very fine, delicate details, where current 3D printers usually result in relatively rough surface finishes.

What does this mean for those who use 3D J750_Hand2 - High Resolution JPGprinting? The Stratasys J750 not only delivers incredible realism but it’s also the most versatile 3D printer available. Designers and producers can say goodbye to the days of adopting multiple 3D-printing technologies and still resorting afterwards to extensive post-processing, such as sanding, painting and bonding.

Before the Stratasys J750, no single 3D printer could deliver full color, smooth surfaces and multiple materials. Now, however, you can print realistic prototypes, presentation models, Digital ABS injection molds, jigs, fixtures, educational and promotional pieces, production parts – or all of the above, with one system.

The Stratasys J750 even goes one step past versatile, simultaneously being the fastest, simplest, and easiest 3D printer to use. The printer includes several user-requested upgrades, such as server functionality, six-material capacity, and even three print modes that are suitable for different priorities: high speed, high mix and high quality. Additionally, where some 3D printing processes must run in a dedicated facility due to the possible hazard of the materials, chemicals and post-processing steps involved, the Stratasys J750 3D Printer uses a clean, easy process, with no hazardous chemicals to handle.

The Stratasys J750 is one choice among an ever-growing array of 3D printers in the marketplace. But its capabilities and versatility make it more than just a 3D printer; It’s a solution-maker.

In other words, Stratasys has just invented 3D printing. Again. PADT’s 3D Printing team can help you pick the best printer for your job and provide you with one-on-one engineering and prototype support.

If you’re at all interested in technology, you won’t want to miss this printer’s big coming-out day.

Check out times and locations below.

Denver – Monday, July 25th    J750 Shoes 1

Saint Patrick’s Brewing Company

3:00 pm to 6:00 pm

REGISTER

Salt Lake – Wednesday, July 27th

Hilton Salt Lake City Center

3:00 pm to 6:00 pm

REGISTER

Phoenix – Friday, July 29th

ASU SkySong

2:00 pm to 5:00 pm

REGISTER

   

 

Technology Trends in Fused Deposition Modeling

A few months ago, I did a post on the Technology Trends in Laser-based Metal Additive Manufacturing where I identified 5 key directions that technology was moving in. In this post, I want to do the same, but for a different technology that we also use on a regular basis at PADT: Fused Deposition Modeling (FDM).

1. New Materials with Improved Properties

Many companies have released and are continuously developing composite materials for FDM. Most involve carbon fibers and are discussed in this review. Arevo Labs and Mark Forged are two of many companies that offer composite materials for higher performance, the table below lists their current offerings (CF = Carbon Fiber, CNT = Carbon Nano Tubes). Virtual Foundry are also working on developing a metal rich filament (with about 89% metal, 11% binder polymer), which they claim can be used to make mostly-metal parts for non-functional purposes using existing FDM printers and a heat treatment to vaporize the binder. In short, while ABS and PLA dominate the market, there is a wide range of materials commercially available and this list is growing each year.

Company Composition
Arevo Labs CF, CNT in PAEK
CF in PEEK
Fiberglass in PARA
Mark Forged Micro-CF in Nylon
CF
Fiberglass
Fiberglass (High Strength High Temperature)
Kevlar

2. Improved Properties through Process Enhancements

Even with newer materials, a fundamental problem in FDM is the anisotropy of the parts and the fact that the build direction introduces weak interfaces. However, there are several efforts underway to improve the mechanical properties of FDM parts and this is an exciting space to follow with many approaches to this being taken. Some of these involve explicitly improving the interfacial strength: one of the ways this can be achieved is by pre-heating the base layer (as being investigated by Prof. Keng Hsu at the Arizona State University using lasers and presented at the RAPID 2016 conference). Another approach is being developed by a company called Essentium who combine microwave heating and CNT coated filaments as shown in the video below.

Taking a very different approach, Arevo labs has developed a 6-axis robotic FDM process that allows for conformal deposition of carbon fiber composites and uses an FEA solver to generate optimized toolpaths for improved properties.

3. Faster & Bigger

A lot of press has centered around FDM printers that make bigger parts and at higher deposition rates: one article discusses 4 of these companies that showcased their technologies at an Amsterdam trade show. Among the companies that showcased their technologies at RAPID was 3D Platform, that showed a $27,000 3D printer for FDM with a 1m x 1m x 0.5m printing platform. Some of the key questions for large form factor printers is if and how they deal with geometries needing supports and enabling higher temperature materials. Also, while FDM is well suited among the additive technologies for high throughput, large size prints, it does have competition in this space: Massivit is one company that in the video below shows the printing of a structure 5.6 feet tall in a mere 5 hours using what they call “Gel Dispensed Printing” that reduces the need for supports.

 4. Bioprinting Applications

Micro-extrusion through syringes or specialized nozzles is one of the key ways bioprinting systems operate – but this is technically not “fused” deposition in that it may not involve thermal modification of the material during deposition. However, FDM technology is being used for making scaffolds for bio-printing with synthetic, biodegradable or bio-compatible polymers such as PCL and PLGA. The idea is these scaffolds then form the structure for seeding cells (or in some cases the cells are bioprinted as well onto the scaffold). This technology is growing fast and something we are also investigating at PADT – watch this space for more updates.

5. Material Modeling Improvements

Modeling FDM is an important part of being able to use simulation/analysis to design better processes and parts for functional use. This may not get a lot of press compared to the items above, but is a particular interest of mine and I believe is a critical piece of the puzzle going to true part production with FDM. I have written a few blog posts on the challenges, approaches and a micromechanics view of FDM printed structures and materials. The idea behind all of these is to represent FDM structures mathematically with valid and accurate models so that their behavior can be predicted and designs truly optimized. This space is also growing fast, the most recent paper I have come across in this space is from the University of Wisconsin-Madison that was published May 12, 2016.

Conclusion

Judging by media hype, metal 3D printing and 3D bioprinting are currently dominating the media spotlight – and for good reasons. But FDM has many things going for it: low cost of entry and manufacturing, user-friendliness and high market penetration. And the technology growth has no sign of abating: the most recent, 2016 Wohlers report assesses that there are over 300 manufacturers of FDM printers, though rumor on the street has it that there are over a thousand manufacturers coming up – in China alone. And as the 5 trends above show, FDM has a lot more to offer the world beyond being just the most rapidly scaling technology – and there are people working worldwide on these opportunities. When a process is as simple and elegant as extruding material from a hot nozzle, usable innovations will naturally follow.

inBusiness: Arizona Additive Manufacturing Committee

New Dimension
Committee to advocate manufacturing advancement

The inBusiness magazine published an article on the newly formed Arizona Additive Manufacturing Committee that we co-chair with our friends at Titan Industries under the aegis of the Arizona Technology Council. Link to the article is here:
http://inbusinessmag.com/partner-section/new-dimension#.V36QrvkrKUk

The Committee aims to meet once a month, our second meeting occurs Monday, July 11 2016 at the ASU Polytechnic Campus and is open to anyone in Arizona that works in Additive Manufacturing and has an interest in promoting its growth statewide through collaboration. For more info, connect with me on LinkedIn or send a note to info@padtinc.com and cite this blog post.

inbusiness

Unexpected Joys at Rapid 2016

While much has been (justifiably) written about HP and XJet releasing new, potentially game-changing products at RAPID 2016, I wanted to write this post about some of the smaller, unexpected joys that I discovered. If I sound overly enthusiastic about the people and companies behind them, it is likely due to the fact that I wrote this on the flight back, staring out at the clouds and reflecting on what had been a wonderful trip: I own no locks, stocks or barrels in any of these companies.

1. Essentium Materials – Carbon Nanotubes and Microwaves to improve FDM mechanical properties
Over the past year, I have studied, written and made presentations about the challenges of developing models for describing Fused Deposition Modeling (FDM) given their complex and part-specific meso-structure. And while I worked on developing analytical and numerical techniques for extracting the best performance from parts in the presence of significant anisotropy, the team at Essentium has developed a process to coat FDM filaments with Carbon nanotubes and extrude them in the presence of microwave radiation. In the limited data they showed for test specimens constructed of unidirectional tool-paths, they demonstrated significant reduction in anisotropy and increase in strength for PLA. What I liked most about their work is how they are developing  this solution on a foundation of understanding the contributions of both the meso-structure and inter-filament strength to overall part performance. Essentium was awarded the “RAPID Innovations award”, first among the 27 exhibitors that competed and are, in my opinion, addressing an important problem that is holding back greater expansion of FDM as a process in the production space.
Website: http://essentiummaterials.com/

2. Hyrel 3D – Maker meets Researcher meets The-Kid-in-All-of-Us
I only heard of Hyrel 3D a few days prior to RAPID, but neglected to verify if they were exhibiting at RAPID and was pleasantly surprised to see them there. Consider the options this 3D printer has that you would be hard pressed to find in several 3D printers combined: variable extrusion head temperatures (room temp to 450 C), sterile head options for biological materials, a 6W laser (yes, a laser), spindle tools, quad head dispensing with individual flow control and UV crosslinking options. Read that again slowly. This is true multiple degree-of-freedom material manipulation. What makes their products even more compelling is the direct involvement of the team and the community they are building up over time, particularly in academia, across the world, and the passion with which they engage their technology and its users.
Website: http://www.hyrel3d.com/

3. Technic-Print: New Chemistry for Improved FDM Support Removal
If you manufacture FDM parts with soluble supports, keep reading. A chemist at Technic Inc. has developed a new solution that is claimed to be 400% faster than the current Sodium-Hydroxide solution we use to dissolve parts. Additionally, the solution is cited as being cleaner on the tank, leaving no residue, has a color indicator that changes the solution’s color from blue to clear. And finally, through an additional agent, the dissolved support material can be reclaimed as a clump and removed from the solution, leaving behind a solution that has a pH less than 9. Since PADT manufactures one of the most popular machines that are used to dissolve these supports that unbeknown to us, were used in the testing and development of the new solution, we had an enriching conversation with the lead chemist behind the solution. I was left wondering about the fundamental chemistry behind color changing, dissolution rates for supports and the reclaiming of support – and how these different features were optimized together to develop a usable end-solution.
Website: http://www.technic.com/techni-print-lp

 

4. Project Pan: Computationally Efficient Metal Powder Bed Fusion Simulation
I presented a literature review at AMUG (another Additive Manufacturing conference) last month, on the simulation of the laser-based powder bed fusion. At the time, I thought I had captured all the key players between the work being done at Lawrence Livermore National Labs by Wayne King’s group, the work of Brent Stucker at 3DSIM and the many academics using mostly commercially available software (mostly ANSYS) to simulate this problem. I learned at RAPID that I had neglected to include a company called “Project Pan” in my review. This team emerged from Prof. Pan Michaleris’s academic work. In 2012, he started a company that was acquired by Autodesk two months ago. In a series of 3 presentations at RAPID, Pan’s team demonstrated their simulation techniques (at a very high level) along with experimental validation work they had done with GE, Honeywell and others through America Makes and other efforts. What was most impressive about their work was both the speed of their computations and the fact that this team actually had complex part experimental validations to back up their simulation work. What most users of the powder bed fusion need is information on temperatures, stresses and distortion – and within time frames of a few hours ideally. It seems to me that Pan and his team took an approach that delivers exactly that information and little else using different numerical methods listed on their site (novel Hex8 elements, an element activation method and intelligent mesh refinement) that were likely developed by Pan over the years in his academic career and found the perfect application, first in welding simulation and then in the powder bed fusion process. With the recent Autodesk acquisition, it will be interesting to see how this rolls out commercially. Details of some of the numerical techniques used in the code can be found at their website, along with a list of related publications.

Website: http://pancomputing.com/

5. FDA Participation: Regulating through education and partnership
On a different note from the above, I was pleasantly surprised by the presence of the FDA, represented by Matthew Di Prima, PhD. He taught part of a workshop I attended on the first day, took the time to talk to everyone who had an interest and also gave a talk of his own in the conference sessions, describing the details of the recently released draft guidance from the FDA on 3D printing in medical applications. It was good to connect the regulatory agency to a person who clearly has the passion, knowledge, intelligence and commitment to make a difference in the Additive Manufacturing medical community. Yes, the barriers to entry in this space are high (ISO certifications, QSR systems, 510(k) & Pre-Market Approvals) but it seems clear that the FDA, at least as represented by Dr. Di Prima, are doing their best to be a transparent and willing partner.
Website: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/3DPrintingofMedicalDevices/default.htm

What really makes a trip to a conference like RAPID worth it are the new ideas, connections and possibilities you come away with that you may not stumble upon during your day job – and on that account, RAPID 2016 did not disappoint. As a line in one of my favorite song’s goes:

“We’ll never know, unless we grow.
There’s too much world outside the door.”
– Fran Healy (Travis, “Turn”).

The 3D Printing Value Proposition

At a recent Lunch-n-Learn organized by the Arizona Technology Council, I had the opportunity to speak for 10 minutes on 3D printing. I decided to focus my talk on trying to answer one question: how can I determine if 3D printing can benefit my business? In this blog post, I attempt to expand on the ideas I presented there.

While a full analysis of the Return-On-Investment would require a more rigorous and quantitative approach, I believe there are 5 key drivers that determine the value proposition for a company to invest in 3D printing, be it in the form of outsourced services or capital expenditure. If these drivers resonate with opportunities and challenges you see in your business, it is likely that 3D printing can benefit you.

1. Accelerating Product Development

3D printing has its origins in technologies that enabled Rapid Prototyping (RP), a field that continues to have a significant impact in product development and is one most people are familiar with. As shown in Figure 1, PADT’s own product development process involves using prototypes for alpha and beta development and for testing. RP is a cost- and time effective way of iterating upon design ideas to find ones that work, without investing in expensive tooling and long lead times. If you work in product development you are very likely already using RP in your design cycle. Some of the considerations then become:

  • Are you leveraging the complete range of materials including high temperature polymers (such as ULTEM), Nylons and metals for your prototyping work? Many of these materials can be used in functional tests and not just form and fit assessments.
  • Should you outsource your RP work to a service bureau or purchase the equipment to do it in-house? This will be determined by your RP needs and one possibility is to purchase lower-cost equipment for your most basic RP jobs (using ABS, for example) and outsource only those jobs requiring specialized materials like the ones mentioned above.
PADT's Product Development process showing the role of prototypes (3D printed most of the time)
Figure 1. PADT’s Product Development process showing the role of prototypes (most often 3D printed)

The video below contains several examples of prototypes made by PADT using a range of technologies over the past two decades.

2. Exploiting Design Freedom

Due to its additive nature, 3D printing allows for the manufacturing of intricate part geometries that are prohibitively expensive (or in some cases impossible) to manufacture with traditional means. If you work with parts and designs that have complex geometries, or are finding your designs constrained by the requirements of manufacturing, 3D printing can help. This design freedom can be leveraged for several different benefits, four of which I list below:

2.1 Internal Features

As a result of its layer-by-layer approach to manufacturing a part, 3D printing enables complex internal geometries that are cost prohibitive or even impossible to manufacture with traditional means. The exhaust gas probe in Fig. 2 was developed by RSC engineering in partnership with Concept Laser has 6 internal pipes surrounded by cooling channels and was printed as one part.

3D Printed Exhaust Gas Probe (RSC Engineering and Concept Laser Inc.)
Fig 2. 3D Printed Exhaust Gas Probe with intricate internal features (RSC Engineering and Concept Laser Inc.)

2.2 Strength-to-Weight Optimization

One of the reasons the aerospace industry has been a leader in the application of 3D printing is the fact that you are now able to manufacture complex geometries that emerge from a topology optimization solution and reduce component weight, as shown in the bracket manufactured by Airbus in Figure 3.

Titanium Airbus bracket made by Concept Laser on board the A350
Fig 3. Titanium Airbus bracket made by Concept Laser on board the A350

2.3 Assembly Consolidation

The ability to work in a significantly less constrained design space also allows the designer to integrate parts in an assembly thereby reducing assembly costs and sourcing headaches. The part below (also from Airbus) is a fuel assembly that integrated 10 parts into 1 printed part.

Airbus Fuel Assembly 3D printed out of metal (Airbus / Concept Laser)
Fig 4. Airbus Fuel Assembly 3D printed out of metal (Airbus / Concept Laser)

2.4 Bio-inspiration

Nature provides several design cues, optimized through the process of evolution over millenia. Some of these include lattices and hierarchical structures. 3D printing makes it possible to translate more of these design concepts into engineering structures and parts for benefits of material usage minimization and property optimization. The titanium implant shown in Figure 5 exploits lattice designs to optimize the effective modulus in different locations to more closely represent the properties of an individuals bone in that region.

Titanium implant leveraging lattice designs (Concept Laser)
Fig 5. Titanium implant leveraging lattice designs (Concept Laser)

3. Simplifying the Supply Chain, Reducing Lead Times

One of the most significant impacts 3D printing has is on lead time reduction, and this is the reason why it is the preferred technology for “rapid” prototyping. Most users of 3D printing for end-part manufacturing identify a 70-90% reduction in lead time, primarily as a result of not requiring the manufacturing of tooling, reducing the need to identify one or more suppliers. Additionally, businesses can reduce their supplier management burden by in-sourcing the manufacturing of these parts. Finally, because of the reduced lead times, inventory levels can be significantly reduced. The US Air Force sees 3D printing as a key technology in improving their sustainability efforts to reduce the downtime associated with aircraft awaiting parts. Airbus recently also used 3D printing to print seat belt holders for their A310 – the original supplier was out of business and the cost and lead time to identify and re-tool a new supplier were far greater than 3D printed parts.

4. Reducing Costs for High Mix Low Volume Manufacturing

According to the 2015 Wohlers report, about 43% of the revenue generated in 3D printing comes from the manufacturing of functional, or end-use parts. When 3D printing is the process of choice for the actual manufacturing of end-use parts, it adds a direct cost to each unit manufactured (as opposed to an indirect R&D cost associated with developing the product). This cost, when compared to traditional means of manufacturing, is significantly lower for high mix low volume manufacturing (High Mix – LVM), and this is shown in Figure 6 for two extreme cases. At one extreme is mass customization, where each individual part has a unique geometry of construction (e.g. hearing aids, dental aligners) – in these cases, 3D printing is very likely to be the lowest cost manufacturing process. At the other end of the spectrum is High Volume Manufacturing (HVM) (e.g. semiconductor manufacturing, children’s toys), where the use of traditional methods lowers costs. The break-point lies somewhere in between and will vary by the the part being produced and the volumes anticipated. A unit cost assessment that includes the cost of labor, materials, equipment depreciation, facilities, floor space, tooling and other costs can aid with this determination.

Chart showing how volumes drive unit prices and where 3D Printing can be the cheaper option
Fig 6. Chart showing how volumes drive unit prices and where 3D Printing can be the cheaper option for low volumes and high mix manufacturing

5. Developing New Applications

Perhaps the most exciting aspect of 3D printing is how people all around the world are using it for new applications that go beyond improving upon conventional manufacturing techniques. Dr. Anthony Atala’s 2011 TED talk involved the demonstration of an early stage technique of depositing human kidney cells that could someday aid with kidney transplants (see Figure 7). Rarely does a week go by with some new 3D printing application making the news: space construction, 3D surgical guides, customized medicine to name a few. The elegant and intuitive method of building something layer-by-layer lends itself wonderfully to the imagination. And the ability to test and iterate rapidly with a 3D printer by your side allows for accelerating innovation at a rate unlike any manufacturing process that has come before it.

Dr. Anthony Atala showing a 3D printed kidney [Image Attr. Steve Jurvetson]
Fig 7. Dr. Anthony Atala showing a 3D printed kidney [Image Attr. Steve Jurvetson, Wikimedia Commons]

Conclusion

As I mentioned in the introduction, if you or your company have challenges and needs in one or more of the 5 areas above, it is unlikely to be a question of whether 3D printing can be of benefit to you (it will), but one of how you should best invest in it for maximum return. Further, it is likely that you will accrue a combination of benefits (such as assembly consolidation and supply simplification) across a range of parts, making this technology an attractive long term investment. At PADT, we offer 3D printing both as a service and also sell most of the printers we use on a daily basis and are thus well positioned to help you make this assessment, so contact us!

3D Printing to Combat Deflategate

3d-printed-footballIn honor of the big game this weekend the folks at Stratasys scored big time with a 3D printed footballStratasys has had a history of using 3D printing to improve on a variety of sports; however this time they out did themselves by possibly solving the infamous issue of deflategate. Since the Ideal Gas Law doesn't exactly explain it, maybe 3D printing could help prevent it from interfering in the big game until an answer is found. I’m not sure the NFL will be too keen on using these balls but it’s a thought

super-bowl-3d-printed-football

The football was created on the Objet500 Connex3 Color Multi-Material 3D Production System and was printed in three materials.  VeroMagenta and VeroYellow was used for the bulk of the design however they were also able to replicate the true texture and feel of a real football using the rubber-like TangoPlus material and all in one print job.  It is heavier than a game ball but can still be tossed around.  Of course they wouldn’t print a football and not test it.  Check out their video below. 

Bonus Link – Here is a fun Brady Deflategate Inaction Figure from Shapeways. 

Additive Manufacturing Motor Trends

Additive manufacturing (AM) has been used in the motor sports world for years.  Now more than ever, race teams have found that additive manufactured parts have the quality and durability to meet their demands. From NASCAR to the World Rally Championship, race teams around the world are excited about the possibilities that AM brings to the table. For an interesting webinar on-demand and a great whitepaper, click the image below. 68905-Motor-Trends-Webinar_960x350

A look inside the Objet500 Connex3 Multi-material 3D printer

This week our we printed some beautiful multi-colored sponsor awards for the 2014 Arizona SciTech Festival which officially launches in August.  Intern extraordinaire, Diserae Saunders, placed a GoPro inside our Objet500 Connex3 to record the magic.  Enjoy the video and check out the Arizona SciTech Festival for information on this great program that promotes science, technology and innovation in Arizona!

An inside look at our Connex500

We wanted to see what 3d printing looked like from the inside of the machine so our new intern, Diserae Sanders, placed a GoPro inside our Connex500 during a print job.  The item being printed is a demo bicycle pedal printed in multiple materials.  

This video is the first in a series we plan to do on 3D printing. If there is something you would like to see us do a video on, please post it in the comments below.

Stratasys adds flexible color to their digital material palettes

connex3_shorevaluepress_hand_horiz
Earlier this week, Stratasys announced the addition of 10 new color pallets expanding the digital materials offering to represent hundreds of new options of both flexible color materials and rigid gray materials available for the Objet500 Connex3 Color Multi-material 3D Printer

connex3_flexpalette_cyt_hands_portrait  connex3_flexpalette_myt_hands_portrait  connex3_flexpalette_mct_hands_portrait

The first three pallets are built using TangoPlus combined with combinations of VeroCyan, VeroMagenta and VeroYellow. These new pallets allow for the printing of a range of colors and translucent tints in nine Shore A values (Shore A 27-95).

connex3_flexpalette_cyk_hands_portrait  connex3_flexpalette_mck_hands_portrait  connex3_flexpalette_myk_hands_portrait

Three additional pallets using TangoBlack Plus and combinations of VeroCyan, VeroMagenta and VeroYellow allow for users to blend a wide range of subtle vibrant-to-dark shades into the same part with TangoBlack Plus in seven Shore A values.

connex3_mkw_palette_portrait  connex3_ykw_palette_portrait  connex3_kwt_palette_portrait

The final four palettes that were introduced offer additional combinations of VeroWhite and VeroBlack with either VeroCyan, VeroMagenta or VeroYellow allowing for users to build sophisticated prototypes in a range of subtle grays alongside muted or vibrant color. 

connex3_blue_palette_landscape
The addition of these ten palettes combined with their existing palettes allow for virtually limitless combinations of flexible, rigid and translucent colors in one print job.

“The Objet500 Connex3 is the only 3D printer that combines colors with multi-material 3D printing. The ability to mix rigid, flexible, transparent and opaque colors offers users unprecedented versatility to design and perfect products faster,” says Stratasys Director of Materials & Applications Fred Fischer. “By extending the range of material options available, users can improve workflow speeds and enhance efficiency.”

These new options are available immediately to Objet500 Connex3 Color Multi-material 3D Printer owners through a free software update. 

Check out this great video on the new materials.

PADT Talks about 3D Printing on Channel 8’s Arizona Horizon

PADT-Horizon-PBS-PicOur latest journey into mass media was a real pleasure.  We were invited to come on to the local Phoenix PBS station to talk about 3D Printing.  The team of students from the Walter Cronkite School of Mass Communications at ASU that do most of the behind the scenes work were great. The host and producer were true professionals who asked some of the best questions we have ever been asked on this topic.

You can the full program here:

http://www.azpbs.org/arizonahorizon/play.php?vidId=6037

Eric’s interview is the second half.

Those of you who know 3D Printing know that they showed a CNC mill instead of one of our 3D printers.  We gave them a bunch of background video to use (from another interview) and they kind of picked the wrong one. But hey, Bob and Luis got on TV!  And all that really matters is that they spelled our name right.

A great opportunity and we look forward to evangelizing the promise of additive manufacturing in the future. You can learn more about the whole world of 3D Printing on our website by starting on our prototyping support page.

A Guide to Creating Good STL Files

imageThe STL file is the linqua-franca of the prototyping world, the file format that all geometry creation tools write, and that all prototyping systems read. When you make a prototype it will be an exact copy of your STL file. If your file is not accurate, then your prototype will not be accurate. If there are errors in your file, you may not be able to get a prototype made. Therefore, a little bit of time understanding STL files and how to create a good one is a good investment that will pay off in the long run.

About STL Files

When additive manufacturing was just starting the manufacturers of machines faced a problem – they needed a way to get 3D solid models from a large number of CAD systems to their machines for processing. The common file format for geometry interchange, IGES, was not robust enough because of toleranceing issues. Writing a program to slice up each CAD format was also not practical. So they looked at the problem and realized they did not need exact mathematical models made up of NURB, Bezier, or analytical geometry. The algorithm that sliced up each layer just needed polygons on the surface. So the STL file just needed to have those polygons. And the STL file was born.

Lets talk about that slicing process. If you remember, almost all additive manufacturing processes work by creating stacked layers that are a cross section of the part you want. To build the part you must slice the geometry in software, calculating that cross section. Doing the intersection of a plane with a complex NURB surface is hard math, but the intersection with a triangle is very easy and results in a line segment. This makes creating the path for each layer much easier.

STL stands for STereoLithography, or Standard Tessellation Language, depending on which source you check. It was invented for 3D Systems by the Albert Consulting Group way back in 1987 to support the first Stereolithography machines. The format describes a collection of facets, or polygons. Each polygon is defined by a normal “outward” vector and the vertices that define it. Although the format supports more than three vertices per facet, in practice everyone uses three, defining a triangle. The file can be a text file (ASCII) or a binary file.

Users almost never have to worry about the file because the programs they use to create their geometry automatically generate STL files in the proper format. If you do need to write your own routine to output an STL file, it is fairly simple.

Faceting

clip_image001 The way an STL file is made is the program that creates the STL file goes through the topology of the model and meshes it:

1: First it puts points on all of the shared edges of all the surfaces
2: Then it creates triangles on each surface

The algorithm used to create the facets varies from program to program, but most of them use the same routines they use to make facets for the 3D graphics you see on your monitor.

There are two things to note about faceting. The first is that each corner must be coincident with at least one other corner. No corners can touch the edge of another triangle. The second is that a triangle is flat and your surface can be curved. To make your curved surface look curved you need enough triangles to make it appear like a continuous surface.

Leaky Geometry

The most common problem these days with STL files is leaky geometry. When your CAD tool creates the STL file your solid may not be a true solid in that you have holes in your topology. This can be caused by gaps, ill-defined curves and surface, or corners (vertices) not lining up. If you cut out the triangles and glued them together then filled the resulting object with water, the water would leak out.

You CAD package can make leaky STL files if it has loosened up the tolerances on the geometry modeling to the point where edges on its surface do not really line up. They trick themselves into accepting this through some hand waving inside their database, and it really is not a problem till you want to do something with the surfaces. Something like make an STL file.

One way to fix this problem is to clean up the original geometry. Run diagnostics on it and see where there are holes. You should do this anyway because in the end, a messy solid will cause problems when you make your drawings, calculate tool paths, or try and do simulation.

If that is not an option, you can use repair software. If you use an RP service provider, they should be able to repair most STL files. But if you constantly need them to do so, you should really look at changing your modeling practices or investing in some repair tools.

If you are doing your own prototyping, you have two good options. The first is free: Meshlab. It is an open source tool for working with faceted geometry and has repair and diagnostic capabilities. It does a lot so the interface can be a bit confusing, but it is free. If you want to save time and probably money in the long run, we recommend that you purchase a copy of SolidView. It is purpose built for repairing STL files and can really cut down on your repair time.

Faceted Geometry

Even if your prototyping tool can read your geometry and make a valid part, it may come out looking all clunky because your geometry is to faceted. As discussed above, the STL file is made up of triangles. If you have too few triangles on a curved surface then it comes out looking all flat and ugly. Here is a simple example:

The key to controlling this is to set the options in your CAD package to create more facets.

This is such an important topic, we actually have a whole posting dedicated to it:

STL File Tolerance: A Short Explanation of Faceting and Chord Height

In the old days we tried to minimize the number of triangles in an STL file because that file had to be uploaded, often via a modem.  But now we can email very large files, so you can make some pretty big STL files. Don’t go crazy, but don’t sacrifice surface quality either.

Degenerate Triangles and Inverted Faces

It is very rare for a CAD tool to create bad triangles, but it happens every once in a while. When trying to create a build from an STL file you might get a “Degenerate Triangle” or “Inverted Faces” error message.  There is not much you can do with this other than try one of the repair tools mentioned above or try and fix your underlying geometry.  If you get this type of error, there is something very wrong with your solid model.

Feature Sizes

Another problem that people often run across is that some of their small features do not show up on their prototype.  This can be because their STL file is not refined enough and that can be solved by tightening up the tolerance on their STL file creation.  If that does not work, the feature may just be too small for the technology.  Take a look at what the true machine resolution is. Make sure that is is smaller than your smallest features.

Make an Investment in Productivity

Having a bad STL file can really slow down the rapid part of Rapid Prototyping.  That is why PADT recommends that you take the time when you create your solid models to make good, robust, water tight solids that can be used down stream.  If you have nasty geometry or a less than precise CAD tool (can anyone say CATIA) you may have to invest in a repair program like Meshlab or SolidView.  Some up-front investment will pay in the long run, especially when you need that prototype first thing in the morning.

12 Things Every Engineer Should Know about Rapid Prototyping

PADT has been providing various forms of rapid prototyping since 1994, focused on providing high quality prototypes to engineers involved in product development. Over that time, we have learned a lot about what our customers need to know in order to get the most out of their rapid prototyping investment. As we launch our new The RP Resource, we think now is a good time to share some of the things we have learned.

1: Know what you are going to use your prototype for

This is the most important thing for any engineer to know when they are using rapid prototyping. A good understanding of how the prototype will be used is critical to making decisions on the technology applied, the material used, the build options set, and the post processing that is carried out. When we look into why a customer who is unhappy with their prototype, nine times out of ten we find out that they did not convey to us what their end use was, so we did not make them the prototype they actually needed.

2: Rapid Prototyping, Direct Digital Manufacturing, 3D Printing: They are all additive manufacturing

The technology may vary from machine to machine, but in the end they all kind of work the same – they build a part one thin layer at a time. This is important because the part you end up getting will be made with layered manufacturing. The strength will be non-uniform, features that overhang may droop a bit if not properly supported, and the surface finish will not be smooth unless you chemically treat it or sand it after the build is done.

3: You will get an exact copy of your STL or CAD file, so make sure it is a good one.

The prototype that you are making is a direct digital copy of the file you ask it to print. None of the processes improve on the geometry you send to them, so it is important that you provide a high quality model. If you are starting with an STL file, you need to make sure that you have enough facets on your model so that they are not visible on the prototype. We like the maximum deviation of the facet from the actual shape (chord height) to be less than 0.001 inches. We recently did a post on this very topic.

The same goes true for “bad” STL files. You may get errors, or the prototyping system may not even be able to build your part. Making sure you have a quality STL or CAD will save everyone a lot of time.

4: Build orientation has a big impact on cost, surface quality, and strength

Remember that you are using a layered manufacturing process. The number of layers and their orientation relative to your part can make a bid difference on cost, the surface quality, and strength.

image

In the exaggerated illustration above, you can see the same shape will have different stepping, and a different number of layers depending on how it is oriented. The taller the part, the longer it takes to build. The lower the slope, the more “stair-stepy” the surface.

Something else to take into account is that the parts will be weaker when the layers are put under load that causes them to delaminate. Imagine your prototype was made up of a deck of stacked playing cards with a glue between each card. You want to load it in a way that will not cause those cards to want to pull apart.

5: The amount of material in you part is a big cost driver

One of the biggest drivers of the cost on a prototype is the amount of material used to build the part. This is especially true when you are using some of the more expensive materials.  Take a look at using options in your machine software to more sparsely filled part.  You can also shell your part on your CAD system. If you are working with a service provider, ask them to take a look at this on your prototypes.

6: Part geometry can come from CAD, or a scan

Customers occasionally come to us with an existing part and ask us to make a CAD model of it so they can prototype it. In some cases, it may be easier to just make some soft tooling of the part, skip the prototyping process entirely. But if that does not work, you can use a variety of scanning technologies to get a faceted representation of the real part.

7: Warping and shrinking distortion is above and beyond published machine accuracy

When you look at the published accuracy of a given machine what they show you is the accuracy of the process that traces an outline or sets the thickness of a layer. The accuracy of the mechanisms in the machine itself. Your part may have much less accuracy because most parts warp and shrink slightly during the manufacturing process. Overhangs may also droop if they are not supported correctly.

The key to solving this problem is to really know the machine you are using, or work with a service provider who knows how to plan for and adapt to this reality. Some technologies may just not be suited for your geometry, and you may need to go with a different machine type.

8: Build the full cost or prototyping into your product developments budget

People who use prototyping effectively in their product development always budget for the proper amount to pay for prototyping. Too often this important tool is left out of the budget and when a prototype is needed, funding can not be found or shortcuts are taken that diminish the value of the prototypes. In order to do things right the first time, you should plan for the expense.

9: You are not stuck with the material color that the part is made with

It is fairly easy and affordable to paint or dye most rapid prototyping parts. It does add time to the project because painting or dyeing takes time. Users should be aware that they can get almost any color they need on their part.  A talented technician can also provide almost any surface finish that is needed.

10: Your prototype can be used as a pattern for casting multiple parts

If you need multiple copies of your part, it may be more affordable to only make one additive manufacturing part and then use soft tooling to make copies. This is also a way to get material properties that are not available with any of the additive manufacturing technologies.  In some cases, you can even cast injection molding tooling from a prototype part.

11: The quoted price of the prototype is just part of the total cost of having a prototype made

When looking at cost it is important to calculate the total cost.  When doing rapid prototyping you need to look at the quoted price of having a prototype made, internally or externally, as only one of many costs. Other activities that impact total cost are:  cost of reworking prototypes; shipping/delivery costs; delay in schedule due to build, post processing, and shipping time; time and money spent modifying tests to fit the prototypes shortcomings, time and cost required to deal with prototype failures, etc… 

12: Take some time to learn the strengths and weaknesses of every available technology

Even if you have one particular technology any engineer who needs to do a significant amount of rapid prototyping should invest the time in understanding all of the available technologies. Each has advantages and disadvantages, and if you understand them and you understand what the usage of your prototype will be, you can save yourself and your company a lot of time and money by choosing the proper technology for each prototypes. 

We hope to have some time in the coming months to provide some in depth information on all of the major prototyping technologies, so check this blog for more information.

Rapid Prototyping FAQ

PADT has been providing Rapid Prototyping Services since 1994 to companies around the world, and over that time we have been asked a lot of questions. The lists below present the most Frequently Asked Questions, our FAQ. The list starts with general Rapid Prototyping questions and is followed by questions that are specific to working with the experts at PADT to do your Rapid Prototyping.

If you do not see your specific question, please feel free to contact PADT and we will be happy to answer it directly.

General Rapid Prototyping Questions

What is Rapid Prototyping?

Rapid Prototyping is a manufacturing technology that quickly builds a prototype part. Many different technologies are available that are considered Rapid Prototyping, and many can also be used for production manufacturing. Although most Rapid Prototyping systems use a form of layered additive manufacturing, they can also use a variety of other methods such as high-speed machining, molding, casting, and extruding.

Rapid Prototyping, often called RP, is rapid prototyping when the entire process of going from a computer design to a physical model is faster than more traditional manufacturing technologies. Wikipedia has a good article on the subject.[ http://en.wikipedia.org/wiki/Rapid_prototyping]

What is Rapid Tooling and how is it Different from Rapid Prototyping?

The only difference between Rapid Tooling and Rapid Manufacturing is the end use of the parts produced with the process. Both use rapid prototyping technologies to quickly make a part. But for Rapid Tooling, the part is used in another manufacturing process as a tool.

What is 3D Printing and how is it Different from Rapid Prototyping?

3D Printing refers to a subset of rapid prototyping that goes directly from a 3D computer model to a prototype with very little user interaction other than defining some preferences. The process is designed to be as easy as printing from a computer to paper.

In many ways the name is a marketing label to clearly emphasize the affordability and ease of making prototypes using systems that are labeled as 3D Printers. It is also meant to appeal to a larger, less engineering and manufacturing oriented audience. PADT uses 3D Printing systems as well as Rapid Prototyping and Manufacturing systems.

What are some of the other names for Rapid Prototyping?

3D Printing, layered manufacturing, additive manufacturing, direct digital manufacturing, digital prototyping, digital fabricator, desktop fabricator, desktop manufacturing, desktop prototyping.

People often use the names of various prototyping techniques to refer to rapid prototyping, and even more often the acronyms for those technologies. Examples are Stereolithography or SLA and Fused Deposition Modeling or FDM.

What is Layered Manufacturing and why do most Rapid Prototyping Technologies Use it?

Layered Manufacturing builds parts up, one thin layer at a time. Most traditional manufacturing methods start with a block and remove material, or shapes material using a tool of some kind. Layered manufacturing is often called Additive Manufacturing because it adds material rather than taking it away or molding it.

The best way to visualize layered manufacturing is to think of taking a real part and chopping it into very thin layers. Then stack those layers back up one on top of the other. Layered manufacturing does the chopping in a computer program, and tells a machine how to create each layer.

When and how is Rapid Prototyping used in Product Development?

Rapid prototyping can be used at almost every step in your product development process. At any point where you need a physical part you can benefit from Rapid Prototyping. Examples are:
Conceptualization: concept models, marketing mockups
Initial Design: form, fit, and function testing, visualization
Detail Design: testing, test fixtures, assembly testing, fit, form and function testing.
Production: tooling, mockups for process planning

What are the different types of Rapid Prototyping Technologies and their Advantages and Disadvantages?

Unfortunately there is no one technology that is perfect at everything. The following table is a basic listing of the main advantages and disadvantages.

TECHNOLOGY ADVANTAGE DISADVANTAGE BEST USE
SLA Smooth Accurate Detail Temperature Sensitive, Brittle, Brittles over Time Marketing Models Fit Checks
SLS Durable, Speed on Large Projects Rough Surface, Erratic Accuracy Functional Models
FDM Cost Effective Durable True Plastics Lower Resolution Weak Layer-to-layer Engineering Models Internal Reviews
POLYJET Adjustable Material Properties Speed Fine Layers Weak Material Properties Cost Elastomeric Models Overmold Models
CNC MACHINING Accurate True Materials Long Lead Time Cost Metal Models Precision Work

What is a STL File?

The STL file is a file format developed in the early days of Rapid Prototyping by 3D Systems as a simple and portable format that could be used across CAD systems to define the solid geometry to be made in a Rapid Prototyping machine. It is a triangular facet representation, the surfaces of the solid are modeled as a collection of triangles that share vertices and edges with neighboring triangles. Most CAD tools can output an STL file.

You should also know that there are two types, ASCII (text) and binary. Binary tends to be more compact.

Learn more on Wikipedia. [http://en.wikipedia.org/wiki/STL_file]

My part is about “this” big, how much will it cost to make a prototype of it?

It is very difficult to estimate the cost of a prototype without knowing many different factors. These include the volume of the part, the height in the “up” direction, the process being used, the material being used, and the finishing that is required. The best way to find out the cost is to send a part to PADT for a quote. If you do not have a computer model yet, then sending the basic dimensions and calling our engineers should result in a ball park estimate.

How long does it take to make a Rapid Prototyping Part?

IT can take as little as five minutes and as long as 3 or 4 days depending on the size, the process, and the amount of finishing required. However, most parts can be made within a 24 hour period.

Can I use Rapid Prototyping to make tooling for Injection Molding?

Yes you can. A special process and special materials are required, as is a special mold base. But a low volume injection mold can be made using Rapid Prototyping. PADT can also help find a supplier that can use rapid machining to make molds almost as fast as rapid prototyping.

My buddy has a MakerBot/RepRap/Build-your-Own-3D-Printer. How is that different from these commercial Rapid Prototyping systems?

There has been an explosion of do it yourself RP systems at around 2010-2011. Most of these are based on the fact that the patent for Fused Deposition modeling ran out. The majority of homemade systems, or personal systems, are variations on the systems made for decades by Stratasys. They differ from commercial or industrial systems in two ways: lower cost, and fewer capabilities. In general, the parts made on these systems are not usable for engineering or even visualization models because the material is too soft, the material does not fully harden or bond, there is considerable shrinkage or warping, and the actual precision of the device is low.

What is the most commonly used Rapid Prototyping Technology?

For many years the most commonly used technology is Fused Deposition Modeling. Originally only available from Stratasys, many other providers have adopted the technology. The best way to see how the various technologies stack up is through the Wohlers Report, an annual summary of the industry. [http://wohlersassociates.com]

Is there free software out there that I can use to look at my model before I send it to you? Can I convert a file I made for animation or rendering to a file you can use?

Yes. Meshlab is a tool for dealing with all types of faced data and it works with STL files as well. It can be sued for translating, repair and visualization. [http://meshlab.sourceforge.net/]

MiniMagics is a free STL viewer from Materialise [http://software.materialise.com/minimagics].

PADT’s Rapid Prototyping Services

I need a Quote, How do I get one?

Basically you need to send us a file containing the geometry you want prototyped and let us know what you need your prototype for, or if you already know, what technology you would like us to use. Detailed information can be found on our Rapid Prototyping support page [/support/rapid-prototyping.html]

What Rapid Prototyping Technologies does PADT have in House?

PADT currently has the following Rapid Prototyping technologies in house:

In addition, PADT offers the following related technologies that are often used with Rapid Prototyping:

Which Technology Should I use for my Prototype?

That depends greatly upon the use you have in mind for your prototype and your budget. Each technology has a variety of strengths and weaknesses as well as cost. What sets PADT apart from most Rapid Prototyping service providers is that our engineers have the experience and the expertise to work with you to determine the proper technology for your needs.

What does PADT need to Quote my Rapid Prototyping Job?

At a minimum, an STL or CAD file and a way to contact you. To speed along the process you can provide us with information about any preferred processes or the intended uses for your prototype.

What File Types (formats) does PADT Accept?

The best format to send to PADT is an STL file.

PADT currently has the ability to use the following Native CAD file formats:

  • NX
  • Pro/E or Creo
  • SolidEdge
  • SolidWorks

PADT can also usually work with the following non-native formats:

  • IGES
  • Parasolid
  • SAT (ACIS)
  • STEP

What settings should I use when making an STL file for PADT?

The default settings are generally acceptable for us. We do recommend that you use a “finer” setting if your part is complicated. If we find that your file is not refined enough, our engineers will contact you and let you know how to increase the accuracy for the CAD system you are using.

How do I Send a File to PADT?

We provide multiple methods for sending files to PADT:

Email it to rp@padtinc.com with your contact information.

Put it into a dropbox or secure file sharing location and send us a link via email to rp@padtinc.com.

Upload it to www.padtinc.com/upload

see www.padtinc.com/support/rapid-prototyping.htmlfor details.

I don’t have a CAD file, can you make me one?

Depending on what you need, PADT can quote solid modeling and design services or we can also recommend one of the local companies or individuals that we work with on a regular basis to help people create CAD models of their parts. Please speak with one of our engineers so we can better understand your needs and we will recommend the best course of action.

I don’t know what a CAD file is, or how to get one, what should I do?

Simply contact us at PADT and we will walk you through the whole process. You may also want to visit PADT’s The RP Resource, it contains a wealth of useful information for experienced users and those who are new to the technology.

My design is Confidential, how do I make sure it will stay that way?

PADT has provided prototyping services to over a thousand companies and individuals without a single confidentiality issue. We treat every customer’s part as confidential. If needed, we have a standard 2-way confidentiality agreement that we can sign to provide additional assurance that we will keep your ideas secure.

How precise are the Rapid Prototyping Technologies that PADT offers?

Precision and accuracy are very geometry dependent as well as machine dependent. Below are basic baselines to consider.

TECHNOLOGY ACCURACY
SLA +/-0.005″ plus 0.001″ per inch
SLS +/-0.010″ plus 0.002″ per inch
FDM +/-0.008″ plus 0.001″ per inch
POLYJET +/-0.008″ plus 0.001″ per inch
CNC MACHINING +/-0.003″

Why does PADT have so many different Rapid Prototyping Technologies?

Because each technology has advantages and disadvantages. By having each of the leading technologies, and multiple materials options for each, PADT can meet almost any rapid prototyping need.

The only common technology that PADT does not have is a ZPrinter. Why?

Frankly the parts are too fragile. Although the technology does allow you to print in color, the resulting parts are not robust enough for our customers.

What is the largest part you can make?

The largest part we can make in one run can fit in a 14 x 10 x 10 in volume. But PADT has made parts that are several over six feet long by simply building individual pieces together. We also partner with other service providers that have specialty very large machines.

How small of a part can you make? What is the smallest feature you can replicate?

Small features and thin walls are very geometry dependent as well as machine dependent. Below are basic baselines to consider.

TECHNOLOGY TYPICAL ABSOLUTE BEST
SLA 0.010″ 0.004″
SLS 0.020″ 0.010″
FDM 0.030″ 0.020″
POLYJET 0.010″ 0.002″
CNC MACHINING Material dependent Material dependent

My part needs to look like the final production part, can you do that? Can you paint my part? Can you put a surface finish on it?

Yes, in fact that is a specialty of PADT. Our technicians are true artists that know how to prep, sand, and paint a part so that when they are done, it looks like a final product. We can apply your specified surface finish or paint color.

My product has hard and soft pieces, can you make a prototype with different stiffness? Can you make a flexible part? Can you make a rubber part?

Yes. PADT has multiple technologies available that allow us to make parts that mimic several different soft materials, including over molding on a more rigid part.

My part needs to operate at a high temperature | in water | outside | under pressure | with nasty chemicals | around clumsy people. Can you make me a prototype that will survive?

In most cases we can. Most of our machines have materials that work well with water and pressure. Please contact us with your specifications and we will go over your options with you. For higher temperatures and specific chemicals, we will have to do a little research.

Can I use a prototype as a production part?

Yes. Using parts made on “prototyping” equipment as production parts is becoming more and more common for low volume manufacturing and certain smaller parts that can only be made using an additive manufacturing process.

Can rapid prototyping parts be used for tooling and fixtures?

Yes. In fact, this is one of the fastest growing areas of rapid prototyping: rapid tooling. It is becoming mainstream for many different manufacturing processes because the parts can be made very quickly and, if the proper technology is used, they can be made very strong.

Can you make a part that is clear or a certain color?

Yes. Several of our technologies have a clear material. In addition, several solid material colors are available. And, if needed, PADT can always paint your part any color you need.

I need more than one part, can you make multiple parts? Is there a less expensive way to make copies of my part?

PADT uses soft tooling and prototype injection molding extensively to make multiple copies of a part. Our soft tooling technicians are very experienced and skilled and are able to compete effectively on speed and cost with many other options, including off-shore manufacturing.

Do you do machining, vacuum forming, traditional model making?

In addition to the Rapid Prototyping technologies that PADT has in house, our shop is also equipped with a CNC mill and lathe, a vacuum forming machine, and all of the tools needed to do traditional model making.

Can you make sheet metal prototypes?

This is one of the few prototyping options that PADT does not offer. But if you are looking for a sheet metal prototyping provider, we have several we can recommend.

Can you make metal parts?

We do not offer metal parts at this time unless we use our CNC machining center. But we do partner with several providers that can make metal parts using rapid prototyping technology.