Shopping for a Rapid Prototyping Service Provider

imageThere are a lot of companies out there providing Rapid Prototyping, Rapid Manufacturing and 3D Printing as a service to others.  As of this writing, Wholers Associates lists 98 around the world. That list does not include the smaller providers or companies who offer RP services as a side service.  It certainly does not include the hundreds of people with low cost 3D printers who will make parts for people. 

With so many choices, how do you pick the right one?

Well, the obvious answer is you just pick PADT to be your service provider.  That makes it easy and you can stop reading now.

Didn’t Work? Damn. Well it was worth a try.  So, taking off the PADT marketing hat and putting on the design engineer hat and engineering manager sweater, here is how I recommend that you make a logical decision:

Why are you Making a Prototype?

Before you do anything you need to ask yourself this question and get a good answer.  Sometimes, the real answer is because it is cool and you want to impress your boss or customer. That is OK. Just keep it in mind when you pick a vendor.  Somebody cheep and fast that delivers so-so quality may not be a good choice.

An important part of the question is also what will you use it for?  Most prototypes are made for visualization – a 3D image.  But many are also made to check fit, form, or function. How you plan to use your prototype should impact the technology you use, and the material choices you make for that technology.

Does it need to look like the production part? Does it need to perform as close to the production part as possible?  If the answer to either question is yes, then you need to really look at what post-processing (sanding, surface finish, texturing, painting) your prototype will need and which providers can supply it.

In fact, if your potential RP service provider does not ask what you want the prototype for, you probably are working with the wrong provider.

Establish what is Important to You

Every customer is different, and often every project is different.  A good place to start is to look at these typical priorities, grouped into three classes, and rank them for your company:

  • The Basics:Image
    • Cost
    • Speed
    • Quality
  • The Interaction:
    • Location
    • Responsiveness of Staff
    • Effort Required to Work With
  • The Capabilities:
    • Technologies Available
    • Material Offerings
    • Knowledge and Experience of Staff
    • Post Processing  Available
    • Down Stream Services Available

Too many customers that we see at PADT who have worked with other service providers, and who have had a bad experience, just look at the first two priorities – cost and speed.  The reality is that there are a lot of things that impact the overall effectiveness of your prototyping effort.  Once you know how you will use your prototype, you can better determine what is important to you.

So rank your priorities and evaluate your potential vendors on the important ones.

Assessing the Basics: Cost, Speed, Quality

Cost and speed seem very easy to obtain. You just send your part file to the potential vendors and get quotes with cost and delivery time. But, you have to look at what you get for the cost, and what the total cost and time are.  Do you need to post-process the part yourself?  Will the quality, surface finish, and material strength meet your needs?  A part made on a low cost 3D Printer may only be $50 versus $500 on an SLA machine.  But if it breaks during your test, how much will that cost?

If you have not worked with a provider before, quality can be tough to determine.  Ask for a reference.  If they are local, go see their shop and look at sample parts.  It might be good to have all of your potential vendors make a simple and inexpensive sample part for you so you can compare all of them before you go off and order $12,000 worth of prototypes.  After you get parts from a vendor, make a note of the quality. If you work for a larger company, maybe share that with purchasing so they know who delivers high quality, and who does not.  We all know that a purchasing person will simply go on the transaction cost if you do not give them other factors to work with.

The Price of Interaction

Manufacturing consulting meetingThis is by far the most difficult set of priorities to define and quantify.  This is the fuzzy stuff that deals with the time, money, and emotional capital that is invested by you during the process of getting your prototype quoted, purchased, made, and delivered.  I wish there was a formula, but you just need to make a gut decision on this one.

After you interacted with a vendor, ask yourself if you found the interaction enjoyable and productive?  Did you get the information you needed quickly and efficiently?  Did they call you back or respond to your email in a quick manner? Did you feel that you were working with them, or was it a bit of a battle? 

I consider this important because what we are talking about here is Rapid Prototyping. It is not “I’m way ahead of schedule, have plenty of budget, and can wait to get my part whenever –prototyping.”  You are doing RP because you need a part fast, you need it right the first time, and your whole product development schedule is probably being held up by it.

If your RP partner is hard to work with, when you get into those stressful I-need-it-tomorrow situations, you can not afford the emotional and financial cost of battling our coaxing your provider to help you out. You need to know you have someone on your team that will step up and come through for you in a pinch.  Never under estimate the importance of how hard or how easy it is to interact with your Rapid Prototyping service provider – keep it in mind and let it weigh heavily in your decision.  It will pay off when you get to crunch time.

What does your Vendor Bring to the Table? Capabilities

Image

Novices in the world of 3D Printing or Rapid Prototyping usually start of with the thought that they just “need a prototype.”  What they have yet to learn is that there are literally hundreds of different options – combinations of various technologies, materials, and post-processing steps.  Picking a service provider based upon capabilities is actually easy:

  1. They need to have most of the major technologies available (SLA, SLS, FDM, Polyjet).
    A provider that is focused on only one or two technologies will fit your needs into what they have. They only have a hammer, so whatever you ask for, you will get a nail.
  2. They must offer a wide range of materials for each technology they have in house.
    This is a big one.  Often customers can get a part that is the wrong stiffness or strength because they use a vendor that just does not offer the full range of materials.
  3. They can offer the post processing you need for your prototypes planned usage.
    A vendor that has to go outside for detailed sanding or painting is just not going to work. They need to be able to give you the part, looking like you want it to look, when they are finished and without running around and counting on other providers.  If they tell you that it is easy and you can do it yourself, walk away.
  4. The engineers on staff understand the strengths and weaknesses of each technology, material property, and post-processing option.
    All of the other capabilities are useless if you can not talk to someone who understand them. You need to be able to call or email someone at your vendor, tell them what you want to do with your prototype, and have them give you reasonable options on how to get there.  If they just have people processing your order through a piece of software, you will get burned in the end.

Cliché’s Exist for a Reason: Don’t be Afraid to Shop Around, Ask Questions, You Get What you Pay For

In conclusion, we should all remember what our grandmother probably told us a few times. I know mine did: Don’t be afraid to shop around. If I put my service provider hat back on I cringe at this. We would like all of our customers to stay with us forever and never stray.  But the truth is that it is a competitive market out there, and if you do not shop around, then you may not be getting the best product and we may not be as focused on making sure we keep you as a customer.  So in the end, we all benefit.

And another thing she said: “Eric, ask questions. It doesn’t hurt anyone to ask questions.”  So do that. The answer may not be as important as how a potential provider answers the question. Does it show they can listen, that they know their stuff, and that they care about you?

Lastly, and most importantly: You Get What you Pay For. There is not need to elaborate on that one.

Image

This is a short list, and there is a lot more to think about. Do not hesitate to contact us at PADT to ask more questions and to learn more about how to pick the right Rapid Prototyping service provider.

3D Printing, Rapid Prototyping, Additive Manufacturing? What is the Difference?

imageThe technology called 3D Printing is getting a lot of press lately. Articles like “3D Printing is the New Personal Computer” and “The New MakerBot Replicator Might Just Change Your World” are all over this place in the fall of 2012.  For those of us who have been printing 3D parts since the early 1990’s, this new frenzy can be a imagebit annoying. At every trade show that PADT goes to these days a large number of non-technical people come up and start telling us about 3D Printing and how it is going to “change everything.”  The next question is almost always “Is that a big 3D Printer?” as they point at a nice big FORTUS 400.  “Well, no, that is a digital manufacturing center, which is a rapid prototyping technology that uses similar technology to 3D Printing but it is much more precise, the material…” and by that point their eyes glaze over and they start playing with the model of the USS Enterprise we put out on the table to attract people.

By sorting through branding, media hype, and the confusing array of new low cost technologies, some clarity can be found and direction for those of us who use these technologies for product development. 

Additive Manufacturing

The first place to start is to recognize that we are talking about additive manufacturing technologies.  Taking a part definition and adding material through a variety of methods to make a physical part.  In almost every case, you build a part by adding thin layers of material one on top of another. The additive process differentiates this type of manufacturing from molding, forming, and machining – all of which remove or shape material.

The advantage of additive manufacturing is that you have very few constraints on the shape of your final part and there is no tooling, no programming, and very little manual interaction with the process.  This has huge advantages over the traditional manufacturing methods when it comes to speed.  Although you pay a price in strength, material selection, and surface finish, you can get parts quickly without a lot of effort.

Rapid Prototyping

Additive manufacturing took off in the late 80’s because it allowed engineers to make prototypes of their parts quickly and easily.  Rapidly.  And that is why for almost twenty years, most people who use additive manufacturing refer to it as rapid prototyping.  And to this day, most of the users of additive manufacturing use it for making prototypes as part of their product development process.  RP sounds better than AM, and better describes what you use the technology for rather than the technology. So that name took off and has stuck.

Other Names, Other Uses

As the technology got better, and especially as the materials got better, people started using additive manufacturing for other uses beyond making prototypes.  And, as is the way of companies that are trying to sell stuff, the manufacturers starting coining new names for the applications as users come up with them:

  • Rapid Patterns: making a part that will be used as a pattern in a downstream manufacturing process.  This is very common with jewelry in that the pattern is used in a lost-wax process for casting.  It is also used a lot with soft tooling, where the pattern is used to make a negative mold out of a soft rubber material.
  • Rapid Tooling: Making fixtures and molds using additive manufacturing. Tools can be used as patterns for forming, patterns for casting, or even for making molds for injection molding.
  • Direct Digital Manufacturing:  This is one of my favorite names and abbreviations – DDM.  The difference here is that the additive manufacturing process is used to make a final product, not just a prototype. 
  • Rapid Manufacturing: The same as Direct Digital Manufacturing, but without the alliteration.

3D Printing

According to Wikipedia the term 3D Printing was invented at MIT in 1995 when someone used an inkjet printing head to “print” a binder on to a bed of powder.  They used a printer to do their additive manufacturing, and used the term 3D Printing to describe it. By the way, they went on to form ZCorp, the second most popular additive manufacturing process in the world. 

Even though it started being used to refer to an inkjet printing based approach, the name spread over time. The term really caught on because it is so descriptive. Additive Manufacturing, and even Rapid Prototyping, do not make a lot of sense to non-engineers. 3D Printing makes sense immediately to pretty much anyone.

Those of us who are diehards really want 3D Printing to refer to lower cost, affordable devices that make lower end prototypes.  And if you look at how the name is applied by the manufacturers, that is generally how it was used.  Here is a screen shot of the Stratasys home page, and see how they split their systems into 3D Printers and 3D Production systems:

image

But the name is working so well that we are seeing a shift towards refereeing to additive manufacturing as printing.  3DSystems is going full bore and as of this writing, refers to their whole line as “Printers” and differentiates them by calling them “personal, professional, and production.”

image

What is Old is New Again

So it looks like the trend is towards 3D Printing becoming the new term for an old technology. And those of us who call them RP machines will have to stop doing that, or just accept that we will be met with blank stares when we do.  So next time someone comes up to tell me they just read an article in Good Housekeeping about how they will be able to make replacement parts for their dish washer in the garage with a 3D Printer, I will smile and say “That is great. In fact, we use almost all of the major 3D Printing technologies in house at PADT, and we resell the most popular 3D Printers from Stratasys, Inc.  That includes that big FORTUS 900.  It is a big and accurate 3D Printer”

PADT Medical Receives Support Award from AZBio, and Provides Awards to Others

On October 23rd, 2012 PADT was honored to receive an award at the AZBio Awards event in recognition for our support of Innovation in the Arizona Bio-Technology community.  It is a very cool little guy and is very happy on our awards shelf:

AZBio-15Years-Award-2012

In addition, we were very honored to be asked to manufacture many of the awards that were handed out.  The distinctive double-double-helix design was a big hit again this year, and it was a real honor to know that so many companies, educators, and individuals will have something PADT made in our Rapid Prototyping group on their shelf.

group2

Rapid Prototyping Technology Animations

Every once in a while we get asked to go out and do presentations on Rapid Prototyping. As part of that, we like to explain the four major technologies: SLA, SLS, FDM, and Polyjet. No matter how many hand gestures we use people just don’t seem to get it unless we show an animation.

So we thought it would be good to share those with the community so that they can either learn about the basics of the technology or use these to help educate others. They are crude, we are engineers and not artists.  But they get the point across. We hope to have time to update them and add text.

They are in the form of animated GIF’s, so you can put them on a website or throw them in a PowerPoint and you don’t need a viewer or special software to view them.  Click on the images to get the larger version.

Use as you see fit, just remember to mention where you found them: P – A – D – T.

FDM-Animation

PolyJet_Animation

SLA-Animation-3

SLS-Animation

PADT’s YouTube Videos for Rapid Prototyping

As we get this new blog, The RP Resource, off the ground, we thought we would start with some posting about some videos we have done in the past that people in the RP community might find useful.

We will start off with a simple slide show that shows some of the cool models we have built over  the years:

RP Part Examples Slideshow

 

Next up is one of our favorite side projects, a clock we made on our Stratasys FORTUS 400 prototyping system.  We took the design for a wooden pendulum clock and modified it to work with our FDM system.  Very cool:

PADT FDM Pendulum Clock

 

Sometimes the best way to make a prototype is not to print it, but to machine it.  In this video we show off our 3-Axis milling skills:

3-Axis Milling

Our most popular videos are HOW-To videos for working with the Dimension 3D Printers.  In the first video Mario shows how to load material in the Dimension, in the second one he shows how to do the same with a uPrint:

Loading a Stratasys Dimension Printer
Loading a Stratasys uPrint Printer

 

You can go to PADT’s YouTube page: www.youtube.com/padtinc to see more videos. And subscribe so you will know when we post a new video.