The ANSYS Academic Program – The World’s Best Simulation Tools for Free or Discounted

Researchers and students at universities around the world are tackling difficult engineering and science problems, and they are turning to simulation more and more to get to understanding and solutions faster. Just like industry. And just like industry they are finding that ANSYS provides the most comprehensive and powerful solution for simulation. The ANSYS suite of tools deliver breadth and depth along with ease of use for every level of expertise, from Freshman to world-leading research professors. The problem in the past was that academia operates differently from industry, so getting to the right tools was a bit difficult from a lot of perspectives.

Now, with the ANSYS Academic program, barriers of price, licensing, and access are gone and ANSYS tools can provide the same benefits to college campuses that they do to businesses around the world.  And these are not stripped down tools, all of the functionality is there.

Students – Free

Yes, free.  Students can download ANSYS AIM Student or ANSYS Student under a twelve month license.  The only limitation is on problem size.  To make it easy, you can go here and download the package you need.  ANSYS AIM is a new user interface for structural, thermal, electromagnetic, and fluid flow simulation oriented towards the new or occasional user.  ANSYS Student is a size limited bundle of the full ANSYS Mechanical, ANSYS CFD, ANSYS Autodyn, ANSYS SpaceClaim, and ANSYS DesignXplorer packages.

You can learn more by downloading this PDF.

That is pretty much it. If you need ANSYS for a class or just to learn how to use the most common simulation package in industry, download it for free.

Academic Institutions – Discounted Packages

If you need access to full problem sizes or you want to use ANSYS products for your research, there are several Academic Packages that offer multiple seats of full products at discounted prices. These products are grouped by application:

  • Structural-Fluid Dynamics Academic Products — Bundles that offer structural mechanics, explicit dynamics, fluid dynamics and thermal simulation capabilities. These bundles also include ANSYS Workbench, relevant CAD import tools, solid modeling and meshing, and High Performance Computing (HPC) capability.
  • Electronics Academic Products — Bundles that offer high-frequency, signal integrity, RF, microwave, millimeter-wave device and other electronic engineering simulation capabilities. These bundles include product such as ANSYS HFSS, ANSYS Q3D Extractor,ANSYS SIwave, ANSYS Maxwell, ANSYS Simplorer Advanced. The bundles also include HPC and import/connectivity to many common MCAD and ECAD tools.
  • Embedded Software Academic Products — Bundles of our SCADE products that offer a model-based development environment for embedded software.
  • Multiphysics Campus Solutions— Large task count bundles of Research & Teaching products from all three of the above categories intended for larger-scale deployment across a campus, or multiple campuses.

You can see what capabilities are included in each package by downloading the product feature table.  These are fully functional products with no limits on size.  What is different is how you are authorized to use the tool. The Academic licence restricts use to teaching and research. Because of this, ANSYS is able to provide academic product licenses at significantly reduced cost compared to the commercial licenses — which helps organizations around the globe to meet their academic budget requirements. Support is also included through the online academic resources like training as well as access to the ANSYS Customer Portal.

There are many options on price and bundling based upon need and other variables, so you will need to contact PADT or ANSYS to help sort it all out and find the right fit for your organization.

What does all this mean?  It means that every engineer graduating from their school of choice should enter the workforce knowing how to use ANSYS Products, something that employers value. It also means that researchers can now produce more valuable information in less time for less money because they leverage the power of ANSYS simulation.The barriers are down, as students and institutions, you just need to take advantage of it.

Press Release: Innovative Additive Manufacturing Research Project Led by PADT Approved as Part of America Makes Multi-Million Dollar Grants

America-Makes-Logo-2We are pleased to announce that PADT has been awarded a grant from America Makes to further our research into combining our three favorite things:  Simulation, 3D Printing, and Product Development.  We will work with our partners at ASU, Honeywell Aerospace, and LAI International to study lattice structures created in 3D Printing, how to model them in ANSYS simulation software, and then how to use that information to drive product design.

A copy of the press release is below. Or read the official press release or download a PDF .

Press Release:

Innovative Additive Manufacturing Research Project Led by PADT Approved as Part of America Makes Multi-Million Dollar Grants

Arizona State University, Honeywell Aerospace and LAI International join PADT in technical research and educational outreach in 3D Printing

TEMPE, Ariz., July 25, 2016 — In one of the most critically needed areas of research in Additive Manufacturing, Phoenix Analysis & Design Technologies (PADT), the Southwest’s largest provider of numerical simulation, product development and 3D Printing services and products, today announced its project proposal titled “A Non-Empirical Predictive Model for Additively Manufactured Lattice Structures,” has been accepted as part of a multi-million dollar grant from the National Additive Manufacturing Innovation Institute, America Makes. PADT’s proposal was one of only seven selected, and one of only two where the leading organization was a small business.

IMG_0349To complete the deliverables, Arizona State University (ASU), Honeywell Aerospace and LAI International are assisting PADT in technical research with contributions from Prof. Howard Kuhn, a Professor at the University of Pittsburgh and a leading educator in Additive Manufacturing, for workforce and educational outreach.

“While there are several efforts ongoing in developing design and optimization software for lattice structures in additive manufacturing, there has been little progress in developing a robust, validated material model that accurately describes how these structures behave,” said Dhruv Bhate, PhD, senior technologist, PADT and author and principal investigator of the proposal. “We are honored to be chosen to research this important issue and provide the tools to enable entrepreneurs, manufacturers and makers to integrate lattice structures in their designs.”

One of the most definitive benefits of additive manufacturing is the ability to reduce weight while maintaining mechanical performance. A way to achieve this is by adding lattice structures to parts before manufacturing.  The advantages are crucial and can result in increased design flexibility, lower material costs and significant reductions in production time for industries such as aerospace and automotive.

Another aspect of PADT’s winning proposal is the development of a first-of-a-kind online, collaborative living textbook on Additive Manufacturing that seeks to provide comprehensive, up-to-date and structured information in a field where over 50 papers are published worldwide every day.  In addition, the team will develop a training class that addresses manufacturing, testing, theory and simulation as well as how they are combined together to deliver robust predictions of lattice behavior.

“We have identified Additive Manufacturing as a key lever of innovation in our company and recognize lattice structures as an important design capability to reduce mass, improve performance and reduce costs,” said Suraj Rawal, Technical Fellow, Advanced Technology Center at Lockheed Martin Space Systems Company – a leader in implementing Additive Manufacturing. “We also recognize the significance of this work in lattice behavior modeling and prediction as an important contribution to help implement the design, manufacturing, and performance validation of structures in our innovative designs.”

The award of this grant is another example of the leadership role that Arizona is playing in advancing the practical application of Additive Manufacturing, better known as 3D Printing.  PADT’s leadership role in the Arizona Technology Council’s Arizona Additive Manufacturing Committee, support of basic research in the area at ASU, and involvement with educating the next generation of users underscores PADT’s contribution to this effort and furthers the company’s commitment to “Make Innovation Work.”

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com.

Media Contact
Linda Capcara
TechTHiNQ on behalf of PADT
480-229-7090
linda.capcara@techthinq.com
PADT Contact
Dhurv Bhate, PhD
Senior Technologist, PADT
480.813.4884
dhruv.bhate@padtinc.com

IMG_0346