3D Printed Parts Create a Tricked-Out Truck

PADT’s Austin Suder is a Solidworks CAD wizard, a NASA design-competition (Two for the Crew) winner and a teaching assistant for a course in additive manufacturing (AM)/3D printing. Not bad for someone who’s just started his sophomore year in mechanical engineering at Arizona State University.

PADT's Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)
PADT’s Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)

In last month’s PADT blog post about adding heat-set inserts to 3D printed parts we gave a shout-out to Austin for providing our test piece, the off-road LED light unit he had designed and printed for his 2005 Ford F-150. Now we’ve caught up with him between classes to see what other additions he’s made to his vehicle, all created with his personal 3D printers and providing great experience for his part-time work with Stratasys industrial printers in PADT’s manufacturing department.

Q: What has inspired or led you to print multiple parts for your truck?

I like cars, but I’m on a college budget so instead of complaining I found a way to fix the problem. I have five 3D printers at my house – why not put them to work! I understand the capabilities of AM so this has given me a chance to practice my CAD and manufacturing skills and push boundaries – to the point that people start to question my sanity.

Q: How did you end up making those rear-mount LED lights?

I wanted some reverse lights to match the ones on the front of my truck, so I designed housings in SolidWorks and printed them in carbon fiber PLA. Then I soldered in some high-power LED lights and wired them to my reverse lights. These parts made great use of threaded inserts! The carbon fiber PLA that I used was made by a company called Vartega that recycles carbon fiber material. (Note: PADT is an investor of this company.)

Q: In the PADT parking lot, people can’t help but notice your unusual tow-hitch. What’s the story with that?

I saw a similar looking hitch on another car that I liked and my first thought was, “I bet I could make that better.” It’s made from ABS painted chrome (not metal); I knew that I would never use it to tow anything, so this opened up my design freedom. This has been on my truck for about a year and the paint has since faded, but the printed parts are still holding strong.

An adjustable-height "topology optimized" trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it's just for fun, not function. (Image courtesy PADT)
An adjustable-height “topology optimized” trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it’s just for fun, not function. (Image courtesy PADT)

This part also gets questioned a lot! It’s both a blessing and a curse. In most cases it starts when I’m getting gas and the person behind me starts staring and then questions the thing that’s attached to the back of my truck. The conversation then progresses to me explaining what additive is, to a complete stranger in the middle of a gas station. This is the blessing part because I’m always down for a conversation about AM; the downside is I hate being late for work.

Q: What about those tow shackles on your front bumper?

Unique ABS printed tow shackles - another conversation-starter. (Image courtesy PADT)
Unique ABS printed tow shackles – another conversation-starter. (Image courtesy PADT)

Those parts were printed in ABS – they’re not meant for use, just for looks. I’ve seen towing shackles on Jeeps and other trucks but never liked the look of them, so again I designed my own in this pentagon-shape. I originally printed them in red but didn’t like the look when I installed them; the unusual shading comes because I spray-painted them black then rubbed off some of the paint while wet so the red highlights show through.

Q: Have you printed truck parts in any other materials?

Yes, I‘ve used a carbon-fiber (CF) nylon and flexible TPU (thermoplastic polyurethane) on filament printers and a nylon-like resin on a stereolithography system.

The CF nylon worked well when I realized my engine bay lacked the real estate needed for a catch can I’d bought. This was a problem for about five minutes – then I realized I have the power of additive and engineered a mount which raised the can and holds it at an angle. The mount makes great use of complex geometry because AM made it easy to manufacture a strong but custom-shaped part.     

Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)
Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)

After adding the catch can to my engine, I needed a way to keep the hoses from moving around when driving so I designed a double S-clip in TPU. The first design didn’t even come close to working – the hoses kept coming loose when driving – so I evaluated it and realized that the outer walls needed to be thicker. I made the change and printed it again, and this time it worked great. In fact, it worked so well that when I took my truck to the Ford dealership for some warranty work, they went missing. (It’s OK Ford, you can have them – I’ll just print another set.)    

Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)
Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)

Other parts I printed in TPU included clips for the brake-lines. I had seen that my original clip had snapped off, so when I had the truck up on jacks, I grabbed my calipers and started designing a new, improved version. Thirty minutes later I had them in place.

I also made replacement hood dampeners from TPU since they looked as though they’d been there for the life of the truck. I measured the old ones, used SolidWorks to recreate them (optimized for AM), printed a pair and installed them. They’ve been doing great in the Arizona heat without any deformation.      

New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)
New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)

My last little print was done on my SLA system in a material that behaves like nylon. (This was really just me showing off.) The plastic clips that hold the radiator cover had broken off, which led me to use threaded sheet-metal inserts to add machine threading to the fixture. I then purchased chrome bolts and made some 3D printed cup-washers with embossed text for added personalization and flair.  

Even the cup-washers got a 3D printed make-over on Austin's F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)
Even the cup-washers got a 3D printed make-over on Austin’s F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)

Q: What future automotive projects do you have in mind?

I’m working on a multi-section bumper and am using the project to standardize my production process – the design, material choice, sectioning and assembling. I got the idea because I saw someone with a tube frame car and thought it looked great, which led to me start thinking about how I could incorporate that onto my truck.

When I bought my F-150, it had had a dent in the rear bumper. I was never happy with this but didn’t have the money to get it fixed, so at this point the tube-frame look came full circle! I decided that I was going to 3D print a tube-frame bumper to replace the one with a dent. I started by removing the original bumper, taking measurements and locating possible mounting points for my design. Then I made some sketches and transferred them into SolidWorks.

The best part about this project is that I have additive on my side. Typical tube frame construction is limited by many things like bend allowance, assembly, and fabrication tooling. AM has allowed me to design components that could not be manufactured with traditional methods. The bumper will be constructed of PVC sections connected by 50 ABS printed parts, all glued together, smoothed with Bondo and filler primer then painted black. This is a large project!  It will take a lot of hand-finishing, but it will be perfect.

Q: If you were given the opportunity to work on any printer technology and/or material, what would you want to try working with?

Great question! If I had the opportunity to use AM for automotive components, I would redesign internal engine components and print them with direct metal laser sintering (DMLS), one of PADT’s other AM technologies. I would try printing part like piston rods, pistons, rocker arms, and cylinder valves. Additive is great for complex geometries with exotic materials.

Go Austin! Can’t wait to see what your truck looks like when you visit over semester break.

To learn more about fused deposition modeling (FDM/filament), stereolithography (SLA), selective laser sintering (SLS) and DMLS printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Video Tips – Two-way connection between Solidworks and ANSYS HFSS

This video will show you how you can set up a two-way connection between Solidworks and ANSYS HFSS so you can modify dimensions as you are iterating through designs from within HFSS itself. This prevents the need for creating several different CAD model iterations within Solidworks and allows a more seamless workflow.  Note that this process also works for the other ANSYS Electromagnetic tools such as ANSYS Maxwell.

Importing Material Properties from Solidworks into ANSYS Mechanical…Finally!

Finally! One of the most common questions we get from our customers who use Solidworks is “Why can’t I transfer my materials from Solidworks? I have to type in the values all over again every time.”  Unfortunately, until now, ANSYS has not been able to access the Solidworks material library to access that information.

There is great news with ANSYS 18.  ANSYS is now able to import the material properties from Solidworks and use them in an analysis within Workbench.  Let’s see how it works.

I have a Solidworks assembly that I downloaded from Grabcad.  The creator had pre-defined all the materials for this model as you can see below.

Once you bring in the geometry into Workbench, just ensure that the Material Properties item is checked under the Geometry cell’s properties.  If you don’t see the panel, just right-click on the geometry cell and click on Properties.

Once you are in ANSYS Mechanical, for example you will see that the parts are already pre-defined with the material specified in Solidworks .

The trick now is to find out where this material is getting stored. If we go to Engineering Data, the only thing we will see is Structural Steel. However when we go to Engineering Data Sources that is where we see a new material library called CADMaterials.  That will show you a list of all the materials and their properties that were imported from a CAD tool such as Solidworks, Creo, NX, etc.

You can of course copy the material and store it for future use in ANSYS like any other material.  This will save you from having to manually define all the materials for a part or assembly from scratch within ANSYS.

Please let us know if you have any questions and we’ll be happy to answer them for you.

Video Tips: Importing SolidWorks Geometry into ANSYS Mechanical

TheFocus-Video-Tips-2We are pleased to introduce a new feature in The Focus blog, video posts.  With this entry we are putting up our first “The Focus Video Tips, Examples, and Demonstrations”  Sometimes a video just works better, especially when showing how to do something in a Graphical User Interface.

So we have put some basic infrastructure in place and that lets us quickly record something on one of our computers, stick a title and end slide on it, and then upload to YouTube.

In this first entry, we show how easy it is to read in geometry from SolidWorks to ANSYS Mechanical.