FDM printed part with surface texture added in SolidWorks 2020.

Printing 3D Texture on FDM 3D Printed Parts – it can be done!

While many examples exist of impressive texturing done on 3D printed Stratasys PolyJet printed parts (some wild examples are here), I have to admit it took me a while to learn that true texturing can also be added to Stratasys Fused Deposition Modeling (FDM) parts. This blog post will walk you through adding texture to all faces or some faces of a solid model, ready for FDM printing. You, too, may be surprised by the results.

I know that complex texturing is possible in a graphics sense with such software packages as Rhino, PhotoShop, Blender and more, but I’m going to show you what you can achieve simply by working with SolidWorks, from Rev. 2019 onwards, as an easy starting point. From there, you can follow the same basic steps but import your own texture files.

Example of Stratasys FDM part set up to print with a checkerboard surface texture. (Image courtesy PADT Inc.)
Example of Stratasys FDM part set up to print with a checkerboard surface texture. (Image courtesy PADT Inc.)

SolidWorks Texture Options

First off, let’s clarify some terms. Texture mapping has existed for years and strictly speaking creates a 2D “texture” or pattern. If I were to wrap that imagery around a 3D CAD model and print it on, say, a PolyJet multi-color 3D printer, I’d get a 3D part with a flat or perhaps curved surface decorated with a multi-color “picture” such as a map or a photo of leather. It could conform, but it’s still basically a decal.

A 3D texture instead is more properly referred to as Bump Mapping (not to be confused with …..too late….bit mapping). Bump mapping interprets the color/contrast information of a 2D image such that it renders light and shadow to give the illusion of a 3D part, while remaining in 2D. Taking this concept one step further, 3D CAD software such as SolidWorks can apply rules that convert white, black and grey shades into physical displacements, producing a kind of tessellated topology mapping. This new information can be saved as an STL file and generate a 3D printed part that has physical, tactile variations in material height across its surface. (For a detailed explanation and examples of texture versus bump-mapping, see the GrabCAD Tutorial “Adding Texture to 3D Models.”)

For FDM parts, you’ll get physical changes on the outer surface of the part that appear as your choice of say, a checkerboard, an arrangement of stars, a pebbly look or a series of waves. In the CAD software, you have a number of options for editing that bump map to produce bigger or smaller, higher or lower, finer or coarser variations of the original pattern, prior to saving the model file as an STL file.

Stepping through SolidWorks 3D Texturing

The key to making this option work in SolidWorks 3D CAD software (I’m using SolidWorks 2020), is in the Appearances tab. Here are the steps I’ve taken, highlighting the variety of choices you can make. My example is the Post-It Note holder I described in my PADT blog post about advanced infill options in GrabCAD Print.

  1. Open Post-It note CAD file, select Solid Bodies (left menu) and select Appearances (in the right toolbar).
A screenshot of a video game

Description automatically generated
  1. Expand Appearances and go all the way down to Miscellaneous, then click to open the 3D Textures folder.
A screenshot of a cell phone

Description automatically generated
  1. Scroll down to choose one of the more than 50 (currently) available patterns. Here, I’ve chosen a 5-pointed star pattern.
A screenshot of a computer

Description automatically generated
  1. I dragged and dropped that pattern onto the part body. A window opens up with several choices: the default is to apply the pattern to all faces:
A screenshot of a computer

Description automatically generated

However, you can mouse over within that pop-window to select only a single face, like this:

A screenshot of a computer

Description automatically generated
  1. When you’ve applied the pattern to either all faces or just one or two, you’ll see a new entry in the left window, Appearances, with the subheading: 5-pointed Star. Right-click on those words, and choose Edit Appearance:
A screenshot of a computer

Description automatically generated

Then the Appearances window expands as follows, opening by default to the Color/Image tab:

A screenshot of a computer

Description automatically generated

In this pane, if desired, you could even Browse to switch to a different pattern you have imported in a separate file.

  1. Click on Mapping, and you’ll see a number of “thumb wheel” sliders for resizing the pattern either via the wheel, clicking the up/down arrows, or just entering a value.

Mapping: this moves the pattern – you can see it march left or right, up or down. I used it to center the stars so there aren’t any half-stars cut off at the edge.

A screenshot of a computer

Description automatically generated

Size/Orientation: You can also try “Fit width to selection” or “Fit height to selection,” or experiment with height and width yourself, and even tilt the pattern at an angle. (If you don’t like the results, click on Reset Scale.) Here, I’ve worked with it to have two rows of five stars.

  1. Remember I said that you can also make the pattern higher or lower, like a change in elevation, so that it stands out a little or a lot. To make those choices, go to the Solid Bodies line in the Feature Manager tree, expand it, and click on the part name (mine is Champfer2).

In the fly-out window that appears, click on the third icon in the top row, “3D Texture.” This opens up an expanded window where you can refine the number of triangular facets that make up the shape of the selected texture pattern. In case you are working with more than one face and/or different patterns on each face, you would check the box under Texture Settings for each face when you want to edit it.

A screenshot of a computer

Description automatically generated

Here is where you can flip the pattern to extend outwards, or be recessed inwards, or, if you brought in a black/white 2D pattern in the first place, you can use this to convert it to a true 3D texture.

I’ll show you some variations of offset distance, refinement and element size, with exaggerated results, so you can see some of the possible effects:

A screenshot of a social media post

Description automatically generated

In this first example, the only change I made from the default was to increase the Texture Offset Distance from 0.010 to 0.200. The stars are extending out quite visibly.

Next, I changed Texture Refinement from 0% to 66.7%, and now you can see the stars more distinctly, with better defined edges:

A screenshot of a computer

Description automatically generated

Finally, I am going to change the Element size from 0.128 to 0.180in. It made the star edges only slightly sharper, though at the expense of increasing the number of facets from about 24,000 to 26,000; for large parts and highly detailed texturing, the increased file size could slow down slicing time.

  1. To make sure these textured areas print, you have to do one more special step: Convert to Mesh Body. Do this in the Feature Manager by right-clicking on the body, and selecting the second icon in the top row, “Convert to Mesh Body.” You can adjust some of these parameters, too, but I accepted the defaults.
A screenshot of a computer

Description automatically generated
  1. Lastly, Save the file in STL format, as usual.

At my company, PADT, my favorite FDM printer is our F370, so I’m going to set this up in GrabCAD Print software, to print there in ABS, at 0.005in layers:

A screenshot of a computer

Description automatically generated

You can definitely see the stars popping out on the front face; too bad you can also see two weird spikes part-way up, that are small bits of a partial row of stars. That means I should have split the face before I applied the texture, so that the upper portion was left plain. Well, next time.

Here’s the finished part, with its little spikes:

A picture containing table, sitting

Description automatically generated

And here’s another example I did when I was first trying out a checkerboard pattern; I applied the texture to all faces, so it came out a bit interesting with the checkerboard on the top and bottom, too. Again, next time, I would be more selective to split up the model.

A picture containing table, sitting, wooden, luggage

Description automatically generated

NOTE: It’s clear that texturing works much better on vertical faces than horizontal, due to the nature of the FDM layering process – just be sure to orient your parts to allow for this.

For More Information on Texturing

SolidWorks offers a number of tutorials on the texturing set-up process, such as http://help.solidworks.com/2019/english/solidworks/sldworks/c_3d_textures.htm, and Shuvom Ghose at GrabCAD gives even more details about what to expect with this process in his post https://grabcad.com/tutorials/how-to-3d-texture-your-parts-for-fdm-printing-using-solidworks-2019

There will also be a general Stratasys webinar on The Benefits of 3D Printing Physical Textures on July 29 at 9am PT.

Commercial aircraft companies are already adding a pebble texture to flight-approved cosmetic FDM parts, such as covers for brackets and switches that keep them from being bumped. If you try this out, let us know what texture you chose and send us a photo of your part.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services, and is an authorized reseller of Stratasys products. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

The Mini-EUSO (Extreme Universe Space Observatory), now flying in the International Space Station on the Russian Zvezda module. 3D printed brackets made from Stratasys Ultem 9085 holds photo-multiplier sensors in place. (Image courtesy Italian National Institute for Nuclear Physics (INFN))

3D Printing for Space: FDM Materials on Real Missions

UV sensor section of the Mini-EUSO (Extreme Universe Space Observatory) telescope, now flying in the International Space Station on the Russian Zvezda module. The bracket to mount photo-multiplier detectors above the flat focal plane was 3D printed on a Stratasys F450 system from space-qualified Ultem 9085 filament.
 (Image courtesy Italian National Institute for Nuclear Physics (INFN))
UV sensor section of the Mini-EUSO (Extreme Universe Space Observatory) telescope, now flying in the International Space Station on the Russian Zvezda module. The bracket to mount photo-multiplier detectors above the flat focal plane was 3D printed on a Stratasys F450 system from space-qualified Ultem 9085 filament.
(Image courtesy Italian National Institute for Nuclear Physics (INFN))

What a cool time to be involved in space-based projects, from the recent, stunningly successful manned Space X launch that linked up with the International Space Station (ISS), to the phase 1, unmanned Northrop Grumman/Lockheed Martin Artemis OmegA launch planned for a Spring 2021 debut. In between these big-splash projects are the launches of hundreds of small satellites, whether a 227 kg Starlink or a 1 kg CubeSat. (According to the Space Surveillance Network of the United States Space Force, there are more than 3,000 active satellites currently in orbit.)

One common thread that runs through many of these technology achievements is the use of 3D printed polymer parts, not just as manufacturing tools and fixtures but as flight-certified, end-use components. Applications already in use include:

– Enclosures, casings and covers for bus structures, avionics and electrical systems

– Mounting/routing brackets and clips for wire harnesses

– Barrier structures that separate different on-board experiments

The number and variety of these applications may surprise you, particularly as demonstrated with Stratasys fused deposition modeling (FDM) printed parts made from one of two currently selected materials: Ultem 9085 and Antero ESD (Antero 840CN03). (Tune in for the Stratasys webinar on this topic, Thursday, July 23, at 10am CDT, Additive Manufacturing Applications and Materials for Space.)

Tough, lightweight, space-ready materials

If ever an industry needed light-weight parts, it’s the space industry. Every kilogram loaded onto a rocket demands a physics-determined, expensive amount of fuel to create the thrust that will push it against Earth’s gravity. In addition, most components are one-of-a-kind or low volume. No wonder engineers have worked for decades to replace dense metals with effective, lighter weight polymers.

Those polymers must meet stringent requirement for mechanical behavior:

  • High strength-to-weight ratio
  • Heat resistant up to 320F/167C
  • Chemically resistant to various alcohols, solvents and oils
  • Flame-retardant
  • Non-outgassing

Add to this the need to work in a form that is compatible with additive manufacturing, and the number of material options goes down. However, there are two filaments that have made the grade.

Ultem 9085 is a polyetherimide (PEI) thermoplastic developed and marketed in raw form by SABIC. Stratasys uses strict quality control to convert it into filament that runs on its largest industrial printers and also offers a certified grade that includes detailed production test-data and traceable lot numbers.

Stratasys Ultem 9085 parts have been certified and flown on aircraft since 2011 and have been key components in spacecraft beginning in 2013, such as onboard the Northrop Grumman Antares vehicles typically used for resupplying the ISS.  An unusual project that has used Ultem 9085 parts is MIT/NASA Ames Research Center’s Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES). Various iterations of these colorful nano-satellites (looking like volley-ball-sized dice) have floated inside the ISS since 2006, with an initial goal of testing the algorithms and sensors required to remotely control the rendezvous and docking in weightlessness of two or more satellite-type structures.

Since then many different versions have been built and delivered to the astronauts of the ISS; both high school and college students have been heavily involved in designing experiments that test physical and mechanical properties of materials in microgravity, such as wireless power transfer. In 2014, the “Slosh” project used Ultem 9085 parts to help connect the units to investigate the behavior of fluids such as fuel sloshing between containers.

More recently, in May 2020, Italian researchers at the National Institute for Nuclear Physics (INFN) relied on Ultem 9085 to build several final parts in its ultraviolet telescope that is now operating onboard the ISS. Called the Mini-EUSO (Extreme Universe Space Observatory), this piece of equipment is one element of a multi-component/multi-year study of terrestrial and cosmic UV emissions, and is now mounted in an earth-facing window of the ISS Russian Zvezda module.

Scientists involved in the Mini-EUSO noted that 3D printing saved them a lot of time in the development and manufacturing process of custom brackets that attach photo-multiplier detectors to the top and bottom of the focal surface, permitting modifications even “late” in the design process. Their use also saved several kilograms of upload mass.

The Mini-EUSO (Extreme Universe Space Observatory), now flying in the International Space Station on the Russian Zvezda module. Upper photo: Close-up of the 3D printed Ultem 9085 brackets (in red) used to mount detector units to the top and bottom edges of the focal plane (blue/purple squares). (Image courtesy Italian National Institute for Nuclear Physics (INFN))
Left: 3D printed Ultem 9085 face-plate added to Mini-EUSO detector bracket. Right: Final unit with electronics included, installed in the complete Mini-EUSO instrument housing. (Images courtesy Italian National Institute for Nuclear Physics (INFN))

The Mini-EUSO (Extreme Universe Space Observatory), now flying in the International Space Station on the Russian Zvezda module. Upper photo: Close-up of the 3D printed Ultem 9085 brackets (in red) used to mount detector units to the top and bottom edges of the focal plane (blue/purple squares). Lower left: 3D printed face-plate added to bracket. Lower right: Final unit with electronics included, installed in the complete Mini-EUSO instrument housing. (Images courtesy Italian National Institute for Nuclear Physics (INFN))

Electrostatic Dissipative PEKK: Antero ESD

Although Ultem 9085 has proven extremely useful for many space-based applications, for certain applications even more capability is needed. The search was on for an electrostatic dissipative filament that also displayed great chemical, mechanical and flame/smoke/toxicity properties. NASA Goddard Spaceflight Center became the driving force behind Stratasys’ subsequent development of Antero ESD (Antero 840CN03), a filament based on the already successful Antero 800NA.

Both Antero products are based on polyetherketoneketone (PEKK), a high-strength, chemically resistant material; in addition, the ESD version is loaded with carbon-nanotube chopped fibers providing a moderately conductive “exit path” that naturally dissipates any charge build-up during normal operations. It also prevents powders, dust or fine particles from sticking to the surface.

NASA first flew Antero ESD parts in 2018 in the form of brackets holding fiber optic cables smoothly in place. This was inside the climate-change monitoring satellite called Ice, Cloud and land Elevation Satellite-2 (ICESat-2). The satellite was built and tested by then Northrop Grumman Innovation Systems, now part of Northrop Grumman Space Systems; the instrument itself is called the Advanced Topographic Laser Altimeter System (ATLAS), a space-based LIDAR unit. Built and managed by NASA Goddard Space Flight Center, this satellite monitors such data as changes in polar ice-sheet thickness.

A Stratasys Antero ESD (Antero 840CN03) 3D printed part (the black curved bracket holding fiber-optic cables) is shown toward the back of NASA’s Advanced Topographic Laser Altimeter System (ATLAS) instrument. This device was launched in 2018 and operates onboard the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) satellite. (Image courtesy NASA)

A Stratasys Antero ESD (Antero 840CN03) 3D printed part (the black curved bracket holding fiber-optic cables) is shown toward the back of NASA’s Advanced Topographic Laser Altimeter System (ATLAS) instrument. This device was launched in 2018 and operates onboard the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) satellite. (Image courtesy NASA)

Counting Down for Launch

An even bigger Antero ESD application – bigger in multiple ways – is waiting in the wings for its debut, comprising sections of the Orion module designed and built by Lockheed Martin Space Systems. This spacecraft will eventually carry astronauts to the Moon and beyond as part of NASA’s Artemis program, with the first un-crewed, lunar-orbit launch scheduled for Spring 2021.

The Orion craft’s docking hatch cover is made entirely from sections printed in Antero ESD. Six pie-shaped sub-sections with intricate curves and cut-outs fit together forming a one-meter diameter ring with a central hole. (If Ultem 9085 had been used, the parts would have needed a secondary coating or nickel-plating to deflect static charge, making the Antero ESD option very attractive.)

Ready, set, print, launch!

Overall view and close-up of Orion spacecraft six-piece hatch cover, 3D printed in Stratasys Antero 840CN03, a carbon-nanotube-fiber filled PEKK thermoplastic with ESD properties. The complete cover diameter is approximately one meter. (Image courtesy Lockheed Martin Space Systems)

Overall view and close-up of Orion spacecraft six-piece hatch cover, 3D printed in Stratasys Antero 840CN03, a carbon-nanotube-fiber filled PEKK thermoplastic with ESD properties. The complete cover diameter is approximately one meter. (Image courtesy Lockheed Martin Space Systems)

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services, and is an authorized reseller of Stratasys products. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

From visualization to simulation: Digital Anatomy Solutions for 3D Printing – Webinar

The Stratasys J750 Digital Anatomy printer truly brings the look and feel of medical models to life with unrivaled accuracy, realism and functionality. Whether used for surgeon training or to perform testing during device development, its models provide unmatched clinical versatility mimicking both the appearance and response of human tissue.

Bring medical models to life. The J750 Digital Anatomy Printer takes the J750 capabilities to the next level. Step up to the printer’s digital capabilities to create models with an incredible array of microstructures which not only look, but now feel and function like actual human tissue for true haptic feedback. All of this in a single print operation with minimal to no finishing steps like painting, sanding or assembly.

Join PADT’s 3D Printing & Support Application Engineer Pam Waterman for a discussion on the value of this innovative new technology, including:

– How it solves challenges facing medical device companies and hospitals

– More realistic, functional, and anatomically accurate modeling capabilities

– Quicker design and development, leading to reduced time-to-market

– And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Five Ways to Save Time and Money in Your Product Development Process Using the Stratasys J55

Is your current prototyping process costing you more time and money than it should?

Bring higher quality modeling in-house at your team’s elbow, and straight into the design process. Using traditional production methods is costing your product development teams time and money.

Quality model shops have a long queue and large price tag, traditional modeling by hand is laborious and time consuming, and outsourcing comes with a laundry list of communication headaches, IP theft concerns, and extra costs.


Ready to learn more?


Make communication easier, improve design quality, and reduce time to market.

Click the link below to download the solution guide and discover five ways the Stratasys J55 can help you save time and money during the product development process. 

Download Here

Introducing the Stratasys J55 3D Printer – Possibilities at Every Turn

From perfecting products to applying concepts learned in the classroom, Stratasys can help you realize any number of design ideas. The new J55 introduces a rotating print platform for outstanding surface finish and printing quality, and features multimaterial capabilities and material configurations for both industrial and mechanical design.

The Stratasys J55 3D Printer is a huge leap forward for accessible, full color 3D printing and allows designers to have multiple iterations of a prototype ready and at their fingertips throughout every phase of the design process.

Enhanced 3D printing capabilities include – static print head, rotating build tray, UV LED illumination technology, new material cartridge design, and more. The full reliability and quality of PolyJet technology created for an office or studio environment, at an affordable price.

Designed for consistent, stable performance, the J55 requires zero mechanical calibrations and features a “ready-to-print” mode, so you can make ideas a reality without interruption.

Click the link below to download the product brochure and learn how this innovative new machine is revolutionizing the world of additive manufacturing. 

Example of full color part with mapped image, created from 3MF file format brought into GrabCAD Print and printed on a Stratasys PolyJet 3D printer. (Image courtesy GrabCAD)

3MF Printing Format Comes to GrabCAD Print

Example of full color part with mapped image, created from 3MF file format brought into GrabCAD Print and printed on a Stratasys PolyJet 3D printer. (Image courtesy GrabCAD)

Example of full color part with mapped image, created from a 3MF file-format brought into GrabCAD Print and set up to print on a Stratasys PolyJet 3D printer. (Image courtesy GrabCAD)

What is the 3MF format? How does it differ from the standard STL format? And what can you do with it, especially if your 3D printers run GrabCAD Print software from Stratasys?

For most designers, engineers and users involved in 3D printing, regardless of the 3D CAD software you use, you save (convert) your model to print as an STL format file. A lot has been written about it, including a PADT post from back in 2012 – and STL-wise, things really haven’t changed. This format approximates the native CAD solid model as a closed surface comprising small triangles of various shapes and sizes. STL has been the standard since the AM industry began, and although different CAD packages use different algorithms to create the mesh, for the most part, it’s worked pretty well.

A Sample STL File Segment

However, an STL file is simply a large text file listing the Cartesian coordinates for each vertex of the thousands of triangles, along with info on the normal direction:

Sample code from saving a CAD model in STL format.

A modest number of large triangles produces relatively small files but doesn’t do a good job of reproducing curves (think highly faceted surfaces); conversely, big files of many small triangles produce much smoother transitions but can take a long time to process in slicing software.

And, perhaps the biggest negative is that an STL file cannot include any other information: desired color, desired material, transparency, internal density gradient, internal fine structure or more.

What is 3MF?

In early 2015, Microsoft and a number of other major corporations including Autodesk, Dassault Systèmes, HP, Shapeways and SLM Group created a consortium to address these issues. They decided to overhaul a little-used file format called the 3D Modeling Format (3MF), to make it support highly detailed 3D model information and be more useful for 3D printing and related processes.

Logo 3MF Consortium

This ongoing consortium project defines 3MF as “a set of conventions for using XML to describe the appearance and structure of 3D models for the purpose of manufacturing (3D printing).”

In developer language, 3MF is a standard package or data that follows a core specification and may include some task-specific extensions.

In user terms, a 3MF file contains some or all of the following information in ASCII format:

  • Metadata about part name, creator and date
  • Information on the mesh of triangles (yes, it still creates and uses these, but does it better for a number of reasons, one of which is that it cannot create non-manifold edges (i.e., triangles that share endpoints with more than one triangle, which confuses the printer))
  • Color information (throughout the complete part body or in sub-sections)
  • Ways to define multiple materials combined as a composite
  • Texture information – what it is and where to place it
  • Ways to assign different materials to different sections of a part
  • Ways to duplicate information from one section of a part to another section, to save memory
  • Slicing instructions

Without getting into the nitty gritty, here are just two examples of XML code lines from 3MF metadata sections:

Example code of saving a solid CAD model in 3MF format.

Meaning, information about the part number and the part color rides along with the vertex coordinates! For a deep-dive into the coding schema, including a helpful glossary, see the 3MF github site; to learn how 3MF compares to STL, OBJ, AMF, STEP and other formats, check out the consortium’s About Us page.

Exporting 3MF Files

Now, how about using all of this? Where to start? Many 3D CAD software packages now let you save solid models as 3MF files (check out your “Save As” drop-down menu to verify), but again, they can vary as to what information is being saved. For example, a SolidWorks 3MF file can generate data on color and material but does not yet support transparency.

Here are all the options that you see in SolidWorks when you click the arrow next to “Save As”:

Second step in SolidWorks for saving a file in 3MF format: check off “include materials” and “include appearance.” (Image courtesy PADT)

“Save As” window in SolidWorks 2019, where step number one is to select “.3mf” format. (Image courtesy PADT)

You can select “.3mf” but don’t Save yet. First, click on the “Options” button that shows up below the Save as File Type line, opening this window:


Second step in SolidWorks for saving a file in 3MF format: check off “include materials” and “include appearance.” (Image courtesy PADT)

You need to check the boxes for “Include Materials” and “Include Appearances” to ensure that all that great information you specified in the solid model gets written to the converted file. A good, short tutorial can be found here.

Another interesting aspect of 3MF files is that they are zipped internally, and therefore smaller than STL files. Look at the difference in file size between the two formats when this ASA Omega Clip part is saved both ways:

Comparison of file size for STL versus 3MF formats.

The 3MF-saved file size is just 13% the size of the standard STL file, which may be significant for file manipulation; for files with a lot of detail such as texture information, the difference won’t be as great, but you can still expect to save 30 to 50%.

Working with 3MF files in GrabCAD Print

Okay, so CAD programs export files in 3MF format. The other half of the story addresses the question: how does a 3D printer import and use a 3MF file? Developers of 3D printing systems follow these same consortium specifications to define how their software will set up a 3MF file to print. Some slicers and equipment already act upon some of the expanded build information, while others may accept the file but still treat it the same as an STL (no additional functions enabled so it ignores the extra data). What matters is whether the system is itself capable of printing with multiple materials or depositing material in a way that adds color, texture, transparency or a variation in internal geometry.

GrabCAD Print (GCP), the cloud-connected 3D Printer interface for today’s Stratasys printers – both FDM and PolyJet – has always supported STL and native CAD file import. However, in GCP v.1.40, released in March 2020, GrabCAD has added support for 3MF files. For files created by SolidWorks software, this adds the ability to specify face colors, body colors and textures and send all that data in one file to a PolyJet multi-material, multi-color 3D printer. (Stratasys FDM printers accept 3MF geometry and assembly structure information.)

For a great tutorial about setting up SolidWorks models with applied appearances and sending their 3MF files to GrabCAD Print, check out these step-by-step directions from Shuvom Ghose.

Example of setting up a textured part in SolidWorks, then saving the file in 3MF format and importing it into GrabCAD Print, for printing on a full-color Stratasys PolyJet printer. (Image courtesy GrabCAD)

Example of setting up a textured part in SolidWorks, then saving the file in 3MF format and importing it into GrabCAD Print, for printing on a full-color Stratasys PolyJet printer. (Image courtesy GrabCAD)

At PADT, we’re starting to learn the nuances of working with 3MF files and will be sharing more examples soon. In the meantime, we suggest you download your own free copy of GrabCAD Print to check out the new capabilities, then email or call us to learn more.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

Optimizing Materials Selection for Additive with ANSYS Granta – Webinar

There are hundreds of industrial AM machines and materials. New products come to market weekly, and picking the best option for a manufacturing or research project is a tough call. A wrong direction can be costly. This is where Ansys Granta and the Senvol Database come in handy. 

The Senvol Database details 1,000 AM machines and more than 850 compatible materials. Using this tool within Granta Selector, you can search and compare materials based on properties, type, or compatible machines. Identify and compare machines based on supported processes, manufacturer, required part size, cost, or compatible materials (and their properties). Quickly focus on the most likely routes to achieve project goals, save time and get new ideas as you research AM options.

Join PADT’s Application Engineer Robert McCathren for an overview of Ganta Material Selector, along with its importance and applications for those working with or interested in additive manufacturing.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Varied Infill Options for CAD models brought into GrabCAD Print software for 3D Printing. (Image courtesy PADT)

GrabCAD Print Software, Part Two: Simplify Set-ups, Save Time, and Do Cool Stuff You Hadn’t Even Considered

(Edited 3 August 2020 to reflect GrabCAD Print V1.44)

You haven’t really lived in the world of 3D printing until you’ve had a part fail spectacularly due to open faces, self-intersecting faces or inverted normals. Your part ends up looking more like modern art than technical part. Or perhaps the design you have in mind has great geometry but you wish that some parts could have regions that are dense and strong while other regions would work with minimal infill.

In Part One of this blog post about GrabCAD Print software, we covered the basics of setting up and printing a part; now we’ll look at several of the advanced features that save you set-up time and result in better parts.

Behind the Scenes Repairs

Stratasys GrabCAD Print software, available as a free download, is crafted for users setting up solid models for 3D printing on Stratasys FDM and PolyJet printers. Once you’ve started using it, you’ll find one of its many useful advanced features is the automated STL file-repair option.

Imported STL file, with GrabCAD Print ready to automatically repair errors. PADT image.

Most people still create solid models in CAD software then convert the file to the industry-standard STL format before opening it in a given 3D printer’s own set-up software. Every CAD package works a little differently to generate an STL file, and once in a while the geometry just doesn’t get perfectly meshed. Triangles may overlap, triangles may end up very long and very skinny, or the vector that signals “point in” or “point out” can get reversed.

Traditionally, the 3D printer set-up program reacts to these situations by doing one of two things: it prints exactly what you tell it to print (producing weird holes and shifted layers) or it simply refuses to print at all. Both situations are due to tiny errors in the conversion of a solid CAD model to a tessellated surface.

GrabCAD Print, however, gives your file a once-over and immediately flags sections of the model in need of repair. You can see a color-coded representation of all the problem areas, choose to view just some or all, and then click on Automatic Repair. No hand-editing, no counting layers and identifying sections where the problems reside – just a click of the virtual button and all the problem regions are identified, repaired and ready for the next processing steps.

CAD vs. STL: Do So Much More with CAD

GrabCAD Print also uniquely allows users to bring in their models in the original CAD file-format (from SolidWorks, Autodesk, PTC, Siemens, etc.) or neutral formats, with no need to first convert it to STL. For FDM users, this means GrabCAD recognizes actual CAD bodies, faces, and features, letting you make build-modifications directly in the print set-up stage that previously would have required layer-by-layer slice editing, or couldn’t have been done at all.

For example, with a little planning ahead, you can bring in a multi-body CAD model (i.e., an assembly), assemble and group the parts, then direct GrabCAD to apply different parameters to each body. This way you can reinforce some areas at full density then change the infill pattern, layout, and density in other regions where full strength is unnecessary.

Here’s an example of a SolidWorks model intended for printing with a solid lower base but lighter weight (saving material) in the upper sections. It’s a holder for Post-It® notes, comprising three individual parts – lower base, upper base and upper slot – combined and saved as an assembly.

Sample multi-body part ready to bring into GrabCAD Advanced FDM. Image PADT.

Sample multi-body part ready to bring into GrabCAD Advanced FDM. Image PADT.

Here was my workflow:

1 – I brought the SolidWorks assembly into GrabCAD, assembled and grouped all the bodies, selected an F370 Stratasys FDM printer, chose Print Settings of acrylonitrile butadiene styrene (ABS) and 0.010 inches layer height, and oriented the part.

2 -To ensure strength in the lower base, I selected just that section (you can do this either in the model tree or on the part itself) and opened the Model Settings menu at the right. Under Body, I chose Solid Infill.

3 – Next I selected the upper base, chose Hexagram, and changed the Infill Density to 60%.

4 – Lastly, I selected the upper slot section, chose Sparse, and changed the Infill Density to 35%.

5 – With all three sections defined, I clicked on Slice Preview, sliced the model and used the slider bar on the left to step through each section’s toolpath. For the screenshots, I turned off showing Support Material; the yellow bits indicate where seams start (another parameter that can be edited).

Here is each section highlighted, with screenshots of the parameter choices and how the part infill looks when sliced:

Upper base set up in GrabCAD to print as Hexagram pattern, 60% infill; sliced toolpath shown at right. Image PADT.
Upper slot section set up in GrabCAD to print as Sparse pattern, 35% infill; sliced toolpath shown at right. Image PADT.

So that you can really see the differences, I printed the part four times, stopping as the infill got partway through each section, then letting the final part print to completion. Here are the three partial sections, plus my final part:

Lower base (solid), upper base (hexagram) and first part of upper slot (sparse), done as partial prints. Image PADT.
Completed note-holder set up in GrabCAD Print, Advanced FDM mode, weighted toward the bottom but light-weighted internally. Image PADT.
Completed note-holder set up in GrabCAD Print using advanced infill features, weighted toward the bottom but light-weighted internally. Image PADT.

Automated Hole Sizing Simplifies Adding Inserts

But like the old advertisements say, “But wait – there’s more!” Do you use heat-set inserts a lot to create secure connections between 3D printed parts and metal hardware? Planning ahead for the right hole size, especially if you have different design groups involved and fasteners may not yet be decided, this is the feature for you.

Sample part set up for easy insert additions, using Advanced FDM in GrabCAD Print. Image PADT.

Sample part set up for easy insert additions, using advanced, automated hole-resizing features in GrabCAD Print. Image PADT.

In your CAD part model, draw a hole that is centered where you know the insert will go, give it a nominal diameter and use Cut/Extrude so that the hole is at least the depth of your longest candidate insert. Save the file in regular CAD format, not STL. Next bring your part into GrabCAD Print and go to Model Settings in the right-hand menu.

This time, click on Face (not Body) and Select the inner cylindrical wall of your hole. Several options will become active, including Apply Insert. When you check that box, a new drop-down will appear, giving you the choice of adding a heat-set insert, a helicoil insert or creating a custom size. Below that you select either Inch or Metric, and for either, the appropriate list of standard insert sizes appears.

Automatic hole-resizing in GrabCAD Print, for a specific, standard heat-set insert. Image PADT.

Choose the insert you want, click Update in the upper middle of the GrabCAD screen, and you’ll see the hole-size immediately changed (larger or smaller as needed). The new diameter will match the required oversized dimensions for the correct (melted into place) part-fit. You can even do this in a sidewall! (For tips on putting inserts into FDM parts, particularly with a soldering iron, see Adding Inserts to 3D Printed Parts: Hardware Tips.)

Note that this way, you can print the overall part with a sparse infill, yet reinforce the area around the insert to create just the right mass to make a solid connection. The Sliced view will show the extra contours added around each hole.

Sliced view showing insert holes with reinforced walls, done in GrabCAD Print. Image PADT.
Manufacturing notes automatically created in GrabCAD Print when insert holes are resized. Image PADT.

To document the selected choices for whoever will be doing the insert assembly, GrabCAD also generates a numbered, manufacturing-footnote that lists each insert’s size; this information can be exported as a PDF file that includes a separate close-up image of each insert’s location.

GrabCAD Print keeps adding very useful functions. Download it for free and try it out with template versions of the various Stratasys 3D printers, then email or call us to learn more.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

GrabCAD Print Software: Part One, an Introduction

Where are you on your New Year’s resolutions? They often include words such as “simplify,” “organize” and “streamline.” They can be timely reminders to rethink how you do things in both your personal and professional lives, so why not rethink the software you use in 3D Printing?

Preparing a CAD solid model or an STL file to print on a 3D printer requires using set-up software that is typically unique to each printer’s manufacturer. For Flashforge equipment, you use FlashPrint, for Makerbot systems you use MakerBot Print, for Formlabs printers you use PreForm, and so on.

GrabCAD Print software for setting up STL or CAD files to print on Stratasys 3D printers (main screen).
GrabCAD Print software for setting up STL or CAD files to print on Stratasys 3D printers (main screen). Image courtesy PADT.

For printers from industrial 3D printing company Stratasys, the go-to software is GrabCAD Print (along with GrabCAD Print Mobile), developed for setting up both fused deposition modeling (FDM) and PolyJet technologies in new and efficient ways. Often just called GrabCAD, this versatile software package lets you organize and control prints assigned to one of more than 30 printer models, so the steps you learn for one printer transfer directly over to working with other models.

If you’ve previously used Stratasys Catalyst (on Dimension and uPrint printers), you’ll find similarities with GrabCAD, as well as some enhanced functionality. If you’re accustomed to the fine details of Stratasys Insight, you’ll see that GrabCAD provides similar capabilities in a streamlined interface, plus powerful new features made possible only by the direct import of native CAD files.  Additionally, you can access Insight within GrabCAD, combining the best of both traditional and next-generation possibilities.

Simple by Default, Powerful by Choice

GrabCAD lets users select simplified default settings throughout, with more sophisticated options available at every turn. Here are the general steps for print-file preparation, done on your desktop, laptop or mobile device:

1 – Add Models: Click-and-drag files or open them from File Explorer. All standard CAD formats are supported, including SolidWorks, Autodesk, Siemens and PTC, as well as STL. You can also bring in assemblies of parts and multi-body models, choosing whether to print them assembled or not. (Later we’ll also talk about what you can do with a CAD file that you can’t do with an STL.)

2 – Select Printer: Choose from a drop-down menu to find whatever printer(s) is networked to your computer. You can also experiment using templates for printers you don’t yet own, in order to compare build volumes and print times.

3 – Orient/Rotate/Scale Model: Icons along the right panel guide you through placing your model or models on the build platform, letting you rotate them around each axis, choose a face to orient as desired, and scale the part up or down. You can also right-click to copy and paste multiple models, then edit each one separately, move them around, and delete them as desired.

4 – Tray Settings: This icon leads to the menu with choices such as available materials, slice height options, build style (normal or draft), and more; always targeted to the selected printer. These choices apply to all the parts on the tray or build sheet.

5 – Model Settings: Here’s where you choose infill style, infill density (via slider bar), infill angle, and body thickness (also known as shell thickness) per part. Each part can have different choices.

6 – Support Settings: These all have defaults, so you don’t even have to consider them if you don’t have special needs (but it’s where, for example, you would change the self-supporting angle).

7 – Show Slice Preview: Clicking this icon slices the model and gives you the choice to view layers/tool paths individually, watch a video animation, or even set a Z-height pause if you plan on changing filament color or adding embedded hardware.

8 – Print: You’re ready to hit the Print button, sending the prepared file to the printer’s queue.

Scheduling Your Print, and Tracking Print Progress

A clock-like icon on the left-side GrabCAD panel (the second one down, or third if you’ve activated Advanced FDM features) switches the view to the Scheduler. In this mode, you can see a day/time tracking bar for every printer on the network. All prints are queued in the order sent, and the visuals make it easy to see when one will finish and another start (assuming human intervention for machine set-up and part removal, of course).

Scheduling panel in GrabCAD Print, showing status of files printing on multiple 3D printers.
Scheduling panel in GrabCAD Print, showing status of files printing on multiple 3D printers. Image courtesy PADT.

If you click on the bar representing a part being built, a new panel slides in from the right with detailed information about material type, support type, start time, expected finish time and total material used (cubic inches or grams). For printers with an on-board camera, you can even get an updated snapshot of the part as it’s building in the chamber.

Below the Scheduler icon is the History button. This is a great tool for creating weekly, monthly or yearly reports of printer run-time and material consumption, again for each printer on the network. Within a given build, you’ll even see the files names of the individual parts within that job.

Separately, if you’re not operating the software offline (an option that some companies require), you can enable GrabCAD Print Reports. This function generates detailed graphs and summaries covering printer utilization and overall material use across multiple printers and time periods – very powerful information for groups that need to track efficiencies and expenditures.

And That’s Just the Beginning

Once you decide to experiment with these settings, you begin to see the power of GrabCAD Print for FDM systems. We haven’t even touched on the automated repairs for STL files, PolyJet’s possibilities for colors, transparency and blended materials, or the options for setting up a CAD model so that sub-sections print with different properties.

For example, you’ll see how planning ahead allows you to bring in a multi-body CAD model and have GrabCAD identify and reinforce some areas at full density, while changing the infill pattern, layout, and density in other regions. GrabCAD recognizes actual CAD bodies and faces, letting you make build-modifications that previously would have required layer-by-layer slice editing, or couldn’t have been done at all.

Stay tuned for our next blog post, GrabCAD Print Software, Part Two: Simplify Set-ups, Save Time, and Do Cool Stuff You Hadn’t Even Considered, and reach out to us to learn more about downloading and using GrabCAD Print.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

Introducing the Stratasys J826 – Full-color, multi-material printing for the enterprise design world

Taking risks attempting to capture design intent at the end of the process requires a lot of post-processing (coloring, assemblies, a mix of technologies, etc.) – when its too time consuming, expensive and late to make changes or correct errors. Stratasys PolyJet 3D printing technology is developed to elevate designs by realizing ideas more quickly and more accurately and taking color copies to the next level.

By putting realistic models in a designer’s hands earlier in the process, companies can promote better decisions and a superior final product. Now, with the Stratasys J8 Series, the same is true for prototypes. This tried and tested technology simplifies the entire design process, streamlining workflows so you can spend more time on what matters –creating, refining, and designing the best product possible.

PADT is excited to introduce the new Stratasys J826 3D printer 

Based on J850 technology, the J826 supplies the same end-to-end solution for the design process and ultra-realistic simulation at a lower price point.
Better communicate design intent and drive more confident results with prototypes that realistically portray an array of design alternatives.

The Stratasys J826 3D Printer is able to deliver realism, shorter time to market, and streamlined application thanks to a variety of unique attributes that set it apart from most other Polyjet printers:

  • High Quality – The J826 can accurately print smaller features at a layer thickness of 14µm to 27µm. As part of the J8 series of printers it is also capable of printing in ultra-realistic Pantone validated colors.
  • Speed & Productivity – Three printing speed modes (high speed, high quality & high mix) allows the J826 to always operate at the most efficient speed for each print. It can also avoid unnecessary down-time associate with material changeovers thanks to it’s built-in material cabinet and workstation.
  • Easy to Use – A smooth workflow with the J826 comes from simple integration with the CAD format of your choice, as well as a removable tray for easy clean up, and automated support creation and removal.

Are you ready to learn how the new Stratasys J826 provides the same quality and accuracy as other J8 series printers at a lower cost?

Provide the requested information via the form linked below and one of PADT’s additive experts will reach out to share more on what makes this new offering so exciting for the enterprise design world.

Start a Conversation

Stratasys 3D Printing Filament: the Quality Behind OEM Sourcing

In 1925, when the automotive industry was rapidly growing in response to consumer and industrial needs, a group of independent auto parts resellers joined to form the National Automotive Parts Association (NAPA). A founding member was the Genuine Parts Company; this group later acquired a number of other NAPA stores and gave rise to ad campaigns stressing the importance of buying genuine auto parts from a well-known, trusted source.

Stratasys 3D printing filament is crafted to stringent standards, ensuring dimensional consistency and repeatable material properties. Image courtesy PADT.
Stratasys 3D printing filament is crafted to stringent standards, ensuring dimensional consistency and repeatable material properties. Image courtesy PADT.

Following that same philosophy is a good idea for users involved with industrial 3D printing (additive manufacturing/AM). How do you know your part will print consistently, and display measureable, repeatable material properties, if you can’t rely on the consistency of the AM material’s own production?

At PADT, we print the gamut of filament options on our Stratasys industrial 3D printers, from ABS and TPU to production-grade Nylons and certified Ultem ® . As both an authorized AM system reseller and service provider, we count on the quality of the materials we source for ourselves and our customers, so it’s enlightening to get a behind-the-scenes look at the Stratasys filament production-process.

Ingredients Matter

Great recipes start with the finest ingredients, right? It’s no different when you’re producing filament for demanding applications: start with qualified raw materials from reputable sources. Standard Stratasys filament (like ASA and ABS), Engineering Grade materials (including polycarbonate and Nylon 12) and most Support materials are made in Israel at one of the two Stratasys corporate offices, while the High Performance materials such as Nylon 12 Carbon-Fiber (CF), Antero and Ultem ® products are produced at the original Minnesota location.

The raw stock for 3D printing filament comes in pellet form. Image courtesy Shutterstock.
The raw stock for 3D printing filament comes in pellet form. Image courtesy Shutterstock.

Stratasys buys polymers in pellet form from chemical suppliers such as France-based Arkema, who blends the proprietary polyethyl ketone ketone (PEKK) base formula for Antero and Antero ESD materials, and SABIC who supplies the raw pellets for Ultem ® -based filaments.

Some pellets are fed directly into the filament production equipment while others are compounded like a custom pharmaceutical: mixed and blended with stabilizers and colorants, extruded as interim-stage filament, cooled and then granulated all over again into new pellet stock. (Given that FDM is an extrusion-based technology, one of the seven standard AM technologies defined by ISO/ASTM52900-15, it’s interesting that extrusion plays a key role in the material production-process itself.)

Polymer Pasta

Whether you’ve made your own fresh pasta or just watched a child crank out endless strings of PlayDoh, you can envision the next steps in filament production, starting with melting the pellets into a viscous liquid resin. Chaffee Tran, Stratasys’ Materials Product Director, explains, “Resin is (then) run through a screw extruder and forced through a die (metal perforated with precision holes), cooled as it comes out, and wound onto spools.” An optical monitor continuously checks for “ovality” of the filament as it moves past, and triggers a stop for anything out-of-round beyond tolerance. If you’ve ever struggled with a printer that jammed because of inconsistent filament diameters, you’ll understand the importance of this process requirement.

Loading bays for Stratasys F370 office-environment FDM 3D Printer. Image courtesy Stratasys.
Loading bays for Stratasys F370 office-environment FDM 3D Printer. Image courtesy Stratasys.

Filament for the Stratasys F123 plug-and-play series of printers is packaged on-site as bagged or boxed spools. Filament for the industrial printers such as the F380cf, F450 and F900 gets loaded into sealed canisters that hold larger volumes in both standard and extended capacity. For all filament types, Tran says, “We have full traceability of our finished products via serial number and manufacturing lots. This can be traced back to production documents, to link back to the production-line settings and batch lots of resin used.”

Canister of Stratasys Ultem® 9085 filament, with production documentation for traceability. Image courtesy Stratasys.

One Step Beyond: Certification

For truly demanding applications, the quality process gets kicked up another notch. Ultem ® 9085 Aerospace and Ultem ® 1010 Certified Grade (CG) are shipped with Certificates of Compliance that confirm the production parameters down to the exact machine type and location where the filament is manufactured. “Certified Ultem ® has a higher sampling rate of finished goods for various filament properties and tighter internal specification,” adds Tran.

This tightly regulated process allows Stratasys to be the only AM company offering material certified by the Aircraft Interior Solution (AIS), a process – developed in collaboration with the National Center for Advanced Materials Performance (NCAMP) – that provides the necessary tools, documentation, and training needed to guide aerospace producers down the aircraft qualification process. In order to meet the requirements aerospace manufacturers face, their parts must not only be made from the AIS certified version of the Stratasys Ultem ® 9085 material, but must also be printed on a certified F900mc Gen II system, in accordance with a string of aerospace standards documents. (For more information see details provided by NCAMP.) That’s what you call Quality Control.

For historical details about the development of standards for qualifying non-metallic materials for aircraft applications, now including the first polymer AM material, download this nine-page document, A Path to Certification:

Today's aircraft increasingly rely on non-metallic component design to save on weight and therefore fuel consumption. Certified Ultem 9085® filament from Stratasys plays a key role in supporting the design and use of 3D printed flight-qualified parts. Image courtesy Stratasys.
Today’s aircraft increasingly rely on non-metallic component design to save on weight and therefore fuel consumption. Certified Ultem 9085® filament from Stratasys plays a key role in supporting the design and use of 3D printed flight-qualified parts. Image courtesy Stratasys.

Even if your part production process is not as stringent as that demanded for the AIS program, you’ll avoid jammed drive-gears and cross-wound spools and get consistent part performance when your Stratasys printers run “genuine Stratasys” filament. Classic ABS, chemically resistant Antero, flexible TPU and new, fine-finish Diran are just some of the materials that will offer you repeatable results. Ask us for more details, and stay tuned as Stratasys launches even more options for true industrial applications.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and filaments, contact us at info@padtinc.com.

New Options for 3D Printing with Nylon Filament, Including Diran

NOTE 10/28/2019: See updated information regarding Diran extruder heads, below.

Does the idea of 3D printing parts in semi-aromatic polyamides (PA) sound intriguing? Too bad it has nothing to do with making nicely scented models – but it has everything to do with reaping the benefits of the Nylon family’s molecular ring structure. Nylon 6, Nylon 12, carbon-filled Nylon 12 and now a new, smoother Nylon material called Diran each offer material properties well-suited for additive manufacturing on industrial 3D printers. Have you tried Holden’s Screen Supply? It has the emulsions and reclaimers needed for screen printing. To get more information about 3D printers, Go through PrtWd.com website.

Stratasys Nylon 12 Battery Box
3D printed Nylon 12 Battery Box. (Image courtesy Stratasys)

Quick chemistry lesson: in polyamides, amine sub-groups containing nitrogen link up with carbon, oxygen and hydrogen in a ring structure; most end up with a strongly connected, semi-crystalline layout that is key to their desirable behaviors. The number of carbon atoms per molecule is one way in which various Nylons (poly-amines) differentiate themselves, and gives rise to the naming process.

Now on to the good stuff. PA thermoplastics are known for strength, abrasion-resistance and chemical stability – useful material properties that have been exploited since Nylon’s discovery at Du Pont in 1935. The first commercial Nylon application came in 1938, when Dr. West’s Miracle Tuft Toothbrush closed the book on boar’s-hair bristle use and let humans gently brush their teeth with Nylon 6 (then called “Exton”) fibers.

Today’s Nylon characteristics translate well to filament-form for printing with Stratasys Fused Deposition Modeling (FDM) production-grade systems. Here’s a look at properties and typical applications for Nylon 6, Nylon 12, Nylon 12 CF (carbon-fiber filled) and Diran (the newest in the Stratasys Nylon material family), as we see their use here at PADT.

When Flexibility Counts

Nylon 12 became the first Stratasys PA offering, filling a need for customized parts with high fatigue resistance, strong chemical resistance, and just enough “give” to support press (friction-fit) inserts and repetitive snap-fit closures. Users in aerospace, automotive and consumer-goods industries print Nylon 12 parts for everything from tooling, jigs and fixtures to container covers, side-panels and high vibration-load components.

3D Printed Nylon 12 bending example. (Image courtesy Stratasys)
3D Printed Nylon 12 bending example. (Image courtesy Stratasys)

Nylon 12 is the workhorse of the manufacturing world, supporting distortion without breaking and demonstrating a high elongation at break. Its ultimate tensile strength in XZ part orientation (the strongest orientation) is 6,650 psi (46 MPa), while elongation at break is 30 percent. Users can load Nylon 12 filament onto a Stratasys Fortus 380mc CF, 450mc or 900mc system.

As evidenced by the toothbrush renaissance, Nylon 6 has been a popular thermoplastic for more than 80 years. Combining very high strength with toughness, Nylon 6 is great for snap-fit parts (middle range of flexing/stiffness) and for impact resistance; it is commonly used for things that need to be assembled, offering a clean surface finish for part mating.

Nylon 6 displays an XZ ultimate tensile strength of 9,800 psi (67.6 MPa) and elongation at break of 38%; it is available on the F900 printer. PADT customer MTD Southwest has recently used Nylon 6 to prototype durable containers with highly curved geometries, for testing with gasoline/ethanol blends that would destroy most other plastics.

Prototype gas-tank made of Nylon 6, printed on a Stratasys system, using soluble support. (Image courtesy MTD Southwest)
Prototype gas-tank made of Nylon 6, printed on a Stratasys system, using soluble support. (Image courtesy MTD Southwest)

Both Nylon 12 and Nylon 6 come as black filament that prints in tandem with a soluble brown support material called SR-110. Soluble supports make a huge difference in allowing parts with internal structures and complicated overhangs to be easily 3D printed and post-processed.

Getting Stronger and Smoother

As with these first two PA versions, Nylon 12CF prints as a black filament and uses SR-110 soluble material for support; unlike those PAs, Nylon 12CF is loaded at 35 percent by weight with chopped carbon fibers averaging 150 microns in length. This fiber/resin combination produces a material with the highest flexural strength of all the FDM Nylons, as well as the highest stiffness-to-weight ratio.

Nylon 12 CF (carbon-filled) 3D printed part, designed as a test brake unit. (Image courtesy Stratasys)
Nylon 12 CF (carbon-fiber filled) 3D printed part, designed as a test brake unit. (Image courtesy Stratasys)

That strength shows up in Nylon 12 CF as a high ultimate XZ tensile strength of 10,960 psi (75.6 MPa), however, similar to other fiber-reinforced materials, the elongation at break is lower than for its unfilled counterpart (1.9 percent). Since the material doesn’t yield, just snaps, the compressive strength is given as the ultimate value, at 9,670 psi (67 MPa).

Nylon 12 CF’s strength and stiffness make it a great choice for lightweight fixtures. It also offers electrostatic discharge (ESD) protection properties better than that of Stratasys’ ABS ESD7, yet is still not quite conductive, if that is important for the part’s end-use. (For more details on printing with Nylon 12 CF, see Seven Tips for 3D Printing with Nylon 12 CF.) The material runs on the Fortus 380mc CF, 450mc or 900mc systems.

Just announced this month, Stratasys’ Diran filament (officially Diran 410MF07) is another black Nylon-based material; it, too, features an infill but not of fibers – instead there is a mineral component listed at seven percent by weight. This filler produces a material whose smooth, lubricious surface offers low sliding resistance (new vocabulary word: lubricious, meaning slippery, with reduced friction; think “lube job” or lubricant).

Robot-arm end printed in Diran, a smooth Nylon-based filament. (Image courtesy Stratasys)
Robot-arm end printed in Diran, a smooth Nylon-based filament. (Image courtesy Stratasys)

This smooth surface makes Diran parts perfect for applications needing a non-marring interface between a tool and a workpiece; for example, a jig or fixture that requires a part to be slid into place rather than just set down. It resists hydrocarbon-based chemicals, displays an ultimate tensile strength of 5,860 psi (40 MPa), and has a 12 percent elongation at break.

Close-up of Diran's smooth surface finish. (Image courtesy Stratasys)
Close-up of Diran’s smooth surface finish. (Image courtesy Stratasys)

(Revised) For the first time, Diran also brings the benefits of Nylon to users of the Stratasys office-environment, plug-and-play F370 printer. The system works with the new material using the same extruder heads as for ABS, ASA and PC-ABS, with just a few material-specific requirements. 

To keep thermal expansion consistent across a model and any necessary supports, parts set up for Diran automatically use model material as support. A new, breakaway SUP4000B material comes into play as an interface layer, simplifying support removal. The higher operating temperature also requires a different build tray, but the material’s lubricious properties (just had to use that word again) make for easy part removal and allow that tray to be reused dozens of times.

Read more about this intriguing material on the Diran datasheet:

and contact PADT to request a sample part of Diran or any of these useful Nylon materials.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

3D Printed Parts Create a Tricked-Out Truck

PADT’s Austin Suder is a Solidworks CAD wizard, a NASA design-competition (Two for the Crew) winner and a teaching assistant for a course in additive manufacturing (AM)/3D printing. Not bad for someone who’s just started his sophomore year in mechanical engineering at Arizona State University.

PADT's Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)
PADT’s Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)

In last month’s PADT blog post about adding heat-set inserts to 3D printed parts we gave a shout-out to Austin for providing our test piece, the off-road LED light unit he had designed and printed for his 2005 Ford F-150. Now we’ve caught up with him between classes to see what other additions he’s made to his vehicle, all created with his personal 3D printers and providing great experience for his part-time work with Stratasys industrial printers in PADT’s manufacturing department.

Q: What has inspired or led you to print multiple parts for your truck?

I like cars, but I’m on a college budget so instead of complaining I found a way to fix the problem. I have five 3D printers at my house – why not put them to work! I understand the capabilities of AM so this has given me a chance to practice my CAD and manufacturing skills and push boundaries – to the point that people start to question my sanity.

Q: How did you end up making those rear-mount LED lights?

I wanted some reverse lights to match the ones on the front of my truck, so I designed housings in SolidWorks and printed them in carbon fiber PLA. Then I soldered in some high-power LED lights and wired them to my reverse lights. These parts made great use of threaded inserts! The carbon fiber PLA that I used was made by a company called Vartega that recycles carbon fiber material. (Note: PADT is an investor of this company.)

Q: In the PADT parking lot, people can’t help but notice your unusual tow-hitch. What’s the story with that?

I saw a similar looking hitch on another car that I liked and my first thought was, “I bet I could make that better.” It’s made from ABS painted chrome (not metal); I knew that I would never use it to tow anything, so this opened up my design freedom. This has been on my truck for about a year and the paint has since faded, but the printed parts are still holding strong.

An adjustable-height "topology optimized" trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it's just for fun, not function. (Image courtesy PADT)
An adjustable-height “topology optimized” trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it’s just for fun, not function. (Image courtesy PADT)

This part also gets questioned a lot! It’s both a blessing and a curse. In most cases it starts when I’m getting gas and the person behind me starts staring and then questions the thing that’s attached to the back of my truck. The conversation then progresses to me explaining what additive is, to a complete stranger in the middle of a gas station. This is the blessing part because I’m always down for a conversation about AM; the downside is I hate being late for work.

Q: What about those tow shackles on your front bumper?

Unique ABS printed tow shackles - another conversation-starter. (Image courtesy PADT)
Unique ABS printed tow shackles – another conversation-starter. (Image courtesy PADT)

Those parts were printed in ABS – they’re not meant for use, just for looks. I’ve seen towing shackles on Jeeps and other trucks but never liked the look of them, so again I designed my own in this pentagon-shape. I originally printed them in red but didn’t like the look when I installed them; the unusual shading comes because I spray-painted them black then rubbed off some of the paint while wet so the red highlights show through.

Q: Have you printed truck parts in any other materials?

Yes, I‘ve used a carbon-fiber (CF) nylon and flexible TPU (thermoplastic polyurethane) on filament printers and a nylon-like resin on a stereolithography system.

The CF nylon worked well when I realized my engine bay lacked the real estate needed for a catch can I’d bought. This was a problem for about five minutes – then I realized I have the power of additive and engineered a mount which raised the can and holds it at an angle. The mount makes great use of complex geometry because AM made it easy to manufacture a strong but custom-shaped part.     

Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)
Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)

After adding the catch can to my engine, I needed a way to keep the hoses from moving around when driving so I designed a double S-clip in TPU. The first design didn’t even come close to working – the hoses kept coming loose when driving – so I evaluated it and realized that the outer walls needed to be thicker. I made the change and printed it again, and this time it worked great. In fact, it worked so well that when I took my truck to the Ford dealership for some warranty work, they went missing. (It’s OK Ford, you can have them – I’ll just print another set.)    

Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)
Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)

Other parts I printed in TPU included clips for the brake-lines. I had seen that my original clip had snapped off, so when I had the truck up on jacks, I grabbed my calipers and started designing a new, improved version. Thirty minutes later I had them in place.

I also made replacement hood dampeners from TPU since they looked as though they’d been there for the life of the truck. I measured the old ones, used SolidWorks to recreate them (optimized for AM), printed a pair and installed them. They’ve been doing great in the Arizona heat without any deformation.      

New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)
New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)

My last little print was done on my SLA system in a material that behaves like nylon. (This was really just me showing off.) The plastic clips that hold the radiator cover had broken off, which led me to use threaded sheet-metal inserts to add machine threading to the fixture. I then purchased chrome bolts and made some 3D printed cup-washers with embossed text for added personalization and flair.  

Even the cup-washers got a 3D printed make-over on Austin's F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)
Even the cup-washers got a 3D printed make-over on Austin’s F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)

Q: What future automotive projects do you have in mind?

I’m working on a multi-section bumper and am using the project to standardize my production process – the design, material choice, sectioning and assembling. I got the idea because I saw someone with a tube frame car and thought it looked great, which led to me start thinking about how I could incorporate that onto my truck.

When I bought my F-150, it had had a dent in the rear bumper. I was never happy with this but didn’t have the money to get it fixed, so at this point the tube-frame look came full circle! I decided that I was going to 3D print a tube-frame bumper to replace the one with a dent. I started by removing the original bumper, taking measurements and locating possible mounting points for my design. Then I made some sketches and transferred them into SolidWorks.

The best part about this project is that I have additive on my side. Typical tube frame construction is limited by many things like bend allowance, assembly, and fabrication tooling. AM has allowed me to design components that could not be manufactured with traditional methods. The bumper will be constructed of PVC sections connected by 50 ABS printed parts, all glued together, smoothed with Bondo and filler primer then painted black. This is a large project!  It will take a lot of hand-finishing, but it will be perfect.

Q: If you were given the opportunity to work on any printer technology and/or material, what would you want to try working with?

Great question! If I had the opportunity to use AM for automotive components, I would redesign internal engine components and print them with direct metal laser sintering (DMLS), one of PADT’s other AM technologies. I would try printing part like piston rods, pistons, rocker arms, and cylinder valves. Additive is great for complex geometries with exotic materials.

Go Austin! Can’t wait to see what your truck looks like when you visit over semester break.

To learn more about fused deposition modeling (FDM/filament), stereolithography (SLA), selective laser sintering (SLS) and DMLS printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Press Release: PADT Adds the Faster, Larger and More Advanced Stratasys F900 Fused Deposition Modeling Additive Manufacturing System at its Tempe Headquarters

Well, the cat is now out of the bag. We are pleased to announce that we now have a Stratasys F900 FDM system up and running at PADT. Over the years we have helped dozens of customers specify and acquire their own F900 system. These are great machines. And our services customers were always asking when we would be adding one to our fleet of machines.

The answer is now. Our new F900 is up and running and making large, robust, and accurate parts right now.

A few weeks ago we published this picture on social media to announce the arrival of something big:

No alternative text description for this image

Now we can share what it was all about. Inside the truck was a big box:

And inside that box was a brand new Stratasys F900 FDM System!

It was a tight fit through PADT’s painting room, down the hallway, and into its new home:

After our team plugged it in and Stratasys came out to finish the install and calibrate everything, we ran our first part:

This is a big machine:

Here are the specs:

Build Size: 36 x 24 x 36 in
Layer thickness: 0.005 in – 0.020 in
Materials: ABS-ESD7, ABSi, ABS-M30, ABS-M30i, ABSplus, ASA, FDM Nylon 12, FDM Nylong 5, PC, PC-ABS, PC-Iso, PPSF, ST-130, ULTEM.

The machine is up and running and ready to make parts. So please contact us at rp@padtinc.com or 480.813.4884 to talk about how our new, big, fast, robust machine can 3D Print better and bigger parts for you.

We have an official press release below or here.


PADT Adds the Faster, Larger and More Advanced Stratasys F900 Fused Deposition Modeling Additive Manufacturing System at its Tempe Headquarters

The F900 is the Most Capable System on the Market for Companies Who Need Large, 3D-Printed Production Parts in Small or Large Volume

TEMPE, Ariz., August 29, 2019 ─ In an exciting development that enhances its additive manufacturing services and capabilities, PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, added a Stratasys F900 Fused Deposition Modeling (FDM) Additive Manufacturing System at its headquarters in Tempe, Arizona. With fast build speed and large build volume, the F900 significantly increased PADT’s 3D Printing capability and capacity.

“The addition of the F900 flagship FDM printer to our growing lineup of additive manufacturing systems is a major milestone in our long-term partnership with Stratasys,” said Ward Rand, co-founder and principal, PADT. “This move greatly enhances the capabilities we provide our customers based on Stratasys’ leading-edge equipment.”

The Stratasys F900 is specifically built for manufacturing and aerospace. With the largest build size of any Stratasys FDM system, it’s designed to handle the most demanding manufacturing needs. The system uses a wide range of thermoplastics with advanced mechanical properties so parts can endure high heat, caustic chemicals, sterilization and high-impact applications.

FDM is the most common additive manufacturing process because of the technology’s ability to provide robust parts quickly at low-cost. PADT has developed expertise with the FDM printing process over the past 20 years. The Stratasys F900 is the pinnacle of FDM technology because it’s designed to meet the needs of the manufacturing industry’s shift from prototyping towards production parts. The addition of the F900 comes at a critical time for PADT due to the increased demand from its customers in industries such as aviation, space and defense, to create end-use components created under ISO9001/AS9100 standards.

“When we added a large stereolithography machine in 2018, we quickly learned how significant the demand is for more materials, larger parts, and faster turnaround,” said Rey Chu, co-founder and principal, PADT. “The Stratasys F900 fulfills all three of these same requirements for companies who need the outstanding performance of parts made with the FDM process. We look forward to partnering with our customers to make innovation work with this new capability.”

This new system will augment PADT’s existing fleet of four FDM systems from Stratasys.  It will compliment Stereolithography, PolyJet, Selective Laser Sintering, and Digital Light Synthesis systems. This wide range of material and process choices is why hundreds of companies rely on PADT as their Additive Manufacturing services provider. 

To learn more about PADT and its services, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.padtinc.com.

# # #

3D Printing with Stratasys to Improve Workflow Efficiency

As advancements in R&D continue to expand hardware innovation in almost every industry, 3D printing is playing an increasingly larger role. For a long time, companies developed prototypes via fabrication in a machine shop or outsourced to a third party contractor. This process proved to be costly and slow. With innovations like the Stratasys F123 series, industrial-grade 3D printers, prototyping is becoming simpler, more cost-efficient, and faster. PADT is a reseller and support provider for the F123 series and has seen it used to great success in its customer’s hands.

“Our customers are finding the Stratasys F123 3D printers to be a great addition to their design floors,” said Rey Chu, co-founder and principal, PADT. “They have a very minimal learning curve, and a range of material options that provides flexibility for a wide variety of parts.”

As some of the most well-rounded 3D printers in the industry, the Stratasys F123 Series have won numerous awards. It’s easy to operate and maintain these machines, regardless of the user’s level of experience, and they are proficient at every stage of prototyping, from concept to validation, to functional performance.

The printers work with a range of materials – so users can produce complex parts with flexibility and accuracy. This includes advanced features like Fast Draft mode for truly rapid prototyping and soluble support to prevent design compromise and hands-on removal – All designed to shorten product development cycles and time to market.

All of these different characteristics allow for the F123 series to provide innovative solutions for manufacturers working with a wide variety of applications. This vast array of potential use is best seen in the assortment of companies that have purchased the Stratasys F370, the largest and most robust model in the F123 line of 3D printers; boasting a 14 x 10 x 14 in. build size, additional software integration, and access to a plethora of unique materials designed to help ensure prototyping success, all at an accessible price point. Companies that best represent the diversity of this machine include:

Juggernaut Design | Industrial Design Logo

Juggernaut Design

PADT client Juggernaut is an authority in rugged product design, bringing innovation and expertise to products to survive in challenging environments. Employing the latest tools and technology, this team of designers and engineers is always looking for the best way to meet their client’s ever-evolving requirements. 3D printing is one such tool a design firm like Juggernaut relies on. Covering everything from the development of prototypes and form studies, to ergonomic test rigs and even functional models, the need for quick turnaround is relevant at nearly every stage of the design process. Having physical parts to show to clients also helps to improve communication, allowing them to better visualize key design elements.

National Renewable Energy Laboratory

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) focuses on advancing the science and engineering of energy efficiency, sustainable transportation, and renewable power technologies, including marine energy. When it comes to developing the components of a wave energy device that produce power from relative motion induced by the dynamics of ocean waves for example, NREL’s research requires extensive validation before it is ready for commercialization. This process often includes generating sub-scale components for numerical model validation, prototypes for proof of concept, and other visual representations to provide clarity throughout the entire manufacturing process. It’s also important to accurately validate research projects at a more manageable and cost-effective scale before moving beyond the prototype stage.

Recently, NREL has ventured into building parts with more complex geometries, such as 3D printing hydrodynamically accurate models that are able to effectively represent the intricacies of various geometry and mass properties at scale.

Sierra Nevada Corporation

Sierra Nevada Corporation (SNC) is a privately held, advanced technology company providing customer-focused innovative solutions in the areas of aerospace, aviation, electronics, and systems integration. SNC’s diverse technologies are used in applications including telemedicine, navigation and guidance systems, threat detection and security, commercial aviation, scientific research, and infrastructure protection, among others. SNC decided to purchase an F370 Stratasys 3D printer to help the company’s engineering team iterate faster on new application designs. This machine was specifically attractive due to the reasonable purchase and operational costs of Stratasys printers, as well as the reduced manufacturing times it provided.

These use cases provide an example of how the Stratasys F123 series is helping to replace traditional manufacturing to save costs and provide a more efficient in-house, rapid design solution. The Stratasys F123 printers, and specifically the power and size of its flagship model, the F370, are revolutionizing design team’s workflow by providing more flexibility and accessibility than ever before.

To learn more about the Stratasys F123 Series, and find the machine that is right for you, please visit PADT’s Stratasys product page here. And to talk to PADT’s sales staff about a demo, please call 1-800-293-PADT.