U.S. Patent on the Method and Apparatus for Removing 3D Printing Support Materials Awarded to PADT

This has been a busy year for PADT.  So busy in fact that we forgot an important announcement from January. PADT was granted US Patent 9,878,498 for some of the technology we use in our line of devices that remove soluble supports from 3D Printing parts.  The official title: METHOD AND APPARATUS FOR REMOVING SUPPORT MATERIAL is actually fairly accurate.  It covers the hardware configuration inside the device along with the methods that are used for the systems we make and sell for removing support material from 3D Printed parts.

PADT introduced our first Support Cleaning Apparatus (SCA) to the market in 2008.  We learned a lot from that first SCA-1200 and developed intellectual property around the equipment and methods we used in our second generation systems, the SCA-1200HT and SCA 3600.  With over 12,000 total units shipped, these machines take the work out of support removal making 3D Printing faster and easier.

Take a look at the press release below, or the patent itself, to learn more about what makes our systems unique and better.  Decades of experience in 3D Printing, product development, and simulation went into developing the ideas and concepts capture in the patent and realized in the reliable and easy-to-use SCA product family.

Please find the official press release on this new partnership below and here in PDF and HTML

If you have any questions about our support removal solutions in particular or 3D Printing in general, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

U.S. Patent on the Method and Apparatus for Removing 3D Printing Support Materials Awarded to PADT

PADT’s Support Cleaning Apparatus (SCA) System is the Standard for Soluble Support Removal and is Bundled with Many Stratasys 3D Printers

TEMPE, Ariz., October 2, 2018 ─ To meet the need for improving the process of removing support material often required to hold up a part during 3D Printing, PADT, the Southwest’s largest provider of simulation, product development, and additive manufacturing services and products, developed its Support Cleaning Apparatus (SCA) systems. PADT today announced that it has been awarded a U.S. patent for its SCA system invented by Rey Chu, Solomon Pena and Mark C. Johnson.

PADT’s SCA systems are currently sold exclusively by Stratasys, Ltd. (SSYS) for use with any of the Stratasys printers that use the Soluble Support Technology (SST) material. Known for its innovation in the industry, this award marks PADT’s 4th patent to-date.

“When Stratasys first introduced its soluble support material that can be dissolved with chemicals to help remove supports in the 3D Printing process, we knew that existing support removal devices were not reliable or efficient enough to handle the innovation,” said Rey Chu, co-founder and principal, PADT. “We used computational fluid dynamics simulation, our extensive product development skills, and knowledge from over two decades of 3D Printing experience to design the industry’s most efficient and reliable support cleaning solution. We are proud that our SCA system has now been granted patent protection.”

The patent protects the intellectual property applied by PADT to achieve its industry-leading performance and reliability goals of soluble support removal. Critical information in the patent includes how the SCA system is laid out and has different sections, each with a purpose for achieving the intended results. It also identifies the geometry and orientation of the system that forces the water to move in a specific pattern that cleans the parts more efficiently.

   

About PADT Support Cleaning Apparatus Systems

PADT shipped its first SCA system in November 2008 and has since reached more than 12,000-unit sales worldwide. There are currently two units in the SCA family, the SCA-1200HT with a 10x10x12” part basket and the larger SCA 3600 with a 16x16x14” part basket. They offer temperature ranges suitable to remove support from all Fused Deposition Modeling (FDM) and PolyJet materials including:  ABS, ASA, PC, Nylon, and PolyJet Resins.

The PADT SCA system has received impressive reviews from 3D printing practitioners. PADT is using its experience, the IP captured in this patent, and new concept to develop additional systems to satisfy a broader set of needs across the 3D Printing industry. For more information on the PADT SCA family of products, please visit http://www.padtinc.com/sca.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

 

Getting to Know PADT: Support Cleaning Apparatus (SCA) Manufacturing and Support

This is the third installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

PADT is in the business of helping people who make products.  So most people think of us as a provider of tools and services.  What they do not know is that PADT actually has a few of its own products.  The most successful of these is our line of Support Cleaning Apparatus systems, abbreviated as SCA.  These devices are used to remove soluble support material from parts 3D printed in Stratasys Fused Deposition Modeling Systems. They are robust machines manufactured and serviced by PADT, but sold through the Stratasys worldwide sales channel. As of July of 2017, over 10,800 units have been delivered to Stratasys.

Optimized Performance for Hands-Off Part Cleaning

The Stratasys 3D Printing systems that use Fused Deposition Modeling extrude plastic through a heated nozzle to build parts one layer at a time.  There are actually two nozzles. One puts down the building material and the other a support material that is dissolved in warm water that is slightly base.  The best way to remove that support material is to put it into a warm bath where the part is gently tumbled so that the water can works its way evenly into the part.  Stratasys tried several solutions for a companion washing system and eventually came to PADT and asked if we would try our hand at building a robust and efficient system.

The result was the SCA-1200.  Launched at the end of 2008 it met the design requirements for reliability, part cleaning time, and noise.  Over 7,000 of these systems were shipped and saw heavy usage. In fact, if you have a Stratasys FDM system there is a good chance you have an SCA-1200.  It contained a unique shower head design that was optimized with simulation, and a modular assembly that could be repaired easily in the field.

Based upon the success and lessons learned from the SCA-1200, we released the SCA-1200HT in 2014.  With the same basic form factor, this design replaced the off-the-shelf magnetically coupled pump with a simpler and more reliable custom design from PADT. The new unit also had a more pleasing visual design, several usability enhancements, and a greater temperature range. It has sold over 3,000 units and continues to be a popular system.  The latest release includes a no-temperature setting that allows it to be used to clean Stratasys Polyjet parts.

The success of both system lead to a request to look at building a larger machine that could clean more parts at one time as well as larger parts.  The SCA 3600 has three times the volume but shares many internal parts with the SCA-1200HT.  Both of the new systems are doing well in the field with even better reliability and faster part cleaning times. They are also simpler to debug and repair.

The SCA systems are sold as stand alone devices or are bundled with key Stratasys FDM machines.  You can learn more about them on our SCA page:  www.padtinc.com/sca or you can contact whoever you buy your Stratasys equipment from.

Here is a video for the SCA-1200HT that talks all about what it does:

Practicing what We Preach

One of the most rewarding aspects of designing and manufacturing the SCA family of products was that it forced us to practice what we preach. We talk to companies every day about using simulation, 3D Printing, design for manufacturing, proper product development processes, and many more things needed to get a product right.  With the SCA we were the customer. We had to Walk the Walk or stop talking the talk.

 

It has been a phenomenal experience that has made us even better at helping our customers produce their new products. We used CFD to optimize the gentle agitation design and shower head and worked closely with our vendors to minimize the cost of manufacturing.  The worst part was that when the schedule slipped, we couldn’t blame the customer (only slightly joking).  One of the best set of lessons came from doing the repair and refurbishment of systems that failed. Even though the failure rate was low, we learned a lot and were able to make improvements to future designs. Now when we sit across from a customer and talk about the design, test, and manufacture of their product, we can really say that we understand where they are coming from.

 

 

 

 

 

Towards Self-Supporting Design for Additive Manufacturing: Part 1 (Standard Guidelines)

1. Background:

When it comes to Additive Manufacturing (AM), there is a lot to consider before hitting the print button. One of the biggest constraints in most AM processes is the need for supports for overhangs, which are aspects of the design that will not print properly without supports either due to the force of gravity acting on the material (natural free-falling state of the material with no support forcing it into position), or the thermomechanical effects associated with printing with no underlying thermally conductive and warpage-constraining material.

The solution is to either redesign any of the problem areas or reorient the whole piece to avoid any overhangs that need these supports. During my internship at PADT Inc., I will be focusing on strategies to minimize the need for supports, towards the ideal goal of manufacturing only self-supporting structures, because it’s never a bad idea to decrease waste, both in terms of additional material used and the labor involved in removing the support materials after the print. This post (part 1) of this blog series is going to be about evaluating the most basic guidelines of printing a self-supporting structure to extract some insight.

2. Methodology:

Using inspiration from some machine accuracy tests found online, I designed my own prints to evaluate the Makerbot Replicator 5th generation’s ability to print overhangs using angles, upright holes, bridges, arched bridges, and 90 degree overhangs—and I present each one of these standard guidelines below. My process parameters for almost all of the tests with, of course, supports OFF were as follows:

  • Extruder Temp: 212 C
  • Travel Speed: 70 mm/s
  • Infill Density: 10%
  • Layer Height: 0.20 mm
  • Number of Shells: 2

 

 

3. Observations:

3.1 Angles

For testing overhangs with angles, I printed out two different sets of trapezoids. The first was a set of six ranging from 25-75 degrees (or 65-15 degrees from the leveled plane).

  

   

As shown by the photos above, the prints were of good quality and only started to show visibly poor quality on the 65 and 75 degree samples. The thinnest edge on the 65 degree sample curled up due to the heat of the extruder. The same issues were present on the 75 degree piece, but this is more exaggerated because of how harsh the angle is.

  

My hope of printing self-supporting pieces was shattered when I printed out an 85 degree trapezoid. To save material, I only printed out a section of the trapezoid, but the angled edge did not print smoothly at all. Not only that, but it did not print at a true 85 degree angle. With these tests, it is safe to say that a machine can handle up to a 65 degree angle with light finishing needed, but further experimentation can be done to see if these angles can be improved.

3.2 Upright Holes

   

For these, I did 2 quick tests. The first was printed with the settings listed above, and the second was printed with only one shell (contour). The numbers next to the circles (1, 2, 4, 6, 8, 10) represent the radii in millimeters. The double-shelled print came out a lot better than the single-shell replica on the edges of the piece, but the single-shelled piece had slightly cleaner holes due to less weight on the overhang. However, both pieces had defects that can easily be sanded down.

3.3 “H” Overhangs/Bridges

  

Bridges are sometimes referred to as an “H” overhang due to the overhang having two sides to support it. When testing bridges with 90 degree overhangs of 0.25, 0.75, 1.25, 1.75, and 2.25 inches, the results showed increasing stringing with length for all but the 0.25 inch sample.

3.4 Arched Bridges

  

The inspiration for these came from the shape of an egg. That’s because I learned during an egg drop lab that an egg is stronger when weight is being put on it length-wise than if the sides are pinched. As expected, the pieces where the curves are less steep (like an egg laying so the shorter distance is perpendicular to the ground) have more defects, and the steepest curve (as if the top of an egg was the mold for this piece) was almost perfect. The wider the curve becomes, the less it can support itself and the more the piece is unrecoverable.

3.5 “T” Overhangs/Cantilevers

  

The final test for this section is the “T” overhang, which only has a support on one side. This happened to be the only test that completely failed, as none of these pieces are usable – it’s safe to say that pieces should not be made without supports on both side of the overhang.

4. Insight

A rule-of-thumb “overhang rule” used in the industry is that a piece can be self-supporting as long as the overhang does not exceed the angle to the horizontal by more than 45 degrees. A back-of-the-envelope (literally) calculation shows that if we approximate an angular edge with stair-steps of thickness t, the overhang length l equals t/tan(Θ). According to this equation, this means that to increase the allowable angle, the layer thickness can be increased or the unsupported length should be reduced.

This observation is confirmed by a previous investigation into the angles of self-support for ULTEM-9085 on Stratasys Fortus systems showed how the maximum angle that can be self-supported is indeed a function of layer thickness, but also a function of the contour width (see graph below). In the graph, the lower the angle, the lesser the support needed, since everything above that angle will need to be supported. Thus, thicker layers result in lesser support. Due to the nature of contouring in the FDM processes, a thin contour that forms the edge of the overhang is likely to droop off. But as it gets thicker, it maintains greater contact with the supported portion.

The fact that thicker layers and contour widths may yield larger support angles is counter intuitive since we generally assume thinner layers improve print quality – and this is in general true. But if the aim is to design parts without supports, both these variables can push the limits of the process.

5. Conclusions

Basic design guidelines for overhangs can be, to a first order, simplified to one design rule: the angle below which material needs to be supported. This angle in turn, for the Fused Deposition Modeling process on a given machine and material, can be optimized by manipulating layer thickness and contour width.

In my next post, I will look for inspiration for self-supporting strategies from other disciplines. Stay tuned.

Press Release: New 3D Printing Support Cleaning Apparatus Features Large Capacity for Stratasys FDM Systems

PADT-Press-Release-IconBuilding on the worldwide success of previous products in the family, PADT has just released the new SCA 3600, a large capacity cleaning system for removing the support material from Stratasys FDM parts.  This new system adds capacity and capability over the existing benchtop SCA-1200HT System.

A copy of the press release is below.
At the same time, we are also launching a new website for support removal: www.padtinc.com/supportremoval.

The SCA 3600 can dissolve support from all the SST-compatible materials you use – ABS, PC, and nylon. A “no heat” option provides agitation at room temperature for the removal of Polyjet SUP706 material as well. The SCA 3600’s versatility and efficient cleaning performance are built on the success of earlier models with all the features you have come to expect, in a larger and more capable model.sca_3600-3pics

Since the launch of the original SCA-1200 in 2008, PADT has successfully manufactured and supported the SCA family of products for users worldwide. Common requests from desktop SCA users were for a larger system for bigger parts, the ability to clean many parts at the same time, and the option to remove supports from PolyJet parts. The SCA 3600 is the answer: Faster, larger, and more capable.

sca-logo3-web7SCA 3600 Key Features are:

  • Removes soluble support from ABS, PC, and nylon 3D printed FDM parts
  • Removes soluble support from PolyJet 3D Printed parts
  • User-selectable temperature presets at 50, 60, 70, and 85°C and “No Heat” for PolyJet
  • User-controlled timer
  • Uses cleaning solutions from Stratasys
  • Unique spray nozzle optimizes flow coverage
  • 230 VAC +/- 10%, 15A
  • Whisper-quiet operation
  • Includes rolling cart for easy movement, filling, and draining.
  • Capacity: 27 gal / 102 L
  • Size: 42.8″ x 22.8″ x 36.5″/ 1,086 x 578 x 927 mm
  • 16” x 16” x 14” / 406 x 406 x 356 mm removable large parts basket
  • Integral hinged lid and small part basket
  • Stainless steel tub and basket
  • Over temperature and water level alarms
  • Automatic halt of operation with alarms
  • Field replaceable sub-assemblies
  • Regulatory Compliance: CE/cTUVus/RoHS/WEEE

You can download our new brochure for both systems:

SCA 3600 Spec Sheet

SCA-1200HT Spec Sheet

If you are interested in learning more or adding an SCA 3600 to your additive manufacturing lab, contact your Stratasys reseller.

Official copies of the press release can be found in HTML and PDF.

Press Release:

New 3D Printing Support Cleaning Apparatus Features Large Capacity for Stratasys FDM Systems

Offered Worldwide, the SCA 3600 is Big Enough to Handle Large 3D Printed Parts, Effortlessly Dissolving Support Material

TEMPE, Ariz., November 17, 2016 – Phoenix Analysis & Design Technologies, Inc. (PADT), the Southwest’s largest provider of simulation, product development, and rapid prototyping services and products, today introduced its new SCA3600 3D Printing Support  Cleaning Apparatus (SCA). The systems are sold exclusively by Stratasys, Ltd. (SSYS) for use with its FORTUS line of 3D Printers. The hands-free support removal technology is a huge advantage to people who use Fused Deposition Modeling (FDM) systems for their 3D Printing.

“With more than 10,000 of our benchtop SCA units in the field, we gathered a wealth of knowledge on performance and reliability,” said Rey Chu, Co-owner and Principal of PADT. “We used that information to design and manufacture a system that cleans larger parts, or multiple small parts, while keeping the speed, easy maintenance and great user experience of the benchtop system.”

A powerful upgrade over PADT’s successful SCA-1200HT and SCA-1200 support removal products that have been in use around the world since 2008, the SCA 3600 features a simpler, more user-friendly design. The new versatile SCA offers temperature choices of 50, 60, 70 and 80 degrees Celsius, as well as no-heat, that readily cleans supports from all SST compatible materials – ABS, PC and Nylon. The SCA 3600 also features a large 16” x 16” x 14” parts basket, 3400 watts of heating for faster warm-up and a wheeled cart design for mobility.

The advantages of the system were highlighted by Sanja Wallace, Sr. Director of Product Marketing and Management at Stratasys, Ltd. when she commented, “the addition of the SCA 3600 as an accessory to our very successful FORTUS systems simplifies the support removal process with increased speed and capacity for multiple large parts.”

Once parts are printed, users simply remove them from their Stratasys FDM system, place them in the SCA 3600, set a cleaning cycle time and temperature, and then walk away.  The device gently agitates the 3D printed parts in the heated cleaning solution, effortlessly dissolving away all of the support material. This process is more efficient and user friendly than those of other additive manufacturing systems using messy powders or support material that must be manually removed.

More information on the systems available at www.padtinc.com/supportremoval. Those interested in acquiring an SCA 3600 should contact their local Stratasys reseller.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com.

###

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

The Chemistry Behind Soluble Support Removal in Fused Deposition Modeling

fdm-support-chemestry-1In the Fused Deposition Modeling (FDM) process, support structures are needed for features with overhang incline angle less than 45-degree from horizontal. Stratasys developed a series of support materials for different model materials: SR-30TM for ABS, SR-100TM for polycarbonate and SR-110TM for nylon. Also, they developed the Waterworks Soluble Concentrate, P400-SC, to be used to dissolve these support materials. In this blog post, I develop a theory for the chemical reaction how P400-SC Waterworks dissolves SR-30TM, SR-100TM and SR-110TM support materials. As part of this, I explain how PADT’s Support Cleaning Apparatus (SCA) tank, with its heating and unique circulation and agitation capabilities that are important for the support dissolving process.

Materials Introduction

We begin by looking at the composition of the different materials involved in the table below.

stratasys-support-removal-chemestry-table-01Adapted from Stratasys.com

How P400-SC Works for Support Materials Removal

Polymer can swell and then dissolve into water as a consequence of abundant hydrophilic groups, like carboxyl group (-COOH), ether group (-O-), hydroxyl group (-OH) and so on in its molecular structure. Theoretically, SR-30TM and SR-100TM /SR-110TM Soluble Support Materials including a carboxyl group (-COOH) in their repeat unit are likely to be water soluble. However, they also have a hydrophobic ester group (-COO-) in their repeat unit, which counteracts the efficacy of the hydrophilic group on the long carbon chain. Thus, the key to making SR-30TM and SR-100TM /SR-110TM soluble, is to somehow get rid of the ester group.

A great example of supports on an FDM part. The part on the right has had the supports dissolved away
A great example of supports on an FDM part. The white material on the part to the left is the soluble support material. The part on the right has had the supports dissolved away

Hydrolysis of ester in pure water is a slow process even the system is heated. Both acid and alkaline conditions can catalyze and speed up the process. Under the acid condition, the hydrolysis is a reversible process until it reaches an equilibrium state, whereas alkaline conditions promote a thorough hydrolysis with a stirring and heating system.

P400-SC Waterworks contains sodium carbonate, sodium hydroxide, sodium lauryl sulfate and sodium metasilicate. The last two constituents, with 1-5 wt% respectively, are auxiliaries in the P400-SC Waterworks. The remaining two react with carboxylic acid and ester group per the following chemical reaction:

  1. R-COOH + NaOH =  R-COONa+ + H2O (neutralization reaction)
  2. 2 R-COOH + Na2CO3 =  2 R-COONa+ + H2O + CO2
  3. R1–COO-R2 + NaOH ≜ R1-COONa+ + R2OH (ester hydrolysis under alkaline condition)

where R is the remaining carbon chain apart from carboxyl group and R1, R2 represent the two-side segments of ester group. Ester hydrolysis is the main reaction we need, which ionizes the ester group and makes it water soluble with an increased polarity. These reactions would happen when SR-30TM or SR-100TM /SR-110TM supports are dropped into a tank with P400-SC Waterworks cleaning solution inside.

From the table above, we can see that ABS-M30TM and PC-10TM don’t have hydrophilic groups, which restrains their solubility into water. Nylon is semi-crystalline polymer and difficult to dissolve into water and most organic solvent, despite the presence of the hydrophilic group acylamino (-CONH-), which still results in a nice water-absorbing ability. All these model materials are common-use engineering plastic with nice chemical resistance (depending on their functional groups), they can be safe in the cleaning solution.

SCA1200HT-side1PADT’s Support Cleaning Apparatus (SCA)

The SCA tank offers an optimized environment with agitation and heating for the ester hydrolysis reaction. The tank has four preset temperature options (50 ℃, 60℃, 70℃, 85℃) for ABS-M30TM, PC-10TM, and FDMTM Nylon 12 model materials, due to their different thermal resistance. The innovative custom designed pump is key to cause the solution to effectively and efficiently dissolve and remove the support materials.

For more information on PADT’s entire line of SCA, please see http://www.supportremoval.com/

Press Release: Faster 3D Printing Support Removal of Wider Range of Materials with PADT’s New SCA-1200HT

IMG_7411We are very excited to announce that at the end of 2014 PADT shipped the first lot of our new Support Cleaning Apparatus, or SCA.  After almost 6 years of great service, the SCA1200-HT replaces the SCA-1200. The new system is a redesign based upon the 6,700 plus systems that PADT manufactured and supported around the world.  The biggest change to users is broader preset temperature range, allowing users to now remove support from their Nylon and Polycarbonate parts.  The motor and pump are a custom PADT design with better performance and durability. The control and ergonomic interface have also been modified for greater ease of use.

IMG_7507

If you are not familiar with PADT's SCAs and their use, they are accessories for the Stratasys line of Fused Deposition Modeling (FDM) additive manufacturing systems, commonly referred to as 3D Printers.  These systems extrude the build material and a water soluble support material that holds up any overhanging geometry.  The soluble material can be removed with gentle agitation in a slightly basic solution of warm water. We designed the SCA's as the easiest to use and fasted way to remove the support material.

Selling and supporting our own product has been a great experience for our team. Since the company was founded in 1994, we have been designing, simulating, and supporting our customer's products. With the SCA line we are able to practice what we preach on our own product. We have especially enjoyed supporting the products in Europe and Asia, allowing us to get to know the Stratasys Channel overseas as well as customers.

You can read more about the SCA-1200HT on our redesigned website: www.SupportRemoval.com. Here are a couple of videos that show how the system works and how to use it.  The official press release can be found here

 

You can also read the press release with more details below.  Contact your Stratasys supplier for more information.

IMG_7475

 

Press Release:

Faster 3D Printing Support Removal of

Wider Range of Materials  with PADT’s New SCA-1200HT

PADT ships a new generation of their popular Support Cleaning Apparatus product used to remove soluble supports from 3D Printed parts created using Stratasys Fused Deposition Modeling systems.  

 

Tempe, AZ – January 20, 2015 – Phoenix Analysis & Design Technologies, Inc. (PADT, Inc.), the Southwest’s largest provider of simulation, product development, and rapid prototyping services and products, is pleased to announce the release by Stratasys, Ltd. (SSYS) of the new SCA-1200HT support removal system. This new system is designed, manufactured, and supported by PADT and sold exclusively by Stratasys, Ltd for use with their Mojo, uPrint, Dimension, and Fortus Additive Manufacturing systems, also known as 3D Printers.   

The SCA-1200HT is an improved design based on the successful SCA-1200 that has been in use around the world since 2008. The new system features four preset temperature levels for use with a wider range of materials including polycarbonate and nylon. It also includes a proprietary custom pump with longer life, simpler repair and maintenance, and an overall lower operating noise level.  The controls, lid, and parts basket have been ergonomically redesigned while the internal systems have been simplified and made easier to replace by the user or local support provider.

Rey Chu, co-owner of PADT and the person behind the SCA line of products said “With over 6,700 of our previous systems in the field, we gathered a wealth of knowledge on performance and reliability. We used that knowledge to design a system that cleans parts faster, is easier to maintain, and gives a much better user experience.  The hands-off support removal provided by Stratasys’ Soluble Support Technology and PADT’s SCA is a huge advantage to people who use FDM technology for their 3D Printing.  With the SCA-1200HT that advantage just got larger.”

Once parts are printed, users simply remove them from their Stratasys system, place them in the SCA-1200HT, set a cleaning time and temperature, and then walk away.  The device gently agitates the 3D Printed parts in the heated cleaning solution, effortlessly dissolving away all of the support material.  This process is more efficient and friendly than other additive manufacturing systems using messy powders or support material that must be manually removed.

More information on the system as well as a video showing how the SCA-1200HT works is available at www.supportremoval.com.  Those interested in acquiring an SCA-1200HT should contact their local Stratasys reseller.

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering service company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping products and services. PADT’s worldwide reputation for technical excellence and an experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.“  With over 75 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, its Littleton, Colorado office, Albuquerque, New Mexico office, and Murray, Utah office, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com