Updates and Enhancements in ANSYS Mechanical 19.1 – Webinar

Don’t miss this informative presentation – Secure your spot today!
Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Increase your throughput and reduce manufacturing costs

Fast, easy to use lightweighting for structural analysis is now only a few clicks away thanks to the introduction of Topology Optimization in ANSYS 18.

Engineers who use Finite Element Analysis (FEA) can reduce weight, materials, and cost without switching tools or environments. Along with this, Topology Optimization frees designers from constraints or preconceptions, helping to produce the best shape to fulfill their project’s requirements.

Topology Optimization also works hand-in-hand with Additive Manufacturing; a form of 3D printing where parts are designed, validated, and then produced by adding layers of material until the full piece is formed. Pairing the two simply allows users to carry out the trend of more efficient manufacturing through the entirety of their process.

Join PADT’s simulation support manager Ted Harris for a live presentation on the full
benefits of introducing Topology Optimization into your manufacturing process. This webinar will cover:

  • A brief introduction into the background of Topology Optimization and Additive Manufacturing, along with an overview of it’s capabilities

  • An explanation of the features available within this tool and a run through of it’s user interface and overall usage

  • An in-depth look at some of the intricacies involved with using the tool as well as the effectiveness of it’s design workflow

Additive Manufacturing – Back to the Future!

Paul Nigh's 'TeamTimeCar.com' Back to the Future DeLorean Time Machine
Production of Back to the Future began in 1984 – it was recently announced that the DeLorean is to go back in production with new cars rolling out in 2017

Most histories of Additive Manufacturing (3D printing) trace the origins of the technology back to Charles Hull’s 1984 patent, the same year production began on the first of the Back to the Future movies. Which is something of a shock when you see 3D printing dotting the Gartner Hype Cycle like it was invented in the post-Seinfeld era. But that is not what this post is about.

When I started working on Additive Manufacturing (AM), I was amazed at the number of times I was returning to text books and class notes I had used in graduate school a decade ago. This led me to reflect on how AM is helping bring back to the forefront disciplines that had somehow lost their cool factor – either by becoming part of the old normal, or because they contained ideas that were ahead of their time. I present three such areas of research that I state, with only some exaggeration, were waiting for AM to come along.

  • Topology Optimization: I remember many a design class where we would discuss topology optimization, look at fancy designs and end with a conversation that involved one of the more cynical students asking “All that’s fine, but how are you going to make that?”. Cue the elegant idea of building up a structure layer-by layer. AM is making it possible to manufacture parts with geometries that look like they came right out of a stress contour plot. And firms such as ANSYS, Autodesk and Altair, as well as universities and labs are all working to improve their capabilities at the intersection of topology optimization and additive manufacturing.
Topology optimization applied to the design of an automobile upper control-arm done with GENESIS Topology for ANSYS Mechanical (GTAM) from Vanderplaats Research & Development and ANSYS SpaceClaim
Topology optimization applied to the design of an automobile upper control-arm done with GENESIS Topology for ANSYS Mechanical (GTAM) from Vanderplaats Research & Development and ANSYS SpaceClaim
And we printed that!
And we printed that!
  • Lattice Structures: One of the first books I came across when I joined PADT was a copy of Cellular Solids by Lorna Gibson and M.F. Ashby. Prof. Gibson’s examples of these structures as they occur in nature demonstrate how they provide an economy of material usage for the task at hand. Traditionally, in engineering structures, cellular designs are limited to foams or consistent shapes like sandwich panels where the variation in cell geometry is limited – this is because manufacturing techniques do not normally lend themselves well to building complex, three dimensional structures like those found in nature. With AM technologies however, cell sizes and structures can be varied and densities modified depending on the design of the structure and the imposed loading conditions, making this an exciting area of research.

    Lattice specimens made with the Fused Deposition Modeling (FDM) process
    Lattice specimens made with the Fused Deposition Modeling (FDM) process
  • Metallurgy: As I read the preface to my “Metallurgy for the Non-Metallurgist” text book, I was surprised to note the author openly bemoan the decline of interest in metallurgy, and subsequently, fewer metallurgists in the field. And I guess it makes sense: materials science is today mostly concerned with much smaller scales than the classical metallurgist trained in. Well, lovers of columnar grain growth and precipitation hardening can now rejoice – metallurgy is at the very heart of AM technology today – most of the projected growth in AM is in metals. The science of powder metallurgy and the microstructure-property-process relationships of the metal AM technologies are vital building blocks to our understanding of metal 3D printing. Luckily for me, I happen to possess a book on powder metallurgy. And it too, is from 1984.
This book was printed in 1984, and is very relevant today
Published 1984

Desktop Engineering: Your Optimization Software Respectfully Suggests a Revision

DE_Logo109x100When Desktop Engineering needed a subject matter expert on Topological Optimization and its use to drive product development, they called on PADT’s Manoj Mahendran.  The article “Your Optimization Software Respectfully Suggests a Revision” gives a great overview of how designs can be driven by the use of Topological Optimization. They also mention a few of the more common tools, and with Manoj’s help, discuss the importance of 3D Printing to the process. An important take away is how these tools can be used to suggest design changes to the designer.

padt-de-desktop-engineering-manoj