Helpful New Meshing Feature in ANSYS Mechanical 17.0 – Nonlinear Mechanical Shape Checking

Categories:

ansys=new-mesh-r17 Meshing for Nonlinear Structural Problems

Overcoming convergence difficulties in nonlinear structural problems can be a challenge. I’ve written a couple of times previously about tools that can help us overcome those difficulties:

I’m pleased to announce a new tool in the ANSYS Mechanical tool belt in version 17.0.
With version 17.0 of ANSYS we get a new meshing option for structural simulations: Nonlinear Mechanical Shape Checking. This option has been added to the previously available Standard Mechanical Shape Checking and Aggressive Mechanical Shape Checking. For a nonlinear solution in which elements can become significantly distorted, if we start with better-shaped elements they can undergo larger deformations without encountering errors in element formulation we may encounter fewer difficulties as the nodes deflect and the elements become distorted. The nonlinear mechanical setting is more restrictive on the element shapes than the other two settings.

We’ve been recommending the aggressive mechanical setting for nonlinear solutions for quite a while. The new nonlinear mechanical setting is looking even better. Anecdotally, I have one highly nonlinear customer model that reached 95% of the applied load before a convergence failure in version 16.2. That was with the aggressive mechanical shape checking. With 17.0, it reached 99% simply by remeshing with the same aggressive setting and solving. That tells you that work has been going on under the hood with the ANSYS meshing and nonlinear technology. By switching to the new nonlinear mechanical shape checking and solving again, the solution now converges for the full 100% of the applied load.
Here are some statistics using just one measure of the ‘goodness’ of our mesh, element quality. You can read about the definition of element quality in the ANSYS Help, but in summary better shaped elements have a quality value close to 1.0, while poorly shaped elements have a value closer to zero. The following stats are for tetrahedral meshes of a simple turbomachinery blade/rotor sector model (this is not a real part, just something made up) comparing two of the options for element shape checking. The table shows that the new nonlinear mechanical setting produces significantly fewer elements with a quality value of 0.5 or less. Keep in mind this is just one way to look at element quality – other methods or a different cutoff might put things in a somewhat different perspective. However, we can conclude that the Nonlinear Mechanical setting is giving us fewer ‘lower quality’ elements in this case.

Shape Checking Setting Total Elements Elements w/Quality <0.5 % of elements w/Quality <0.5
Aggressive Mechanical 31683 1831 5.8
Nonlinear Mechanical 31865 1249 3.9

Here are images of a portion of the two meshes mentioned above. This is the mesh with the Aggressive Mechanical Shape Checking option set:ansys-new-meshing-17-01
The eyeball test on these two meshes confirms fewer elements at the lower quality contour levels.

And this is the mesh with the Nonlinear Mechanical Shape Checking option set:

ansys-new-meshing-17-02

So, if you are running nonlinear structural models, we urge you to test out the new Nonlinear Mechanical mesh setting. Since it is more restrictive on element shapes, you may see longer meshing times or encounter some difficulties in meshing complex geometry. You may see a benefit in easier to converge nonlinear solutions, however. Give it a try!

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

03/28/2024

SAF Blue Carpet Event

03/28/2024

2024 Arizona Space Summit

04/03/2024

Low Frequency Updates in Ansys 2024 R1 - Webinar

04/03/2024

Venture Madness Conference Reception + Expo

04/03/2024

Stratasys F3300: Game Changing Throughput - Webinar

04/08/2024

39th Space Symposium

04/09/2024

39th Space Symposium

04/10/2024

Discovery Updates in Ansys 2024 R1 - Webinar

04/10/2024

39th Space Symposium

04/11/2024

39th Space Symposium

04/22/2024

Experience Stratasys Truck Tour: Houston, TX

04/24/2024

Structures Updates in Ansys 2024 R1 (2)

04/24/2024

Experience Stratasys Truck Tour: Houston, TX

05/07/2024

Experience Stratasys Truck Tour: Albuquerque, NM

05/08/2024

Fluent Materials Processing Updates in Ansys 2024 R1 - Webinar

05/09/2024

Experience Stratasys Truck Tour: Los Alamos, NM

05/14/2024

Simulation World 2024

05/15/2024

Simulation World 2024

05/16/2024

Simulation World 2024

05/22/2024

Optics Updates in Ansys 2024 R1 - Webinar

06/12/2024

Connect Updates in Ansys 2024 R1 - Webinar

06/26/2024

Structures Updates in Ansys 2024 R1 (3) - Webinar

06/27/2024

E-Mobility and Clean Energy Summit

07/10/2024

Fluids Updates in Ansys 2024 R1 - Webinar

08/05/2024

2024 CEO Leadership Retreat

10/23/2024

PADT30 | Nerdtoberfest 2024

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: