‘Go To’…like using the LHC to find a needle in a haystack… except you don’t run the risk of creating a black hole that destroys us all.

Categories:

 

When you couple ANSYS Workbench’s automation features, ease of use, and advances in computer resources, it typically results in some rather large models.  When I first started using ANSYS, I remember fighting tooth and nail to avoid using contact and keep the model size under 200k nodes.  Fast forward to a recent consulting job that included 70 contact regions, 30 kinematic joints, and a total model size around 700k nodes, and I barely batted an eye.

Some problems you run into with models at this size and complexity is figuring out “what am I looking at?”, “what’s connected to this?”, “why is the mesh doing that?”, just to name a few.  The brute force way to figure most of these out is to go through each tree item, one at a time, until the part you’re looking at lights up.  This is probably okay for a single component or small assembly, anything larger and it becomes a daunting task.  Luckily, there’s an easy way around this, simply click the right mouse button (RMB) and select the ‘Go To’ branch.  This will fire up the Large Hadron collider and help you find what you’re looking for (sans the risk of singularities and destruction of all mankind).

ansys pic

The image shown was taken in R12.1 (note that if you’re still using v11 some of these options are not available…time to upgrade!).  While most of these options seem self-explanatory, I get paid for each word I write (just kidding), so here’s a quick summary for all the options shown:

Corresponding Bodies in Tree Highlights selected body in geometry branch – allows you to change material properties of selected parts, note that you can have a vertex, line, area, or body selected…either way it’ll bring you to the ‘parent’ body
Bodies Without Contacts in Tree  Regardless of what’s currently selected, it will highlight all bodies in the geometry branch that do not have a contact pair – handy for chasing down the ‘max DOF incremenet’ error caused by an unconstrained body
 Contacts for Selected Bodies  Selects all contacts for the selected body – first place I check when I get odd stress results on my parts, typically because of an ‘accidental’ contact pair
 Contacts Common to Selected Bodies Selects only contact pairs between selected parts – Note that you must have >1 part selected or this won’t work, nice way of figuring out how two parts are connected
 Joints for Selected Bodies Similiar to ‘Contacts for Selected’, only with kinematic joints
Joints Common to Selected Bodies Similiar to ‘Contacts Common to…’, only with kinematic joints – again a very nice feature to figure out how two parts are connected
 Springs for Selected Bodies  Similiar to the ‘Contacts for…’ or ‘Joints for…’, only you guessed it, will show user-defined springs that attach to the body
 Mesh Controls for Selected Bodies Shows all mesh controls for the body currently selected – nice for answering the question “why is the mesh doing that?” type of issues

As noted in the description list, it does not matter what part of the body you have selected when you use the ‘Go To’ feature.  You can have a vertex, line, area, or the entire body highlighted.  ANSYS Mechanical understands what your selection belongs to, and takes you to the appropriate item.  So let’s say you have 5 different components that you need to change the material properties for.  Highlight a face on each body, RMB > Go To > Corresponding Bodies in Tree, then make the material change in the Details Window.  The change will be applied to all selected bodies.

The ‘Go To’ functionality is also available within ANSYS DesignModeler, the CAD creation/simplification/modification/etc moduls within Workbench.

dm pic

Within DesignModeler, you have two options:

Go To Feature Takes you to where the selected feature (vertex, line, area, body) was created, handy in finding out where a surface patch or ‘stranded’ line was created
Go To Body Takes you to the body within the parts-list at the bottom of the tree window, helpful in assigning thicknesses to surface bodies or renaming parts

As noted above, I use the ‘Go To Feature’ to identify where surface patches or stranded lines (line imprinted through part of an area) come from.  Depending on the body status (active or frozen) and the filtering used for certain operations, you can accidentally create imprints in unintended regions (the new ‘Projection’ tool, available in R12, is a big help in preventing this because it doesn’t ‘care’ if a body is active or frozen).

Using the picture above, if I wanted to figure out where that circular area came from, I would select it > RMB > Go To Feature and it would highlight this operation in the model tree:

dm pic2

In the Details Window I would see that this Body Operation was set to ‘Imprint Faces’.

So, to summarize, there is no need to go blind and suffer from carpal tunnel when trying to find out details of your model.  Just remember the ‘Go To’ function!

As a side note, I realize that the likelihood of the LHC producing a black hole capable of destroying the universe is extremely small.  Any black holes that could be generated would be short lived, and require so little negative mass to neutralize that we need not worry.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: