ANSYS Mechanical Scripting: HOWTO Part 3

Categories:

Where We Left Off Last Time…

In the second part of this series I left you with a recipe for discovering ANSYS Mechanical functionality by using entities in the GUI itself to help guide your search through the ANSYS source code that is shipped with every ANSYS Mechanical installation.  This technique is the first tool in our toolbox.  In this blog post, I’ll introduce you to a couple of the internal ANSYS Mechanical data structures that are associated with geometry in particular.  I’ll simply be introducing them in this blog without any discussion of how one might determine additional functionality associated with these structures.  In a future blog post, I’ll step you through the use of the most powerful tool available in our toolbox: the Visual Studio Script Debugger.

Introducing the ANSYS Mechanical Geometry Selection Manager and B-Rep Geometry Data Structure

CAD geometry is represented inside a computer using a Boundary Representation (B-Rep) data structure.  This data structure falls into a category of data structures computer scientists like to call graphs.   In general, a graph is a structure comprised of nodes connected to each other with arcs.  A road map is a type of graph where cities represent nodes and the roads connecting them represent arcs.  Sites like facebook and linkedin are giant graphs where people are represented as nodes and friendships or acquaintances are represented as arcs.   As you can see, graphs are pretty general and you can represent lots of structured relationships with them.

In CAD geometry, the nodes in our graph are comprised of various topological entities like vertices, edges, faces, shells and bodies.  The arcs are the incident relationships that exist between these entities.  So, for example, an edge will have a start vertex and an end vertex.  These relationships can be represented by links between the particular edge and its start vertex or end vertex.  Likewise, however, the particular start vertex of one edge may be the end vertex of another edge.  So, this relationship can be represented by links between a given vertex and all of the edges to which it is attached.  There are similar relationships between edges and faces.  A series of edges will form the boundary for a given face and a series of faces might share a common edge.  Shells represent a volume that is defined by a set of connected faces. (i.e faces that share common edges)  A body is comprised of one or more shells.  Why isn’t a body the same as a shell?  Well, it turns out that bodies with internal holes are more conveniently represented as comprising of two or more shells.  One shell represents the outermost envelope and the other shells represent the internal voids.   How, then, does one know if they are inside or outside of a body?  Well, the faces that comprise a shell each have an associated outward normal vector that points to the “outside” of the body in question.  The normal vector sense is defined using an ordering on the bounding edges of a given face.  Typically as you traverse the list of edges comprising the boundary of a given face, you are actually walking counter-clockwise around the face.  Using this assumption, one can determine an outward normal.

Lets discuss some of the specifics of the ANSYS Mechanical B-Rep.  First, an individual B-Rep structure is associated with each part in a Mechanical session.  So, if you have 15 parts you will have 15 different B-Rep structures.  Second, each entity (vertex, edge, face, body) within a given B-Rep has an associated unique ID. (This ID is called the TopoID, or Topological ID)  This ID is just an unsigned integer value, with one small twist.  The top two bits of the ID encode the entity’s topological type.  That is, if you stripped off the top two bits, you would get one of the following four combinations:

Top Two Bits

Decimal Value

Topological Type

000Vertex
011Edge
102Face
113Body

The lower 30 bits actually encode the unique id for a given vertex, edge, face or body.  So, what that means is that ANSYS Mechanical is limited to geometry with fewer than roughly one billion vertices, edges, etc… If you have a model with more than that, perhaps a bit of geometry simplification is in order.

To access a given topological entity within a B-Rep object, one uses the following type of function call (Note, I haven’t introduced where the brep_object below comes from…  Bear with me, we’ll get to it soon.)

var topo_object = brep_object.Cell(topo_id);

The Cell function accepts a valid topoID and returns the associated object.  The returned object is a rich object and has numerous fields that obviously differ depending on the topological type.  So, for example, an edge object will have a StartVertex and EndVertex field that contains references to its start and end vertices in particular.  However, all topological objects have one field in common.  They all contain an ID field.  So the following code would supply the topolD of the start vertex associated with a given edge:

var brep_object = /*Get B-Rep from somewhere */
var edge_id = /* Get Edge ID from somewhere*/
var edge = brep_object.Cell(edge_id);
var start_vertex_id = edge.StartVertex.Id;

You might gather that one can get the actual start vertex object with a subsequent line like:

var start_vertex = brep_object.Cell(start_vertex_id);

Now, each vertex object is going to contain a list of edges that are attached to this vertex.  So, if we needed all the edges attached to the original edge for some reason, we could use this technique with the start vertex and the end vertex. 

Walking the B-Rep data structure is perhaps interesting at best, but it currently doesn’t do anything for us.  What we need is to be able to select some piece of geometry, or pieces of geometry.  Enter the ANSYS Mechanical Selection Manager.  This object is closely associated with the B-Rep data structures.  Before we discuss this object in some detail, consider starting each and every one of your scripts with the following code:

//  The script code object is a reference to the javascript engine embedded
//  inside the mechanical application.  This object has all of the functions
//  that are defined in the ANSYS mechanical javascript files
var SC = DS.Script;

//  The selection manager object is a reference to the ANSYS mechanical 
//  geometry selection tool.  This is a complex object that contains 
//  references to the currently selected set of geometric entities.  More
//  importantly, it contains back pointers to entity ids within the 
//  Mechanical BREP structure.
var SM = SC.sm;

This code introduces two global variables into your script.  The first object contains a reference to the actual javascript engine embedded in the Mechanical application.  This object is derived from the DS object, which represents the fundamental Mechanical application object.  You can think of the DS object as the mother of all objects.  The ScriptCode or SC object stores all of the javascript code that ships with the ANSYS mechanical product.  So, if you use the technique described in Part 2 of this series and find a particular function call, you would actually call it against this object.  So, for example, we found the function doPrototypeInsertCommandEditor() in Part 2.  If we were to actually call that function in our script, it would look like:

SC.doPrototypeInsertCommandEditor();

The second global variable shown above is the selection manager, or SM.  You can see that this object is a child of the script code object.   This object has numerous functions and properties and in a later post I hope to document as many as I can.  However, a great deal of mileage can be gained by understanding the following two function calls, and the following few properties.  I list them below in code form so you can see how they would typically be called inside a script:

/*  F U N C T I O N S   O F   T H E    S E L E C T I O N    M A N A G E R */
// Clear()  
// This function resets the selection manager so that no geometry is currently 
// selected.
SM.Clear();

// AddToSelection(partID, topoID, bShouldDraw)
// This function adds a particular topological entity (vertex, edge, face, body) 
// to the currently selected set. The first argument specifies the particular
// part this entity is associated with.  You can think of this as referencing the
// particular BRep structure.  The second argument specifies the topological
// entities specific ID.  The final argument is a boolean specifying whether or
// not the selection manager should highlight the selected geometry in green.
SM.AddToSelection(partID, topoID, bShouldDraw);

/*  P R O P E R T I E S   O F   T H E    S E L E C T I O N    M A N A G E R */
// Vertices
// The number of currently selected vertices
var num_selected_vertices = SM.Vertices;

// Edges
// The number of currently selected edges.
var num_selected_edges = SM.Edges;

// Faces
// The number of currently selected faces.
var num_selected_faces = SM.Faces

// Parts
// The number of currently selected (bodies*)
// Note: I think this is where the SM and the BRep use different
// terms for a body.  However, I may be wrong.
var num_selected_bodies = SM.Parts

// SelectedCount
// The total number of selected entities.  (Sum of the above)
var num_selected = SM.SelectedCount;

// SelectedEntityTopoID(i)
// The ith selected entity's topological id.  Note you can use the
// top two bits of this id to determine the type of this selected
// object.  i goes from 1 to SelectedCount.
var selected_topoid = SM.SelectedEntityTopoID(i);

// SelectedPartID(i)
// The part id for the ith selected entity. For models with numerous
// parts this will tell you which part the currently selected entity is
// associated with.  You use this to reference the proper BRep structure.
// i goes from 1 to SelectedCount.
var selected_partid = SM.SelectedPartID(i);

// PartMgr
// The Part Manager (PartMgr) object is a child of the selection manager.
// It also has numerous methods and properties, however, the one
// property that I have found most useful is the PartById(id).
// PartMgr.PartById(id)
// This returns the particular part object associated with a given part id
var part = SM.PartMgr.PartById(partID);

// The part object returned by the PartMgr.PartById(partID) call has 
// associated with it a given BRep data structure.  Referencing this brep
// structure is how you get from the selection manager's selected entity
// id to a given piece of topology.  So for example, assume the user
// has selected one face in the model.  This is one way we can get to that
// face object.
var topo_id = SM.SelectedEntityTopoID(1);
var part_id = SM.SelectedPartID(1);
var part = SM.PartMgr.PartById(part_id);
var brep = part.BRep;
var face = brep.Cell(topo_id);

The above code represents a small portion of the interface of the ANSYS Mechanical selection manager and also the geometry B-Rep structure.  As you can see, the two structures are coupled through the notion of a part id, which selects a given B-Rep structure, and a selected entity id, which represents a piece of topology within the specified B-Rep structure.   Once a given topological entity is identified and retrieved from the B-Rep structure, one can navigate the connectivity information contained in the B-Rep to find other topological entities nearby.  By using a combination of the Clear() function and the AddToSelection(…) function associated with the selection manager, one can programmatically control which topological entities are currently selected. 

You can see this technique in action by perusing the Example in the previous posting.

Categories

Certified Elite Channel Partner

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Product Development
Platinum Partner

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: Phoenix Analysis and Design Technologies, 7755 S. Research Dr., Tempe, AZ, 85284, https://www.padtinc.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

05/04/2022

Mechanical Meshing Updates in Ansys 2022 R1 - Webinar

04/27/2022

04/22/2022

12TH ANNUAL TUCSON GOLF TOURNAMENT

04/21/2022

04/20/2022

Additional Fluids Updates in Ansys 2022 R1

04/20/2022

Experience Stratasys Tour – Tempe Arizona

04/18/2022

Experience Stratasys Tour - Flagstaff Arizona

04/14/2022

D&M West | MD&M West

04/13/2022

D&M West | MD&M West

04/13/2022

Experience Stratasys Tour - Albuquerque New Mexico

04/12/2022

D&M West | MD&M West

04/12/2022

Experience Stratasys Tour - Los Alamos New Mexico

04/12/2022

Optimizing Engineering Workflows f​​​​or Propulsion System Design

04/07/2022

Experience Stratasys Tour - Austin Texas

04/07/2022

37th Space Symposium - Arizona Space Industry

04/06/2022

Transforming Digital Engineering with Ansys Discovery 2022 R1

04/06/2022

37th Space Symposium - Arizona Space Industry

04/05/2022

37th Space Symposium - Arizona Space Industry

04/04/2022

37th Space Symposium - Arizona Space Industry

03/30/2022

Simulation Best Practices for Vehicle Engineering - Webinar

03/23/2022

03/23/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R1

02/24/2022

Arizona Technology Council After 5 Tech Mixer "Pandemic Pivot Pizza Pa

02/23/2022

SciTech Festival: Spend an Hour with 3D Printing Experts

02/11/2022

Webinar: Mechanical overview for Ansys 2022 R1

More Info

02/09/2022

Webinar: Product Development 101 (FAKE)

02/08/2022

Webinar: Navigating the Additive Landscape

01/27/2022

Arizona Technology Council 1st Quarter VIP Tech Mixer

More Info

01/26/2022

Simulation Best Practices for Gas Turbine Design & Development - Webin

More Info

01/19/2022

Arizona Photonics Days

More Info

11/04/2021

ExperienceIT, New Mexico

More Info

11/03/2021

Additive Manufacturing & Structural Optimization in Ansys 2021 R2 - We

More Info

11/03/2021

Optics Valley Technical Series: The Future of Simulation in the Optics

More Info

11/02/2021

SBIR Liftoff AZTC Virtual Breakfast Series

More Info

10/10/2021

Stratasys Mobile Truck Stop - Tucson Arizona

More Info

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: