Dad, What Do You Do at Work?

Categories:

I’m sure the question comes up for a lot of us from time to time, whether from one of our own offspring, another relative, or an acquaintance.  “Just what is it that you do, anyway?”  Typical answers might be something short and sweet, such as, “I’m an engineer.”  A more detailed response might be, “I use a technique called finite element simulation which is a computer tool we use to simulate the behavior of parts or systems in their real world environment.”

You’ll probably find that people’s eyes glaze over and they start looking for someone else to talk to by the time you get to the end of that second quote above.  In fact, I find that my extended family is much more interested in my brother-in-law’s surgery stories from the operating room than they are in my own triumphs and challenges in the engineering simulation world.  Maybe you’ve had that same sort of reaction.  You have probably noticed that there are a whole lot more medical dramas on TV at any one time than there are engineering dramas.  They’ve got many characters from Marcus Welby on up to Dr. Ross on ER, Jack on Lost, to Dr. Grey on Grey’s Anatomy, with more than I can count in between.

We’ve got, well, Scotty.  And even then I think Dr. McCoy got more air time.

So when my kids ask me what I do at work, I recall a scene from that late 1980’s to early 1990’s TV show The Wonder Years.  In the episode “My Father’s Office,” Kevin asks his dad what he does for a living.  His father responds in an angry tone, “You know what I do!  I work at NORCOM.”  As if that were a sufficient explanation.  I suppose it was his way of saying, “It’s complicated.  It can be high pressure.  You might find it boring.  It puts food on the table and a roof over our heads, though.”

Rather than reply that way, I’ve tried to come up with what is hopefully a better response.  In fact, this concept constitutes the first portion of our Engineering with FEA training class, written by Keith DiRienz of FEA Technologies with contributions by yours truly.

I can’t guarantee that your audience’s eyes won’t glaze over by the end, nor that you’ll become the hit of the party, but this is free and you get what you pay for.  This explanation can obviously be adjusted based on the audience, but it goes something like this:

Simple explanation:

–We have equations to solve for stresses and deflections in simply-shaped parts such as cantilevered beams.

–No such equations exist for complex shaped objects subject to arbitrary loads.

–So, using finite elements, we break up a complex part into solvable chunks, leading to a finite set of equations with finite unknowns.

-We solve the equations for the chunks, and that ends up giving us the results for the whole part.

If we want more details, we can use this:  As an example, here is a simple beam, fixed at one end with a tip load P at the other end.  We have an equation to calculate the tip deflection u for simple cases:

image

In the above equation E is the Young’s Modulus, a property of the material being used and I is the moment of inertia, a property of the shape of the beam cross section.

For more complex shapes and loading conditions, we don’t have simple equations like that, but we can use the concept by dividing up our complex shape into a bunch of simpler shapes.  Those shapes are called elements.

image

A useful equation for us is the linear spring equation, F=Kx, where F is the force exerted on the spring, K is the stiffness of the spring, and x is the deflection of one end of the spring relative to the other.  If we extend that concept into 3D, we can have a spring representation in 3D space, meaning the X, Y, and Z directions.  In fact, the tip deflection equation shown above for the beam fixed at one end can be considered a special case of our linear spring equation, solved for deflection with a known applied force.

By assembling our complex structure out of these 3D springs, or elements, we can model the full set of geometry for complex shapes.  The process of making the elements is called meshing, because a picture or plot of the elements looks like a mesh.

Using linear algebra and some calculus (stay in school kids!) we can setup a big  series of equations that takes into account all the little springs in the structure as well as any fixed (unable to move) locations and any loads on the structure.  The equations are too big to solve by hand by normal people so computers are used to do this.

When the computer is done solving we end up with deflection results in each direction for the corner points (called nodes) in each element.  Some elements have extra nodes too.

From those deflection results, the computer can calculate other quantities of interest, such as stresses and strains.  Further, other types of analyses can be solved in similar fashion, such as temperature calculations and fluid flow.

Here is an example using a familiar object that practically everyone can relate to.  This plot shows the mesh:

image

This is fixed in the blue region at the bottom and has an upward force on the left end.  The idea here is that someone is holding it tightly on the blue surface and is pulling up on the red surface.

image

After solving the simulation, we get deflection results like this:

image

The picture above shows that the left end of the paper clip has deflected upward, which is what we would expect based on common experience with bending paper clips.  Using our finite element method, we can predict the permanent deflection resulting from bending the paper clip beyond it’s ‘yield’ point, resulting in what we call plastic deformation.

Clearly there is a lot more to it than these few sentences describe, but hopefully this is enough to get the point across.

In sum, not as exciting as my brother in law’s medical stories involving nail guns or other gruesome injuries, but hopefully this makes the world of engineering simulation a little more accessible to our friends and family.

In the Wonder Years episode, Kevin ends up going to work with his father to see for himself what he does.  I won’t spoil the episode, but hopefully you’ll get the chance to show your family and friends what it is that you do from time to time.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: