Sifting through the wreckage: Element Birth and Death in Workbench

Categories:
So the WebEx that expanded upon my article about load vs. sub-step in Workbench ended with me getting booted from the teleconference and unable to rejoin.  I handled as many questions as possible through the chat window, but one of them required a bit more than I was willing to answer via chat window.  That question was “do you have an example of element birth/death using command snippets”. 

pic1
It may not have been that bad…and I might not look that cool

 

I’ll first start by going over element birth and death.  This functionality allows you to remove the stiffness of groups of elements from a load-step (clarification:  it technically reduces the stiffness by the value defined with the ESTIF command, which defaults to 1E-6).  I’ve typically seen it used to analyze some chip-level component where you have multiple assembly steps where the component is heated, stuff poured on it, cooled, heated back up to a different temperature, and so on.  This functionality is accessed by using the ekill and ealive commands, which operate on the currently selected element set.  I should also point out that you can use these commands on contact elements to simulate assembly processes by eliminating contact interfaces from being detected from step to step (PROTIP:  not recommended for MPC-based contact).

Next, how to enact in Workbench.  The command snippets are fairly simple, the real leg work comes in selecting the elements you want to kill.  This is typically done through named selections or selecting elements by material.  The easiest way to use named selections is to scope the named selection to a body:

pic2
Note the ‘part1’ is scoped to a body

When a named selection is scoped to a body, the MAPDL input file contains a component consisting of elements.  You can select these elements by using the command “cmsel,s,part1”.  If the named selection is scoped to a keypoint, line, or area, the corresponding component will consist of nodes.  You can ‘fight’ your way to the attached elements by doing a “esln” after you select the component (repeat as many times as you like in a *do loop).  This can get confusing if you’re using surface bodies (meshed with shells) as the surface and body ‘look’ like the same thing…just realize that it’s all in the details (window).

The other way (that I’m willing to discuss in this article) to select the elements is to ‘tag’ the material number in another command snippet.

pic3
RMB on the geometry and insert a command snippet
pic4
Note the documentation at the top of the snippet
So the trick here is reading the auto-inserted documentation (I know…no one ever reads the instructions).  It states that if you want to interact with the material for this body to use the parameter “matid”.  In the input deck, when the elements for this body are being read in, there is a scalar parameter named “matid” that contains the material property number.  All we need to do is transform that temporary value (it will increment up by one if there was another body after this) by assigning it to a different scalar.  As seen above, all I did was write “part2=matid”.  If we want to select these elements all we need to do is “esel,s,mat,,part2”. 
 
Now I’ll put this all together into a simple thermal expansion model.  A simple 3-2-1 displacement constraint on 3 corners will be used, and I’ll kill off both inserts.  Here’s the command snippets:
pic5
Like I said…the commands are simple

One thing that might happen is the auto-solver settings will have the inappropriate settings to properly support element birth death.  If that happens, you’ll get the dreaded “an unknown error has occurred” in the message window.  Looking into the ‘Solution Information’ window will then show:

pic6
Also note the element selection status, the selection logic worked!
So we’ll modify the command snippet using the error suggestion:
pic7
Happy now solver?

Here’s a comparison of the results with the command snippet active vs inactive:

pic8
Element death results
pic9
Standard results

Now if you want to bring elements back into the model, you just need to insert a command snippet and scope it to the proper load step:

pic10
Solver Settings
pic11
Ekill Command Snippet Details
pic12
Ealive Command Snippet Details

The second command snippet just needs to contain the command “ealive,all” in order to bring everything back.  If you want to only bring back part of the model use the same selection logic as before.  I’m not going to show any results, as everything is linear, it’s late, and my dog isn’t very happy about me writing this article.  Hopefully you get the point.

In conclusion, some basic knowledge of MAPDL selection logic and load-step options within Mechanical, you can easily incorporate element birth and death into your model. 

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: